Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libjpeg/jidctred.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctred.c
3
 *
4
 * This file was part of the Independent JPEG Group's software.
5
 * Copyright (C) 1994-1998, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2015, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains inverse-DCT routines that produce reduced-size output:
12
 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
13
 *
14
 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
15
 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
16
 * with an 8-to-4 step that produces the four averages of two adjacent outputs
17
 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
18
 * These steps were derived by computing the corresponding values at the end
19
 * of the normal LL&M code, then simplifying as much as possible.
20
 *
21
 * 1x1 is trivial: just take the DC coefficient divided by 8.
22
 *
23
 * See jidctint.c for additional comments.
24
 */
25
26
#define JPEG_INTERNALS
27
#include "jinclude.h"
28
#include "jpeglib.h"
29
#include "jdct.h"               /* Private declarations for DCT subsystem */
30
31
#ifdef IDCT_SCALING_SUPPORTED
32
33
34
/*
35
 * This module is specialized to the case DCTSIZE = 8.
36
 */
37
38
#if DCTSIZE != 8
39
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
40
#endif
41
42
43
/* Scaling is the same as in jidctint.c. */
44
45
#if BITS_IN_JSAMPLE == 8
46
#define CONST_BITS  13
47
#define PASS1_BITS  2
48
#else
49
#define CONST_BITS  13
50
#define PASS1_BITS  1           /* lose a little precision to avoid overflow */
51
#endif
52
53
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
54
 * causing a lot of useless floating-point operations at run time.
55
 * To get around this we use the following pre-calculated constants.
56
 * If you change CONST_BITS you may want to add appropriate values.
57
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
58
 */
59
60
#if CONST_BITS == 13
61
#define FIX_0_211164243  ((JLONG)  1730)        /* FIX(0.211164243) */
62
#define FIX_0_509795579  ((JLONG)  4176)        /* FIX(0.509795579) */
63
#define FIX_0_601344887  ((JLONG)  4926)        /* FIX(0.601344887) */
64
#define FIX_0_720959822  ((JLONG)  5906)        /* FIX(0.720959822) */
65
#define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
66
#define FIX_0_850430095  ((JLONG)  6967)        /* FIX(0.850430095) */
67
#define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
68
#define FIX_1_061594337  ((JLONG)  8697)        /* FIX(1.061594337) */
69
#define FIX_1_272758580  ((JLONG)  10426)       /* FIX(1.272758580) */
70
#define FIX_1_451774981  ((JLONG)  11893)       /* FIX(1.451774981) */
71
#define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
72
#define FIX_2_172734803  ((JLONG)  17799)       /* FIX(2.172734803) */
73
#define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
74
#define FIX_3_624509785  ((JLONG)  29692)       /* FIX(3.624509785) */
75
#else
76
#define FIX_0_211164243  FIX(0.211164243)
77
#define FIX_0_509795579  FIX(0.509795579)
78
#define FIX_0_601344887  FIX(0.601344887)
79
#define FIX_0_720959822  FIX(0.720959822)
80
#define FIX_0_765366865  FIX(0.765366865)
81
#define FIX_0_850430095  FIX(0.850430095)
82
#define FIX_0_899976223  FIX(0.899976223)
83
#define FIX_1_061594337  FIX(1.061594337)
84
#define FIX_1_272758580  FIX(1.272758580)
85
#define FIX_1_451774981  FIX(1.451774981)
86
#define FIX_1_847759065  FIX(1.847759065)
87
#define FIX_2_172734803  FIX(2.172734803)
88
#define FIX_2_562915447  FIX(2.562915447)
89
#define FIX_3_624509785  FIX(3.624509785)
90
#endif
91
92
93
/* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
94
 * For 8-bit samples with the recommended scaling, all the variable
95
 * and constant values involved are no more than 16 bits wide, so a
96
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
97
 * For 12-bit samples, a full 32-bit multiplication will be needed.
98
 */
99
100
#if BITS_IN_JSAMPLE == 8
101
0
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
102
#else
103
#define MULTIPLY(var,const)  ((var) * (const))
104
#endif
105
106
107
/* Dequantize a coefficient by multiplying it by the multiplier-table
108
 * entry; produce an int result.  In this module, both inputs and result
109
 * are 16 bits or less, so either int or short multiply will work.
110
 */
111
112
0
#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
113
114
115
/*
116
 * Perform dequantization and inverse DCT on one block of coefficients,
117
 * producing a reduced-size 4x4 output block.
118
 */
119
120
GLOBAL(void)
121
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
122
               JCOEFPTR coef_block,
123
               JSAMPARRAY output_buf, JDIMENSION output_col)
124
0
{
125
0
  JLONG tmp0, tmp2, tmp10, tmp12;
126
0
  JLONG z1, z2, z3, z4;
127
0
  JCOEFPTR inptr;
128
0
  ISLOW_MULT_TYPE *quantptr;
129
0
  int *wsptr;
130
0
  JSAMPROW outptr;
131
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
132
0
  int ctr;
133
0
  int workspace[DCTSIZE*4];     /* buffers data between passes */
134
0
  SHIFT_TEMPS
135
0
136
0
  /* Pass 1: process columns from input, store into work array. */
137
0
138
0
  inptr = coef_block;
139
0
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
140
0
  wsptr = workspace;
141
0
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
142
0
    /* Don't bother to process column 4, because second pass won't use it */
143
0
    if (ctr == DCTSIZE-4)
144
0
      continue;
145
0
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
146
0
        inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
147
0
        inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
148
0
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
149
0
      int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
150
0
                             PASS1_BITS);
151
0
152
0
      wsptr[DCTSIZE*0] = dcval;
153
0
      wsptr[DCTSIZE*1] = dcval;
154
0
      wsptr[DCTSIZE*2] = dcval;
155
0
      wsptr[DCTSIZE*3] = dcval;
156
0
157
0
      continue;
158
0
    }
159
0
160
0
    /* Even part */
161
0
162
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
163
0
    tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);
164
0
165
0
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
166
0
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
167
0
168
0
    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
169
0
170
0
    tmp10 = tmp0 + tmp2;
171
0
    tmp12 = tmp0 - tmp2;
172
0
173
0
    /* Odd part */
174
0
175
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
176
0
    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
177
0
    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
178
0
    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
179
0
180
0
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
181
0
         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
182
0
         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
183
0
         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
184
0
185
0
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
186
0
         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
187
0
         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
188
0
         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
189
0
190
0
    /* Final output stage */
191
0
192
0
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
193
0
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
194
0
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
195
0
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
196
0
  }
197
0
198
0
  /* Pass 2: process 4 rows from work array, store into output array. */
199
0
200
0
  wsptr = workspace;
201
0
  for (ctr = 0; ctr < 4; ctr++) {
202
0
    outptr = output_buf[ctr] + output_col;
203
0
    /* It's not clear whether a zero row test is worthwhile here ... */
204
0
205
0
#ifndef NO_ZERO_ROW_TEST
206
0
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
207
0
        wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
208
0
      /* AC terms all zero */
209
0
      JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
210
0
                                  & RANGE_MASK];
211
0
212
0
      outptr[0] = dcval;
213
0
      outptr[1] = dcval;
214
0
      outptr[2] = dcval;
215
0
      outptr[3] = dcval;
216
0
217
0
      wsptr += DCTSIZE;         /* advance pointer to next row */
218
0
      continue;
219
0
    }
220
0
#endif
221
0
222
0
    /* Even part */
223
0
224
0
    tmp0 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+1);
225
0
226
0
    tmp2 = MULTIPLY((JLONG) wsptr[2], FIX_1_847759065)
227
0
         + MULTIPLY((JLONG) wsptr[6], - FIX_0_765366865);
228
0
229
0
    tmp10 = tmp0 + tmp2;
230
0
    tmp12 = tmp0 - tmp2;
231
0
232
0
    /* Odd part */
233
0
234
0
    z1 = (JLONG) wsptr[7];
235
0
    z2 = (JLONG) wsptr[5];
236
0
    z3 = (JLONG) wsptr[3];
237
0
    z4 = (JLONG) wsptr[1];
238
0
239
0
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
240
0
         + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
241
0
         + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
242
0
         + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
243
0
244
0
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
245
0
         + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
246
0
         + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
247
0
         + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
248
0
249
0
    /* Final output stage */
250
0
251
0
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
252
0
                                          CONST_BITS+PASS1_BITS+3+1)
253
0
                            & RANGE_MASK];
254
0
    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
255
0
                                          CONST_BITS+PASS1_BITS+3+1)
256
0
                            & RANGE_MASK];
257
0
    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
258
0
                                          CONST_BITS+PASS1_BITS+3+1)
259
0
                            & RANGE_MASK];
260
0
    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
261
0
                                          CONST_BITS+PASS1_BITS+3+1)
262
0
                            & RANGE_MASK];
263
0
264
0
    wsptr += DCTSIZE;           /* advance pointer to next row */
265
0
  }
266
0
}
267
268
269
/*
270
 * Perform dequantization and inverse DCT on one block of coefficients,
271
 * producing a reduced-size 2x2 output block.
272
 */
273
274
GLOBAL(void)
275
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
276
               JCOEFPTR coef_block,
277
               JSAMPARRAY output_buf, JDIMENSION output_col)
278
0
{
279
0
  JLONG tmp0, tmp10, z1;
280
0
  JCOEFPTR inptr;
281
0
  ISLOW_MULT_TYPE *quantptr;
282
0
  int *wsptr;
283
0
  JSAMPROW outptr;
284
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
285
0
  int ctr;
286
0
  int workspace[DCTSIZE*2];     /* buffers data between passes */
287
0
  SHIFT_TEMPS
288
0
289
0
  /* Pass 1: process columns from input, store into work array. */
290
0
291
0
  inptr = coef_block;
292
0
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
293
0
  wsptr = workspace;
294
0
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
295
0
    /* Don't bother to process columns 2,4,6 */
296
0
    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
297
0
      continue;
298
0
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
299
0
        inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
300
0
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
301
0
      int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
302
0
                             PASS1_BITS);
303
0
304
0
      wsptr[DCTSIZE*0] = dcval;
305
0
      wsptr[DCTSIZE*1] = dcval;
306
0
307
0
      continue;
308
0
    }
309
0
310
0
    /* Even part */
311
0
312
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
313
0
    tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);
314
0
315
0
    /* Odd part */
316
0
317
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
318
0
    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
319
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
320
0
    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
321
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
322
0
    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
323
0
    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
324
0
    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
325
0
326
0
    /* Final output stage */
327
0
328
0
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
329
0
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
330
0
  }
331
0
332
0
  /* Pass 2: process 2 rows from work array, store into output array. */
333
0
334
0
  wsptr = workspace;
335
0
  for (ctr = 0; ctr < 2; ctr++) {
336
0
    outptr = output_buf[ctr] + output_col;
337
0
    /* It's not clear whether a zero row test is worthwhile here ... */
338
0
339
0
#ifndef NO_ZERO_ROW_TEST
340
0
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
341
0
      /* AC terms all zero */
342
0
      JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
343
0
                                  & RANGE_MASK];
344
0
345
0
      outptr[0] = dcval;
346
0
      outptr[1] = dcval;
347
0
348
0
      wsptr += DCTSIZE;         /* advance pointer to next row */
349
0
      continue;
350
0
    }
351
0
#endif
352
0
353
0
    /* Even part */
354
0
355
0
    tmp10 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+2);
356
0
357
0
    /* Odd part */
358
0
359
0
    tmp0 = MULTIPLY((JLONG) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
360
0
         + MULTIPLY((JLONG) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
361
0
         + MULTIPLY((JLONG) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
362
0
         + MULTIPLY((JLONG) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
363
0
364
0
    /* Final output stage */
365
0
366
0
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
367
0
                                          CONST_BITS+PASS1_BITS+3+2)
368
0
                            & RANGE_MASK];
369
0
    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
370
0
                                          CONST_BITS+PASS1_BITS+3+2)
371
0
                            & RANGE_MASK];
372
0
373
0
    wsptr += DCTSIZE;           /* advance pointer to next row */
374
0
  }
375
0
}
376
377
378
/*
379
 * Perform dequantization and inverse DCT on one block of coefficients,
380
 * producing a reduced-size 1x1 output block.
381
 */
382
383
GLOBAL(void)
384
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
385
               JCOEFPTR coef_block,
386
               JSAMPARRAY output_buf, JDIMENSION output_col)
387
0
{
388
0
  int dcval;
389
0
  ISLOW_MULT_TYPE *quantptr;
390
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
391
0
  SHIFT_TEMPS
392
0
393
0
  /* We hardly need an inverse DCT routine for this: just take the
394
0
   * average pixel value, which is one-eighth of the DC coefficient.
395
0
   */
396
0
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
397
0
  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
398
0
  dcval = (int) DESCALE((JLONG) dcval, 3);
399
0
400
0
  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
401
0
}
402
403
#endif /* IDCT_SCALING_SUPPORTED */