Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libjpeg/jmemmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jmemmgr.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1997, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2016, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains the JPEG system-independent memory management
12
 * routines.  This code is usable across a wide variety of machines; most
13
 * of the system dependencies have been isolated in a separate file.
14
 * The major functions provided here are:
15
 *   * pool-based allocation and freeing of memory;
16
 *   * policy decisions about how to divide available memory among the
17
 *     virtual arrays;
18
 *   * control logic for swapping virtual arrays between main memory and
19
 *     backing storage.
20
 * The separate system-dependent file provides the actual backing-storage
21
 * access code, and it contains the policy decision about how much total
22
 * main memory to use.
23
 * This file is system-dependent in the sense that some of its functions
24
 * are unnecessary in some systems.  For example, if there is enough virtual
25
 * memory so that backing storage will never be used, much of the virtual
26
 * array control logic could be removed.  (Of course, if you have that much
27
 * memory then you shouldn't care about a little bit of unused code...)
28
 */
29
30
#define JPEG_INTERNALS
31
#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
32
#include "jinclude.h"
33
#include "jpeglib.h"
34
#include "jmemsys.h"            /* import the system-dependent declarations */
35
#ifndef _WIN32
36
#include <stdint.h>
37
#endif
38
#include <limits.h>
39
40
#ifndef NO_GETENV
41
#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
42
extern char *getenv (const char *name);
43
#endif
44
#endif
45
46
47
LOCAL(size_t)
48
round_up_pow2 (size_t a, size_t b)
49
/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
50
/* Assumes a >= 0, b > 0, and b is a power of 2 */
51
0
{
52
0
  return ((a + b - 1) & (~(b - 1)));
53
0
}
54
55
56
/*
57
 * Some important notes:
58
 *   The allocation routines provided here must never return NULL.
59
 *   They should exit to error_exit if unsuccessful.
60
 *
61
 *   It's not a good idea to try to merge the sarray and barray routines,
62
 *   even though they are textually almost the same, because samples are
63
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
64
 *   in machines where byte pointers have a different representation from
65
 *   word pointers, the resulting machine code could not be the same.
66
 */
67
68
69
/*
70
 * Many machines require storage alignment: longs must start on 4-byte
71
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
72
 * always returns pointers that are multiples of the worst-case alignment
73
 * requirement, and we had better do so too.
74
 * There isn't any really portable way to determine the worst-case alignment
75
 * requirement.  This module assumes that the alignment requirement is
76
 * multiples of ALIGN_SIZE.
77
 * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
78
 * some workstations (where doubles really do need 8-byte alignment) and will
79
 * work fine on nearly everything.  If your machine has lesser alignment needs,
80
 * you can save a few bytes by making ALIGN_SIZE smaller.
81
 * The only place I know of where this will NOT work is certain Macintosh
82
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
83
 * Doing 10-byte alignment is counterproductive because longwords won't be
84
 * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
85
 * such a compiler.
86
 */
87
88
#ifndef ALIGN_SIZE              /* so can override from jconfig.h */
89
#ifndef WITH_SIMD
90
#define ALIGN_SIZE  sizeof(double)
91
#else
92
0
#define ALIGN_SIZE  16 /* Most SIMD implementations require this */
93
#endif
94
#endif
95
96
/*
97
 * We allocate objects from "pools", where each pool is gotten with a single
98
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
99
 * overhead within a pool, except for alignment padding.  Each pool has a
100
 * header with a link to the next pool of the same class.
101
 * Small and large pool headers are identical.
102
 */
103
104
typedef struct small_pool_struct *small_pool_ptr;
105
106
typedef struct small_pool_struct {
107
  small_pool_ptr next;  /* next in list of pools */
108
  size_t bytes_used;            /* how many bytes already used within pool */
109
  size_t bytes_left;            /* bytes still available in this pool */
110
} small_pool_hdr;
111
112
typedef struct large_pool_struct *large_pool_ptr;
113
114
typedef struct large_pool_struct {
115
  large_pool_ptr next;  /* next in list of pools */
116
  size_t bytes_used;            /* how many bytes already used within pool */
117
  size_t bytes_left;            /* bytes still available in this pool */
118
} large_pool_hdr;
119
120
/*
121
 * Here is the full definition of a memory manager object.
122
 */
123
124
typedef struct {
125
  struct jpeg_memory_mgr pub;   /* public fields */
126
127
  /* Each pool identifier (lifetime class) names a linked list of pools. */
128
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
129
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
130
131
  /* Since we only have one lifetime class of virtual arrays, only one
132
   * linked list is necessary (for each datatype).  Note that the virtual
133
   * array control blocks being linked together are actually stored somewhere
134
   * in the small-pool list.
135
   */
136
  jvirt_sarray_ptr virt_sarray_list;
137
  jvirt_barray_ptr virt_barray_list;
138
139
  /* This counts total space obtained from jpeg_get_small/large */
140
  size_t total_space_allocated;
141
142
  /* alloc_sarray and alloc_barray set this value for use by virtual
143
   * array routines.
144
   */
145
  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
146
} my_memory_mgr;
147
148
typedef my_memory_mgr *my_mem_ptr;
149
150
151
/*
152
 * The control blocks for virtual arrays.
153
 * Note that these blocks are allocated in the "small" pool area.
154
 * System-dependent info for the associated backing store (if any) is hidden
155
 * inside the backing_store_info struct.
156
 */
157
158
struct jvirt_sarray_control {
159
  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
160
  JDIMENSION rows_in_array;     /* total virtual array height */
161
  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
162
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
163
  JDIMENSION rows_in_mem;       /* height of memory buffer */
164
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
165
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
166
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
167
  boolean pre_zero;             /* pre-zero mode requested? */
168
  boolean dirty;                /* do current buffer contents need written? */
169
  boolean b_s_open;             /* is backing-store data valid? */
170
  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
171
  backing_store_info b_s_info;  /* System-dependent control info */
172
};
173
174
struct jvirt_barray_control {
175
  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
176
  JDIMENSION rows_in_array;     /* total virtual array height */
177
  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
178
  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
179
  JDIMENSION rows_in_mem;       /* height of memory buffer */
180
  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
181
  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
182
  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
183
  boolean pre_zero;             /* pre-zero mode requested? */
184
  boolean dirty;                /* do current buffer contents need written? */
185
  boolean b_s_open;             /* is backing-store data valid? */
186
  jvirt_barray_ptr next;        /* link to next virtual barray control block */
187
  backing_store_info b_s_info;  /* System-dependent control info */
188
};
189
190
191
#ifdef MEM_STATS                /* optional extra stuff for statistics */
192
193
LOCAL(void)
194
print_mem_stats (j_common_ptr cinfo, int pool_id)
195
{
196
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
197
  small_pool_ptr shdr_ptr;
198
  large_pool_ptr lhdr_ptr;
199
200
  /* Since this is only a debugging stub, we can cheat a little by using
201
   * fprintf directly rather than going through the trace message code.
202
   * This is helpful because message parm array can't handle longs.
203
   */
204
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
205
          pool_id, mem->total_space_allocated);
206
207
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
208
       lhdr_ptr = lhdr_ptr->next) {
209
    fprintf(stderr, "  Large chunk used %ld\n",
210
            (long) lhdr_ptr->bytes_used);
211
  }
212
213
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
214
       shdr_ptr = shdr_ptr->next) {
215
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
216
            (long) shdr_ptr->bytes_used,
217
            (long) shdr_ptr->bytes_left);
218
  }
219
}
220
221
#endif /* MEM_STATS */
222
223
224
LOCAL(void)
225
out_of_memory (j_common_ptr cinfo, int which)
226
/* Report an out-of-memory error and stop execution */
227
/* If we compiled MEM_STATS support, report alloc requests before dying */
228
0
{
229
#ifdef MEM_STATS
230
  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
231
#endif
232
0
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
233
0
}
234
235
236
/*
237
 * Allocation of "small" objects.
238
 *
239
 * For these, we use pooled storage.  When a new pool must be created,
240
 * we try to get enough space for the current request plus a "slop" factor,
241
 * where the slop will be the amount of leftover space in the new pool.
242
 * The speed vs. space tradeoff is largely determined by the slop values.
243
 * A different slop value is provided for each pool class (lifetime),
244
 * and we also distinguish the first pool of a class from later ones.
245
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
246
 * machines, but may be too small if longs are 64 bits or more.
247
 *
248
 * Since we do not know what alignment malloc() gives us, we have to
249
 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
250
 * adjustment.
251
 */
252
253
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
254
{
255
        1600,                   /* first PERMANENT pool */
256
        16000                   /* first IMAGE pool */
257
};
258
259
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
260
{
261
        0,                      /* additional PERMANENT pools */
262
        5000                    /* additional IMAGE pools */
263
};
264
265
0
#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
266
267
268
METHODDEF(void *)
269
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
270
/* Allocate a "small" object */
271
0
{
272
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
273
0
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
274
0
  char *data_ptr;
275
0
  size_t min_request, slop;
276
0
277
0
  /*
278
0
   * Round up the requested size to a multiple of ALIGN_SIZE in order
279
0
   * to assure alignment for the next object allocated in the same pool
280
0
   * and so that algorithms can straddle outside the proper area up
281
0
   * to the next alignment.
282
0
   */
283
0
  if (sizeofobject > MAX_ALLOC_CHUNK) {
284
0
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
285
0
       is close to SIZE_MAX. */
286
0
    out_of_memory(cinfo, 7);
287
0
  }
288
0
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
289
0
290
0
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
291
0
  if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
292
0
      MAX_ALLOC_CHUNK)
293
0
    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
294
0
295
0
  /* See if space is available in any existing pool */
296
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
297
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
298
0
  prev_hdr_ptr = NULL;
299
0
  hdr_ptr = mem->small_list[pool_id];
300
0
  while (hdr_ptr != NULL) {
301
0
    if (hdr_ptr->bytes_left >= sizeofobject)
302
0
      break;                    /* found pool with enough space */
303
0
    prev_hdr_ptr = hdr_ptr;
304
0
    hdr_ptr = hdr_ptr->next;
305
0
  }
306
0
307
0
  /* Time to make a new pool? */
308
0
  if (hdr_ptr == NULL) {
309
0
    /* min_request is what we need now, slop is what will be leftover */
310
0
    min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
311
0
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
312
0
      slop = first_pool_slop[pool_id];
313
0
    else
314
0
      slop = extra_pool_slop[pool_id];
315
0
    /* Don't ask for more than MAX_ALLOC_CHUNK */
316
0
    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
317
0
      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
318
0
    /* Try to get space, if fail reduce slop and try again */
319
0
    for (;;) {
320
0
      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
321
0
      if (hdr_ptr != NULL)
322
0
        break;
323
0
      slop /= 2;
324
0
      if (slop < MIN_SLOP)      /* give up when it gets real small */
325
0
        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
326
0
    }
327
0
    mem->total_space_allocated += min_request + slop;
328
0
    /* Success, initialize the new pool header and add to end of list */
329
0
    hdr_ptr->next = NULL;
330
0
    hdr_ptr->bytes_used = 0;
331
0
    hdr_ptr->bytes_left = sizeofobject + slop;
332
0
    if (prev_hdr_ptr == NULL)   /* first pool in class? */
333
0
      mem->small_list[pool_id] = hdr_ptr;
334
0
    else
335
0
      prev_hdr_ptr->next = hdr_ptr;
336
0
  }
337
0
338
0
  /* OK, allocate the object from the current pool */
339
0
  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
340
0
  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
341
0
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
342
0
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
343
0
  data_ptr += hdr_ptr->bytes_used; /* point to place for object */
344
0
  hdr_ptr->bytes_used += sizeofobject;
345
0
  hdr_ptr->bytes_left -= sizeofobject;
346
0
347
0
  return (void *) data_ptr;
348
0
}
349
350
351
/*
352
 * Allocation of "large" objects.
353
 *
354
 * The external semantics of these are the same as "small" objects.  However,
355
 * the pool management heuristics are quite different.  We assume that each
356
 * request is large enough that it may as well be passed directly to
357
 * jpeg_get_large; the pool management just links everything together
358
 * so that we can free it all on demand.
359
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
360
 * structures.  The routines that create these structures (see below)
361
 * deliberately bunch rows together to ensure a large request size.
362
 */
363
364
METHODDEF(void *)
365
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
366
/* Allocate a "large" object */
367
0
{
368
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
369
0
  large_pool_ptr hdr_ptr;
370
0
  char *data_ptr;
371
0
372
0
  /*
373
0
   * Round up the requested size to a multiple of ALIGN_SIZE so that
374
0
   * algorithms can straddle outside the proper area up to the next
375
0
   * alignment.
376
0
   */
377
0
  if (sizeofobject > MAX_ALLOC_CHUNK) {
378
0
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
379
0
       is close to SIZE_MAX. */
380
0
    out_of_memory(cinfo, 8);
381
0
  }
382
0
  sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
383
0
384
0
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
385
0
  if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
386
0
      MAX_ALLOC_CHUNK)
387
0
    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
388
0
389
0
  /* Always make a new pool */
390
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
391
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
392
0
393
0
  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
394
0
                                            sizeof(large_pool_hdr) +
395
0
                                            ALIGN_SIZE - 1);
396
0
  if (hdr_ptr == NULL)
397
0
    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
398
0
  mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
399
0
                                ALIGN_SIZE - 1;
400
0
401
0
  /* Success, initialize the new pool header and add to list */
402
0
  hdr_ptr->next = mem->large_list[pool_id];
403
0
  /* We maintain space counts in each pool header for statistical purposes,
404
0
   * even though they are not needed for allocation.
405
0
   */
406
0
  hdr_ptr->bytes_used = sizeofobject;
407
0
  hdr_ptr->bytes_left = 0;
408
0
  mem->large_list[pool_id] = hdr_ptr;
409
0
410
0
  data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
411
0
  data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
412
0
  if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
413
0
    data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
414
0
415
0
  return (void *) data_ptr;
416
0
}
417
418
419
/*
420
 * Creation of 2-D sample arrays.
421
 *
422
 * To minimize allocation overhead and to allow I/O of large contiguous
423
 * blocks, we allocate the sample rows in groups of as many rows as possible
424
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
425
 * NB: the virtual array control routines, later in this file, know about
426
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
427
 * object so that it can be saved away if this sarray is the workspace for
428
 * a virtual array.
429
 *
430
 * Since we are often upsampling with a factor 2, we align the size (not
431
 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
432
 * to be as careful about size.
433
 */
434
435
METHODDEF(JSAMPARRAY)
436
alloc_sarray (j_common_ptr cinfo, int pool_id,
437
              JDIMENSION samplesperrow, JDIMENSION numrows)
438
/* Allocate a 2-D sample array */
439
0
{
440
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
441
0
  JSAMPARRAY result;
442
0
  JSAMPROW workspace;
443
0
  JDIMENSION rowsperchunk, currow, i;
444
0
  long ltemp;
445
0
446
0
  /* Make sure each row is properly aligned */
447
0
  if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
448
0
    out_of_memory(cinfo, 5);    /* safety check */
449
0
450
0
  if (samplesperrow > MAX_ALLOC_CHUNK) {
451
0
    /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
452
0
       is close to SIZE_MAX. */
453
0
    out_of_memory(cinfo, 9);
454
0
  }
455
0
  samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
456
0
                                                           sizeof(JSAMPLE));
457
0
458
0
  /* Calculate max # of rows allowed in one allocation chunk */
459
0
  ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
460
0
          ((long) samplesperrow * sizeof(JSAMPLE));
461
0
  if (ltemp <= 0)
462
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
463
0
  if (ltemp < (long) numrows)
464
0
    rowsperchunk = (JDIMENSION) ltemp;
465
0
  else
466
0
    rowsperchunk = numrows;
467
0
  mem->last_rowsperchunk = rowsperchunk;
468
0
469
0
  /* Get space for row pointers (small object) */
470
0
  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
471
0
                                    (size_t) (numrows * sizeof(JSAMPROW)));
472
0
473
0
  /* Get the rows themselves (large objects) */
474
0
  currow = 0;
475
0
  while (currow < numrows) {
476
0
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
477
0
    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
478
0
        (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
479
0
                  * sizeof(JSAMPLE)));
480
0
    for (i = rowsperchunk; i > 0; i--) {
481
0
      result[currow++] = workspace;
482
0
      workspace += samplesperrow;
483
0
    }
484
0
  }
485
0
486
0
  return result;
487
0
}
488
489
490
/*
491
 * Creation of 2-D coefficient-block arrays.
492
 * This is essentially the same as the code for sample arrays, above.
493
 */
494
495
METHODDEF(JBLOCKARRAY)
496
alloc_barray (j_common_ptr cinfo, int pool_id,
497
              JDIMENSION blocksperrow, JDIMENSION numrows)
498
/* Allocate a 2-D coefficient-block array */
499
0
{
500
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
501
0
  JBLOCKARRAY result;
502
0
  JBLOCKROW workspace;
503
0
  JDIMENSION rowsperchunk, currow, i;
504
0
  long ltemp;
505
0
506
0
  /* Make sure each row is properly aligned */
507
0
  if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
508
0
    out_of_memory(cinfo, 6);    /* safety check */
509
0
510
0
  /* Calculate max # of rows allowed in one allocation chunk */
511
0
  ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
512
0
          ((long) blocksperrow * sizeof(JBLOCK));
513
0
  if (ltemp <= 0)
514
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
515
0
  if (ltemp < (long) numrows)
516
0
    rowsperchunk = (JDIMENSION) ltemp;
517
0
  else
518
0
    rowsperchunk = numrows;
519
0
  mem->last_rowsperchunk = rowsperchunk;
520
0
521
0
  /* Get space for row pointers (small object) */
522
0
  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
523
0
                                     (size_t) (numrows * sizeof(JBLOCKROW)));
524
0
525
0
  /* Get the rows themselves (large objects) */
526
0
  currow = 0;
527
0
  while (currow < numrows) {
528
0
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
529
0
    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
530
0
        (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
531
0
                  * sizeof(JBLOCK)));
532
0
    for (i = rowsperchunk; i > 0; i--) {
533
0
      result[currow++] = workspace;
534
0
      workspace += blocksperrow;
535
0
    }
536
0
  }
537
0
538
0
  return result;
539
0
}
540
541
542
/*
543
 * About virtual array management:
544
 *
545
 * The above "normal" array routines are only used to allocate strip buffers
546
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
547
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
548
 * time, but the memory manager must save the whole array for repeated
549
 * accesses.  The intended implementation is that there is a strip buffer in
550
 * memory (as high as is possible given the desired memory limit), plus a
551
 * backing file that holds the rest of the array.
552
 *
553
 * The request_virt_array routines are told the total size of the image and
554
 * the maximum number of rows that will be accessed at once.  The in-memory
555
 * buffer must be at least as large as the maxaccess value.
556
 *
557
 * The request routines create control blocks but not the in-memory buffers.
558
 * That is postponed until realize_virt_arrays is called.  At that time the
559
 * total amount of space needed is known (approximately, anyway), so free
560
 * memory can be divided up fairly.
561
 *
562
 * The access_virt_array routines are responsible for making a specific strip
563
 * area accessible (after reading or writing the backing file, if necessary).
564
 * Note that the access routines are told whether the caller intends to modify
565
 * the accessed strip; during a read-only pass this saves having to rewrite
566
 * data to disk.  The access routines are also responsible for pre-zeroing
567
 * any newly accessed rows, if pre-zeroing was requested.
568
 *
569
 * In current usage, the access requests are usually for nonoverlapping
570
 * strips; that is, successive access start_row numbers differ by exactly
571
 * num_rows = maxaccess.  This means we can get good performance with simple
572
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
573
 * of the access height; then there will never be accesses across bufferload
574
 * boundaries.  The code will still work with overlapping access requests,
575
 * but it doesn't handle bufferload overlaps very efficiently.
576
 */
577
578
579
METHODDEF(jvirt_sarray_ptr)
580
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
581
                     JDIMENSION samplesperrow, JDIMENSION numrows,
582
                     JDIMENSION maxaccess)
583
/* Request a virtual 2-D sample array */
584
0
{
585
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586
0
  jvirt_sarray_ptr result;
587
0
588
0
  /* Only IMAGE-lifetime virtual arrays are currently supported */
589
0
  if (pool_id != JPOOL_IMAGE)
590
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
591
0
592
0
  /* get control block */
593
0
  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
594
0
                                          sizeof(struct jvirt_sarray_control));
595
0
596
0
  result->mem_buffer = NULL;    /* marks array not yet realized */
597
0
  result->rows_in_array = numrows;
598
0
  result->samplesperrow = samplesperrow;
599
0
  result->maxaccess = maxaccess;
600
0
  result->pre_zero = pre_zero;
601
0
  result->b_s_open = FALSE;     /* no associated backing-store object */
602
0
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
603
0
  mem->virt_sarray_list = result;
604
0
605
0
  return result;
606
0
}
607
608
609
METHODDEF(jvirt_barray_ptr)
610
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
611
                     JDIMENSION blocksperrow, JDIMENSION numrows,
612
                     JDIMENSION maxaccess)
613
/* Request a virtual 2-D coefficient-block array */
614
0
{
615
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
616
0
  jvirt_barray_ptr result;
617
0
618
0
  /* Only IMAGE-lifetime virtual arrays are currently supported */
619
0
  if (pool_id != JPOOL_IMAGE)
620
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
621
0
622
0
  /* get control block */
623
0
  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
624
0
                                          sizeof(struct jvirt_barray_control));
625
0
626
0
  result->mem_buffer = NULL;    /* marks array not yet realized */
627
0
  result->rows_in_array = numrows;
628
0
  result->blocksperrow = blocksperrow;
629
0
  result->maxaccess = maxaccess;
630
0
  result->pre_zero = pre_zero;
631
0
  result->b_s_open = FALSE;     /* no associated backing-store object */
632
0
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
633
0
  mem->virt_barray_list = result;
634
0
635
0
  return result;
636
0
}
637
638
639
METHODDEF(void)
640
realize_virt_arrays (j_common_ptr cinfo)
641
/* Allocate the in-memory buffers for any unrealized virtual arrays */
642
0
{
643
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
644
0
  size_t space_per_minheight, maximum_space, avail_mem;
645
0
  size_t minheights, max_minheights;
646
0
  jvirt_sarray_ptr sptr;
647
0
  jvirt_barray_ptr bptr;
648
0
649
0
  /* Compute the minimum space needed (maxaccess rows in each buffer)
650
0
   * and the maximum space needed (full image height in each buffer).
651
0
   * These may be of use to the system-dependent jpeg_mem_available routine.
652
0
   */
653
0
  space_per_minheight = 0;
654
0
  maximum_space = 0;
655
0
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
656
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
657
0
      size_t new_space = (long) sptr->rows_in_array *
658
0
                         (long) sptr->samplesperrow * sizeof(JSAMPLE);
659
0
660
0
      space_per_minheight += (long) sptr->maxaccess *
661
0
                             (long) sptr->samplesperrow * sizeof(JSAMPLE);
662
0
      if (SIZE_MAX - maximum_space < new_space)
663
0
        out_of_memory(cinfo, 10);
664
0
      maximum_space += new_space;
665
0
    }
666
0
  }
667
0
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
668
0
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
669
0
      size_t new_space = (long) bptr->rows_in_array *
670
0
                         (long) bptr->blocksperrow * sizeof(JBLOCK);
671
0
672
0
      space_per_minheight += (long) bptr->maxaccess *
673
0
                             (long) bptr->blocksperrow * sizeof(JBLOCK);
674
0
      if (SIZE_MAX - maximum_space < new_space)
675
0
        out_of_memory(cinfo, 11);
676
0
      maximum_space += new_space;
677
0
    }
678
0
  }
679
0
680
0
  if (space_per_minheight <= 0)
681
0
    return;                     /* no unrealized arrays, no work */
682
0
683
0
  /* Determine amount of memory to actually use; this is system-dependent. */
684
0
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
685
0
                                 mem->total_space_allocated);
686
0
687
0
  /* If the maximum space needed is available, make all the buffers full
688
0
   * height; otherwise parcel it out with the same number of minheights
689
0
   * in each buffer.
690
0
   */
691
0
  if (avail_mem >= maximum_space)
692
0
    max_minheights = 1000000000L;
693
0
  else {
694
0
    max_minheights = avail_mem / space_per_minheight;
695
0
    /* If there doesn't seem to be enough space, try to get the minimum
696
0
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
697
0
     */
698
0
    if (max_minheights <= 0)
699
0
      max_minheights = 1;
700
0
  }
701
0
702
0
  /* Allocate the in-memory buffers and initialize backing store as needed. */
703
0
704
0
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
705
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
706
0
      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
707
0
      if (minheights <= max_minheights) {
708
0
        /* This buffer fits in memory */
709
0
        sptr->rows_in_mem = sptr->rows_in_array;
710
0
      } else {
711
0
        /* It doesn't fit in memory, create backing store. */
712
0
        sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
713
0
        jpeg_open_backing_store(cinfo, & sptr->b_s_info,
714
0
                                (long) sptr->rows_in_array *
715
0
                                (long) sptr->samplesperrow *
716
0
                                (long) sizeof(JSAMPLE));
717
0
        sptr->b_s_open = TRUE;
718
0
      }
719
0
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
720
0
                                      sptr->samplesperrow, sptr->rows_in_mem);
721
0
      sptr->rowsperchunk = mem->last_rowsperchunk;
722
0
      sptr->cur_start_row = 0;
723
0
      sptr->first_undef_row = 0;
724
0
      sptr->dirty = FALSE;
725
0
    }
726
0
  }
727
0
728
0
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
729
0
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
730
0
      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
731
0
      if (minheights <= max_minheights) {
732
0
        /* This buffer fits in memory */
733
0
        bptr->rows_in_mem = bptr->rows_in_array;
734
0
      } else {
735
0
        /* It doesn't fit in memory, create backing store. */
736
0
        bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
737
0
        jpeg_open_backing_store(cinfo, & bptr->b_s_info,
738
0
                                (long) bptr->rows_in_array *
739
0
                                (long) bptr->blocksperrow *
740
0
                                (long) sizeof(JBLOCK));
741
0
        bptr->b_s_open = TRUE;
742
0
      }
743
0
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
744
0
                                      bptr->blocksperrow, bptr->rows_in_mem);
745
0
      bptr->rowsperchunk = mem->last_rowsperchunk;
746
0
      bptr->cur_start_row = 0;
747
0
      bptr->first_undef_row = 0;
748
0
      bptr->dirty = FALSE;
749
0
    }
750
0
  }
751
0
}
752
753
754
LOCAL(void)
755
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
756
/* Do backing store read or write of a virtual sample array */
757
0
{
758
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
759
0
760
0
  bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
761
0
  file_offset = ptr->cur_start_row * bytesperrow;
762
0
  /* Loop to read or write each allocation chunk in mem_buffer */
763
0
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
764
0
    /* One chunk, but check for short chunk at end of buffer */
765
0
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
766
0
    /* Transfer no more than is currently defined */
767
0
    thisrow = (long) ptr->cur_start_row + i;
768
0
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
769
0
    /* Transfer no more than fits in file */
770
0
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
771
0
    if (rows <= 0)              /* this chunk might be past end of file! */
772
0
      break;
773
0
    byte_count = rows * bytesperrow;
774
0
    if (writing)
775
0
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
776
0
                                            (void *) ptr->mem_buffer[i],
777
0
                                            file_offset, byte_count);
778
0
    else
779
0
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
780
0
                                           (void *) ptr->mem_buffer[i],
781
0
                                           file_offset, byte_count);
782
0
    file_offset += byte_count;
783
0
  }
784
0
}
785
786
787
LOCAL(void)
788
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
789
/* Do backing store read or write of a virtual coefficient-block array */
790
0
{
791
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
792
0
793
0
  bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
794
0
  file_offset = ptr->cur_start_row * bytesperrow;
795
0
  /* Loop to read or write each allocation chunk in mem_buffer */
796
0
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
797
0
    /* One chunk, but check for short chunk at end of buffer */
798
0
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
799
0
    /* Transfer no more than is currently defined */
800
0
    thisrow = (long) ptr->cur_start_row + i;
801
0
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
802
0
    /* Transfer no more than fits in file */
803
0
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
804
0
    if (rows <= 0)              /* this chunk might be past end of file! */
805
0
      break;
806
0
    byte_count = rows * bytesperrow;
807
0
    if (writing)
808
0
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
809
0
                                            (void *) ptr->mem_buffer[i],
810
0
                                            file_offset, byte_count);
811
0
    else
812
0
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
813
0
                                           (void *) ptr->mem_buffer[i],
814
0
                                           file_offset, byte_count);
815
0
    file_offset += byte_count;
816
0
  }
817
0
}
818
819
820
METHODDEF(JSAMPARRAY)
821
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
822
                    JDIMENSION start_row, JDIMENSION num_rows,
823
                    boolean writable)
824
/* Access the part of a virtual sample array starting at start_row */
825
/* and extending for num_rows rows.  writable is true if  */
826
/* caller intends to modify the accessed area. */
827
0
{
828
0
  JDIMENSION end_row = start_row + num_rows;
829
0
  JDIMENSION undef_row;
830
0
831
0
  /* debugging check */
832
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
833
0
      ptr->mem_buffer == NULL)
834
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
835
0
836
0
  /* Make the desired part of the virtual array accessible */
837
0
  if (start_row < ptr->cur_start_row ||
838
0
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
839
0
    if (! ptr->b_s_open)
840
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
841
0
    /* Flush old buffer contents if necessary */
842
0
    if (ptr->dirty) {
843
0
      do_sarray_io(cinfo, ptr, TRUE);
844
0
      ptr->dirty = FALSE;
845
0
    }
846
0
    /* Decide what part of virtual array to access.
847
0
     * Algorithm: if target address > current window, assume forward scan,
848
0
     * load starting at target address.  If target address < current window,
849
0
     * assume backward scan, load so that target area is top of window.
850
0
     * Note that when switching from forward write to forward read, will have
851
0
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
852
0
     */
853
0
    if (start_row > ptr->cur_start_row) {
854
0
      ptr->cur_start_row = start_row;
855
0
    } else {
856
0
      /* use long arithmetic here to avoid overflow & unsigned problems */
857
0
      long ltemp;
858
0
859
0
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
860
0
      if (ltemp < 0)
861
0
        ltemp = 0;              /* don't fall off front end of file */
862
0
      ptr->cur_start_row = (JDIMENSION) ltemp;
863
0
    }
864
0
    /* Read in the selected part of the array.
865
0
     * During the initial write pass, we will do no actual read
866
0
     * because the selected part is all undefined.
867
0
     */
868
0
    do_sarray_io(cinfo, ptr, FALSE);
869
0
  }
870
0
  /* Ensure the accessed part of the array is defined; prezero if needed.
871
0
   * To improve locality of access, we only prezero the part of the array
872
0
   * that the caller is about to access, not the entire in-memory array.
873
0
   */
874
0
  if (ptr->first_undef_row < end_row) {
875
0
    if (ptr->first_undef_row < start_row) {
876
0
      if (writable)             /* writer skipped over a section of array */
877
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
878
0
      undef_row = start_row;    /* but reader is allowed to read ahead */
879
0
    } else {
880
0
      undef_row = ptr->first_undef_row;
881
0
    }
882
0
    if (writable)
883
0
      ptr->first_undef_row = end_row;
884
0
    if (ptr->pre_zero) {
885
0
      size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
886
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
887
0
      end_row -= ptr->cur_start_row;
888
0
      while (undef_row < end_row) {
889
0
        jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
890
0
        undef_row++;
891
0
      }
892
0
    } else {
893
0
      if (! writable)           /* reader looking at undefined data */
894
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895
0
    }
896
0
  }
897
0
  /* Flag the buffer dirty if caller will write in it */
898
0
  if (writable)
899
0
    ptr->dirty = TRUE;
900
0
  /* Return address of proper part of the buffer */
901
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
902
0
}
903
904
905
METHODDEF(JBLOCKARRAY)
906
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
907
                    JDIMENSION start_row, JDIMENSION num_rows,
908
                    boolean writable)
909
/* Access the part of a virtual block array starting at start_row */
910
/* and extending for num_rows rows.  writable is true if  */
911
/* caller intends to modify the accessed area. */
912
0
{
913
0
  JDIMENSION end_row = start_row + num_rows;
914
0
  JDIMENSION undef_row;
915
0
916
0
  /* debugging check */
917
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
918
0
      ptr->mem_buffer == NULL)
919
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
920
0
921
0
  /* Make the desired part of the virtual array accessible */
922
0
  if (start_row < ptr->cur_start_row ||
923
0
      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
924
0
    if (! ptr->b_s_open)
925
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
926
0
    /* Flush old buffer contents if necessary */
927
0
    if (ptr->dirty) {
928
0
      do_barray_io(cinfo, ptr, TRUE);
929
0
      ptr->dirty = FALSE;
930
0
    }
931
0
    /* Decide what part of virtual array to access.
932
0
     * Algorithm: if target address > current window, assume forward scan,
933
0
     * load starting at target address.  If target address < current window,
934
0
     * assume backward scan, load so that target area is top of window.
935
0
     * Note that when switching from forward write to forward read, will have
936
0
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
937
0
     */
938
0
    if (start_row > ptr->cur_start_row) {
939
0
      ptr->cur_start_row = start_row;
940
0
    } else {
941
0
      /* use long arithmetic here to avoid overflow & unsigned problems */
942
0
      long ltemp;
943
0
944
0
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
945
0
      if (ltemp < 0)
946
0
        ltemp = 0;              /* don't fall off front end of file */
947
0
      ptr->cur_start_row = (JDIMENSION) ltemp;
948
0
    }
949
0
    /* Read in the selected part of the array.
950
0
     * During the initial write pass, we will do no actual read
951
0
     * because the selected part is all undefined.
952
0
     */
953
0
    do_barray_io(cinfo, ptr, FALSE);
954
0
  }
955
0
  /* Ensure the accessed part of the array is defined; prezero if needed.
956
0
   * To improve locality of access, we only prezero the part of the array
957
0
   * that the caller is about to access, not the entire in-memory array.
958
0
   */
959
0
  if (ptr->first_undef_row < end_row) {
960
0
    if (ptr->first_undef_row < start_row) {
961
0
      if (writable)             /* writer skipped over a section of array */
962
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
963
0
      undef_row = start_row;    /* but reader is allowed to read ahead */
964
0
    } else {
965
0
      undef_row = ptr->first_undef_row;
966
0
    }
967
0
    if (writable)
968
0
      ptr->first_undef_row = end_row;
969
0
    if (ptr->pre_zero) {
970
0
      size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
971
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
972
0
      end_row -= ptr->cur_start_row;
973
0
      while (undef_row < end_row) {
974
0
        jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
975
0
        undef_row++;
976
0
      }
977
0
    } else {
978
0
      if (! writable)           /* reader looking at undefined data */
979
0
        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
980
0
    }
981
0
  }
982
0
  /* Flag the buffer dirty if caller will write in it */
983
0
  if (writable)
984
0
    ptr->dirty = TRUE;
985
0
  /* Return address of proper part of the buffer */
986
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
987
0
}
988
989
990
/*
991
 * Release all objects belonging to a specified pool.
992
 */
993
994
METHODDEF(void)
995
free_pool (j_common_ptr cinfo, int pool_id)
996
0
{
997
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
998
0
  small_pool_ptr shdr_ptr;
999
0
  large_pool_ptr lhdr_ptr;
1000
0
  size_t space_freed;
1001
0
1002
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
1003
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
1004
0
1005
#ifdef MEM_STATS
1006
  if (cinfo->err->trace_level > 1)
1007
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1008
#endif
1009
1010
0
  /* If freeing IMAGE pool, close any virtual arrays first */
1011
0
  if (pool_id == JPOOL_IMAGE) {
1012
0
    jvirt_sarray_ptr sptr;
1013
0
    jvirt_barray_ptr bptr;
1014
0
1015
0
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1016
0
      if (sptr->b_s_open) {     /* there may be no backing store */
1017
0
        sptr->b_s_open = FALSE; /* prevent recursive close if error */
1018
0
        (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
1019
0
      }
1020
0
    }
1021
0
    mem->virt_sarray_list = NULL;
1022
0
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1023
0
      if (bptr->b_s_open) {     /* there may be no backing store */
1024
0
        bptr->b_s_open = FALSE; /* prevent recursive close if error */
1025
0
        (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
1026
0
      }
1027
0
    }
1028
0
    mem->virt_barray_list = NULL;
1029
0
  }
1030
0
1031
0
  /* Release large objects */
1032
0
  lhdr_ptr = mem->large_list[pool_id];
1033
0
  mem->large_list[pool_id] = NULL;
1034
0
1035
0
  while (lhdr_ptr != NULL) {
1036
0
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1037
0
    space_freed = lhdr_ptr->bytes_used +
1038
0
                  lhdr_ptr->bytes_left +
1039
0
                  sizeof(large_pool_hdr);
1040
0
    jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
1041
0
    mem->total_space_allocated -= space_freed;
1042
0
    lhdr_ptr = next_lhdr_ptr;
1043
0
  }
1044
0
1045
0
  /* Release small objects */
1046
0
  shdr_ptr = mem->small_list[pool_id];
1047
0
  mem->small_list[pool_id] = NULL;
1048
0
1049
0
  while (shdr_ptr != NULL) {
1050
0
    small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1051
0
    space_freed = shdr_ptr->bytes_used +
1052
0
                  shdr_ptr->bytes_left +
1053
0
                  sizeof(small_pool_hdr);
1054
0
    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1055
0
    mem->total_space_allocated -= space_freed;
1056
0
    shdr_ptr = next_shdr_ptr;
1057
0
  }
1058
0
}
1059
1060
1061
/*
1062
 * Close up shop entirely.
1063
 * Note that this cannot be called unless cinfo->mem is non-NULL.
1064
 */
1065
1066
METHODDEF(void)
1067
self_destruct (j_common_ptr cinfo)
1068
0
{
1069
0
  int pool;
1070
0
1071
0
  /* Close all backing store, release all memory.
1072
0
   * Releasing pools in reverse order might help avoid fragmentation
1073
0
   * with some (brain-damaged) malloc libraries.
1074
0
   */
1075
0
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1076
0
    free_pool(cinfo, pool);
1077
0
  }
1078
0
1079
0
  /* Release the memory manager control block too. */
1080
0
  jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
1081
0
  cinfo->mem = NULL;            /* ensures I will be called only once */
1082
0
1083
0
  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1084
0
}
1085
1086
1087
/*
1088
 * Memory manager initialization.
1089
 * When this is called, only the error manager pointer is valid in cinfo!
1090
 */
1091
1092
GLOBAL(void)
1093
jinit_memory_mgr (j_common_ptr cinfo)
1094
0
{
1095
0
  my_mem_ptr mem;
1096
0
  long max_to_use;
1097
0
  int pool;
1098
0
  size_t test_mac;
1099
0
1100
0
  cinfo->mem = NULL;            /* for safety if init fails */
1101
0
1102
0
  /* Check for configuration errors.
1103
0
   * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1104
0
   * doesn't reflect any real hardware alignment requirement.
1105
0
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1106
0
   * in common if and only if X is a power of 2, ie has only one one-bit.
1107
0
   * Some compilers may give an "unreachable code" warning here; ignore it.
1108
0
   */
1109
0
  if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1110
0
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1111
0
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1112
0
   * a multiple of ALIGN_SIZE.
1113
0
   * Again, an "unreachable code" warning may be ignored here.
1114
0
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1115
0
   */
1116
0
  test_mac = (size_t) MAX_ALLOC_CHUNK;
1117
0
  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1118
0
      (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1119
0
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1120
0
1121
0
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1122
0
1123
0
  /* Attempt to allocate memory manager's control block */
1124
0
  mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
1125
0
1126
0
  if (mem == NULL) {
1127
0
    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1128
0
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1129
0
  }
1130
0
1131
0
  /* OK, fill in the method pointers */
1132
0
  mem->pub.alloc_small = alloc_small;
1133
0
  mem->pub.alloc_large = alloc_large;
1134
0
  mem->pub.alloc_sarray = alloc_sarray;
1135
0
  mem->pub.alloc_barray = alloc_barray;
1136
0
  mem->pub.request_virt_sarray = request_virt_sarray;
1137
0
  mem->pub.request_virt_barray = request_virt_barray;
1138
0
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1139
0
  mem->pub.access_virt_sarray = access_virt_sarray;
1140
0
  mem->pub.access_virt_barray = access_virt_barray;
1141
0
  mem->pub.free_pool = free_pool;
1142
0
  mem->pub.self_destruct = self_destruct;
1143
0
1144
0
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1145
0
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1146
0
1147
0
  /* Initialize working state */
1148
0
  mem->pub.max_memory_to_use = max_to_use;
1149
0
1150
0
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1151
0
    mem->small_list[pool] = NULL;
1152
0
    mem->large_list[pool] = NULL;
1153
0
  }
1154
0
  mem->virt_sarray_list = NULL;
1155
0
  mem->virt_barray_list = NULL;
1156
0
1157
0
  mem->total_space_allocated = sizeof(my_memory_mgr);
1158
0
1159
0
  /* Declare ourselves open for business */
1160
0
  cinfo->mem = & mem->pub;
1161
0
1162
0
  /* Check for an environment variable JPEGMEM; if found, override the
1163
0
   * default max_memory setting from jpeg_mem_init.  Note that the
1164
0
   * surrounding application may again override this value.
1165
0
   * If your system doesn't support getenv(), define NO_GETENV to disable
1166
0
   * this feature.
1167
0
   */
1168
0
#ifndef NO_GETENV
1169
0
  { char *memenv;
1170
0
1171
0
    if ((memenv = getenv("JPEGMEM")) != NULL) {
1172
0
      char ch = 'x';
1173
0
1174
0
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1175
0
        if (ch == 'm' || ch == 'M')
1176
0
          max_to_use *= 1000L;
1177
0
        mem->pub.max_memory_to_use = max_to_use * 1000L;
1178
0
      }
1179
0
    }
1180
0
  }
1181
0
#endif
1182
0
1183
0
}