Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libjpeg/jquant2.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant2.c
3
 *
4
 * This file was part of the Independent JPEG Group's software:
5
 * Copyright (C) 1991-1996, Thomas G. Lane.
6
 * libjpeg-turbo Modifications:
7
 * Copyright (C) 2009, 2014-2015, D. R. Commander.
8
 * For conditions of distribution and use, see the accompanying README.ijg
9
 * file.
10
 *
11
 * This file contains 2-pass color quantization (color mapping) routines.
12
 * These routines provide selection of a custom color map for an image,
13
 * followed by mapping of the image to that color map, with optional
14
 * Floyd-Steinberg dithering.
15
 * It is also possible to use just the second pass to map to an arbitrary
16
 * externally-given color map.
17
 *
18
 * Note: ordered dithering is not supported, since there isn't any fast
19
 * way to compute intercolor distances; it's unclear that ordered dither's
20
 * fundamental assumptions even hold with an irregularly spaced color map.
21
 */
22
23
#define JPEG_INTERNALS
24
#include "jinclude.h"
25
#include "jpeglib.h"
26
27
#ifdef QUANT_2PASS_SUPPORTED
28
29
30
/*
31
 * This module implements the well-known Heckbert paradigm for color
32
 * quantization.  Most of the ideas used here can be traced back to
33
 * Heckbert's seminal paper
34
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
35
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
36
 *
37
 * In the first pass over the image, we accumulate a histogram showing the
38
 * usage count of each possible color.  To keep the histogram to a reasonable
39
 * size, we reduce the precision of the input; typical practice is to retain
40
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
41
 * in the same histogram cell.
42
 *
43
 * Next, the color-selection step begins with a box representing the whole
44
 * color space, and repeatedly splits the "largest" remaining box until we
45
 * have as many boxes as desired colors.  Then the mean color in each
46
 * remaining box becomes one of the possible output colors.
47
 *
48
 * The second pass over the image maps each input pixel to the closest output
49
 * color (optionally after applying a Floyd-Steinberg dithering correction).
50
 * This mapping is logically trivial, but making it go fast enough requires
51
 * considerable care.
52
 *
53
 * Heckbert-style quantizers vary a good deal in their policies for choosing
54
 * the "largest" box and deciding where to cut it.  The particular policies
55
 * used here have proved out well in experimental comparisons, but better ones
56
 * may yet be found.
57
 *
58
 * In earlier versions of the IJG code, this module quantized in YCbCr color
59
 * space, processing the raw upsampled data without a color conversion step.
60
 * This allowed the color conversion math to be done only once per colormap
61
 * entry, not once per pixel.  However, that optimization precluded other
62
 * useful optimizations (such as merging color conversion with upsampling)
63
 * and it also interfered with desired capabilities such as quantizing to an
64
 * externally-supplied colormap.  We have therefore abandoned that approach.
65
 * The present code works in the post-conversion color space, typically RGB.
66
 *
67
 * To improve the visual quality of the results, we actually work in scaled
68
 * RGB space, giving G distances more weight than R, and R in turn more than
69
 * B.  To do everything in integer math, we must use integer scale factors.
70
 * The 2/3/1 scale factors used here correspond loosely to the relative
71
 * weights of the colors in the NTSC grayscale equation.
72
 * If you want to use this code to quantize a non-RGB color space, you'll
73
 * probably need to change these scale factors.
74
 */
75
76
#define R_SCALE 2               /* scale R distances by this much */
77
#define G_SCALE 3               /* scale G distances by this much */
78
#define B_SCALE 1               /* and B by this much */
79
80
static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE};
81
0
#define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]]
82
0
#define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]]
83
0
#define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]]
84
85
/*
86
 * First we have the histogram data structure and routines for creating it.
87
 *
88
 * The number of bits of precision can be adjusted by changing these symbols.
89
 * We recommend keeping 6 bits for G and 5 each for R and B.
90
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
91
 * better results; if you are short of memory, 5 bits all around will save
92
 * some space but degrade the results.
93
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
94
 * (preferably unsigned long) for each cell.  In practice this is overkill;
95
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
96
 * and clamping those that do overflow to the maximum value will give close-
97
 * enough results.  This reduces the recommended histogram size from 256Kb
98
 * to 128Kb, which is a useful savings on PC-class machines.
99
 * (In the second pass the histogram space is re-used for pixel mapping data;
100
 * in that capacity, each cell must be able to store zero to the number of
101
 * desired colors.  16 bits/cell is plenty for that too.)
102
 * Since the JPEG code is intended to run in small memory model on 80x86
103
 * machines, we can't just allocate the histogram in one chunk.  Instead
104
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
105
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
106
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
107
 */
108
109
0
#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
110
111
/* These will do the right thing for either R,G,B or B,G,R color order,
112
 * but you may not like the results for other color orders.
113
 */
114
0
#define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
115
0
#define HIST_C1_BITS  6         /* bits of precision in G histogram */
116
0
#define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
117
118
/* Number of elements along histogram axes. */
119
0
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
120
0
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
121
0
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
122
123
/* These are the amounts to shift an input value to get a histogram index. */
124
0
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
125
0
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
126
0
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
127
128
129
typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
130
131
typedef histcell *histptr; /* for pointers to histogram cells */
132
133
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
134
typedef hist1d *hist2d;         /* type for the 2nd-level pointers */
135
typedef hist2d *hist3d;         /* type for top-level pointer */
136
137
138
/* Declarations for Floyd-Steinberg dithering.
139
 *
140
 * Errors are accumulated into the array fserrors[], at a resolution of
141
 * 1/16th of a pixel count.  The error at a given pixel is propagated
142
 * to its not-yet-processed neighbors using the standard F-S fractions,
143
 *              ...     (here)  7/16
144
 *              3/16    5/16    1/16
145
 * We work left-to-right on even rows, right-to-left on odd rows.
146
 *
147
 * We can get away with a single array (holding one row's worth of errors)
148
 * by using it to store the current row's errors at pixel columns not yet
149
 * processed, but the next row's errors at columns already processed.  We
150
 * need only a few extra variables to hold the errors immediately around the
151
 * current column.  (If we are lucky, those variables are in registers, but
152
 * even if not, they're probably cheaper to access than array elements are.)
153
 *
154
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
155
 * each end saves us from special-casing the first and last pixels.
156
 * Each entry is three values long, one value for each color component.
157
 */
158
159
#if BITS_IN_JSAMPLE == 8
160
typedef INT16 FSERROR;          /* 16 bits should be enough */
161
typedef int LOCFSERROR;         /* use 'int' for calculation temps */
162
#else
163
typedef JLONG FSERROR;          /* may need more than 16 bits */
164
typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
165
#endif
166
167
typedef FSERROR *FSERRPTR;      /* pointer to error array */
168
169
170
/* Private subobject */
171
172
typedef struct {
173
  struct jpeg_color_quantizer pub; /* public fields */
174
175
  /* Space for the eventually created colormap is stashed here */
176
  JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
177
  int desired;                  /* desired # of colors = size of colormap */
178
179
  /* Variables for accumulating image statistics */
180
  hist3d histogram;             /* pointer to the histogram */
181
182
  boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
183
184
  /* Variables for Floyd-Steinberg dithering */
185
  FSERRPTR fserrors;            /* accumulated errors */
186
  boolean on_odd_row;           /* flag to remember which row we are on */
187
  int *error_limiter;           /* table for clamping the applied error */
188
} my_cquantizer;
189
190
typedef my_cquantizer *my_cquantize_ptr;
191
192
193
/*
194
 * Prescan some rows of pixels.
195
 * In this module the prescan simply updates the histogram, which has been
196
 * initialized to zeroes by start_pass.
197
 * An output_buf parameter is required by the method signature, but no data
198
 * is actually output (in fact the buffer controller is probably passing a
199
 * NULL pointer).
200
 */
201
202
METHODDEF(void)
203
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
204
                  JSAMPARRAY output_buf, int num_rows)
205
0
{
206
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
207
0
  register JSAMPROW ptr;
208
0
  register histptr histp;
209
0
  register hist3d histogram = cquantize->histogram;
210
0
  int row;
211
0
  JDIMENSION col;
212
0
  JDIMENSION width = cinfo->output_width;
213
0
214
0
  for (row = 0; row < num_rows; row++) {
215
0
    ptr = input_buf[row];
216
0
    for (col = width; col > 0; col--) {
217
0
      /* get pixel value and index into the histogram */
218
0
      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
219
0
                         [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
220
0
                         [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
221
0
      /* increment, check for overflow and undo increment if so. */
222
0
      if (++(*histp) <= 0)
223
0
        (*histp)--;
224
0
      ptr += 3;
225
0
    }
226
0
  }
227
0
}
228
229
230
/*
231
 * Next we have the really interesting routines: selection of a colormap
232
 * given the completed histogram.
233
 * These routines work with a list of "boxes", each representing a rectangular
234
 * subset of the input color space (to histogram precision).
235
 */
236
237
typedef struct {
238
  /* The bounds of the box (inclusive); expressed as histogram indexes */
239
  int c0min, c0max;
240
  int c1min, c1max;
241
  int c2min, c2max;
242
  /* The volume (actually 2-norm) of the box */
243
  JLONG volume;
244
  /* The number of nonzero histogram cells within this box */
245
  long colorcount;
246
} box;
247
248
typedef box *boxptr;
249
250
251
LOCAL(boxptr)
252
find_biggest_color_pop (boxptr boxlist, int numboxes)
253
/* Find the splittable box with the largest color population */
254
/* Returns NULL if no splittable boxes remain */
255
0
{
256
0
  register boxptr boxp;
257
0
  register int i;
258
0
  register long maxc = 0;
259
0
  boxptr which = NULL;
260
0
261
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
262
0
    if (boxp->colorcount > maxc && boxp->volume > 0) {
263
0
      which = boxp;
264
0
      maxc = boxp->colorcount;
265
0
    }
266
0
  }
267
0
  return which;
268
0
}
269
270
271
LOCAL(boxptr)
272
find_biggest_volume (boxptr boxlist, int numboxes)
273
/* Find the splittable box with the largest (scaled) volume */
274
/* Returns NULL if no splittable boxes remain */
275
0
{
276
0
  register boxptr boxp;
277
0
  register int i;
278
0
  register JLONG maxv = 0;
279
0
  boxptr which = NULL;
280
0
281
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
282
0
    if (boxp->volume > maxv) {
283
0
      which = boxp;
284
0
      maxv = boxp->volume;
285
0
    }
286
0
  }
287
0
  return which;
288
0
}
289
290
291
LOCAL(void)
292
update_box (j_decompress_ptr cinfo, boxptr boxp)
293
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
294
/* and recompute its volume and population */
295
0
{
296
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
297
0
  hist3d histogram = cquantize->histogram;
298
0
  histptr histp;
299
0
  int c0,c1,c2;
300
0
  int c0min,c0max,c1min,c1max,c2min,c2max;
301
0
  JLONG dist0,dist1,dist2;
302
0
  long ccount;
303
0
304
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
305
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
306
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
307
0
308
0
  if (c0max > c0min)
309
0
    for (c0 = c0min; c0 <= c0max; c0++)
310
0
      for (c1 = c1min; c1 <= c1max; c1++) {
311
0
        histp = & histogram[c0][c1][c2min];
312
0
        for (c2 = c2min; c2 <= c2max; c2++)
313
0
          if (*histp++ != 0) {
314
0
            boxp->c0min = c0min = c0;
315
0
            goto have_c0min;
316
0
          }
317
0
      }
318
0
 have_c0min:
319
0
  if (c0max > c0min)
320
0
    for (c0 = c0max; c0 >= c0min; c0--)
321
0
      for (c1 = c1min; c1 <= c1max; c1++) {
322
0
        histp = & histogram[c0][c1][c2min];
323
0
        for (c2 = c2min; c2 <= c2max; c2++)
324
0
          if (*histp++ != 0) {
325
0
            boxp->c0max = c0max = c0;
326
0
            goto have_c0max;
327
0
          }
328
0
      }
329
0
 have_c0max:
330
0
  if (c1max > c1min)
331
0
    for (c1 = c1min; c1 <= c1max; c1++)
332
0
      for (c0 = c0min; c0 <= c0max; c0++) {
333
0
        histp = & histogram[c0][c1][c2min];
334
0
        for (c2 = c2min; c2 <= c2max; c2++)
335
0
          if (*histp++ != 0) {
336
0
            boxp->c1min = c1min = c1;
337
0
            goto have_c1min;
338
0
          }
339
0
      }
340
0
 have_c1min:
341
0
  if (c1max > c1min)
342
0
    for (c1 = c1max; c1 >= c1min; c1--)
343
0
      for (c0 = c0min; c0 <= c0max; c0++) {
344
0
        histp = & histogram[c0][c1][c2min];
345
0
        for (c2 = c2min; c2 <= c2max; c2++)
346
0
          if (*histp++ != 0) {
347
0
            boxp->c1max = c1max = c1;
348
0
            goto have_c1max;
349
0
          }
350
0
      }
351
0
 have_c1max:
352
0
  if (c2max > c2min)
353
0
    for (c2 = c2min; c2 <= c2max; c2++)
354
0
      for (c0 = c0min; c0 <= c0max; c0++) {
355
0
        histp = & histogram[c0][c1min][c2];
356
0
        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
357
0
          if (*histp != 0) {
358
0
            boxp->c2min = c2min = c2;
359
0
            goto have_c2min;
360
0
          }
361
0
      }
362
0
 have_c2min:
363
0
  if (c2max > c2min)
364
0
    for (c2 = c2max; c2 >= c2min; c2--)
365
0
      for (c0 = c0min; c0 <= c0max; c0++) {
366
0
        histp = & histogram[c0][c1min][c2];
367
0
        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
368
0
          if (*histp != 0) {
369
0
            boxp->c2max = c2max = c2;
370
0
            goto have_c2max;
371
0
          }
372
0
      }
373
0
 have_c2max:
374
0
375
0
  /* Update box volume.
376
0
   * We use 2-norm rather than real volume here; this biases the method
377
0
   * against making long narrow boxes, and it has the side benefit that
378
0
   * a box is splittable iff norm > 0.
379
0
   * Since the differences are expressed in histogram-cell units,
380
0
   * we have to shift back to JSAMPLE units to get consistent distances;
381
0
   * after which, we scale according to the selected distance scale factors.
382
0
   */
383
0
  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
384
0
  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
385
0
  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
386
0
  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
387
0
388
0
  /* Now scan remaining volume of box and compute population */
389
0
  ccount = 0;
390
0
  for (c0 = c0min; c0 <= c0max; c0++)
391
0
    for (c1 = c1min; c1 <= c1max; c1++) {
392
0
      histp = & histogram[c0][c1][c2min];
393
0
      for (c2 = c2min; c2 <= c2max; c2++, histp++)
394
0
        if (*histp != 0) {
395
0
          ccount++;
396
0
        }
397
0
    }
398
0
  boxp->colorcount = ccount;
399
0
}
400
401
402
LOCAL(int)
403
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
404
            int desired_colors)
405
/* Repeatedly select and split the largest box until we have enough boxes */
406
0
{
407
0
  int n,lb;
408
0
  int c0,c1,c2,cmax;
409
0
  register boxptr b1,b2;
410
0
411
0
  while (numboxes < desired_colors) {
412
0
    /* Select box to split.
413
0
     * Current algorithm: by population for first half, then by volume.
414
0
     */
415
0
    if (numboxes*2 <= desired_colors) {
416
0
      b1 = find_biggest_color_pop(boxlist, numboxes);
417
0
    } else {
418
0
      b1 = find_biggest_volume(boxlist, numboxes);
419
0
    }
420
0
    if (b1 == NULL)             /* no splittable boxes left! */
421
0
      break;
422
0
    b2 = &boxlist[numboxes];    /* where new box will go */
423
0
    /* Copy the color bounds to the new box. */
424
0
    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
425
0
    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
426
0
    /* Choose which axis to split the box on.
427
0
     * Current algorithm: longest scaled axis.
428
0
     * See notes in update_box about scaling distances.
429
0
     */
430
0
    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
431
0
    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
432
0
    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
433
0
    /* We want to break any ties in favor of green, then red, blue last.
434
0
     * This code does the right thing for R,G,B or B,G,R color orders only.
435
0
     */
436
0
    if (rgb_red[cinfo->out_color_space] == 0) {
437
0
      cmax = c1; n = 1;
438
0
      if (c0 > cmax) { cmax = c0; n = 0; }
439
0
      if (c2 > cmax) { n = 2; }
440
0
    }
441
0
    else {
442
0
      cmax = c1; n = 1;
443
0
      if (c2 > cmax) { cmax = c2; n = 2; }
444
0
      if (c0 > cmax) { n = 0; }
445
0
    }
446
0
    /* Choose split point along selected axis, and update box bounds.
447
0
     * Current algorithm: split at halfway point.
448
0
     * (Since the box has been shrunk to minimum volume,
449
0
     * any split will produce two nonempty subboxes.)
450
0
     * Note that lb value is max for lower box, so must be < old max.
451
0
     */
452
0
    switch (n) {
453
0
    case 0:
454
0
      lb = (b1->c0max + b1->c0min) / 2;
455
0
      b1->c0max = lb;
456
0
      b2->c0min = lb+1;
457
0
      break;
458
0
    case 1:
459
0
      lb = (b1->c1max + b1->c1min) / 2;
460
0
      b1->c1max = lb;
461
0
      b2->c1min = lb+1;
462
0
      break;
463
0
    case 2:
464
0
      lb = (b1->c2max + b1->c2min) / 2;
465
0
      b1->c2max = lb;
466
0
      b2->c2min = lb+1;
467
0
      break;
468
0
    }
469
0
    /* Update stats for boxes */
470
0
    update_box(cinfo, b1);
471
0
    update_box(cinfo, b2);
472
0
    numboxes++;
473
0
  }
474
0
  return numboxes;
475
0
}
476
477
478
LOCAL(void)
479
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
480
/* Compute representative color for a box, put it in colormap[icolor] */
481
0
{
482
0
  /* Current algorithm: mean weighted by pixels (not colors) */
483
0
  /* Note it is important to get the rounding correct! */
484
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
485
0
  hist3d histogram = cquantize->histogram;
486
0
  histptr histp;
487
0
  int c0,c1,c2;
488
0
  int c0min,c0max,c1min,c1max,c2min,c2max;
489
0
  long count;
490
0
  long total = 0;
491
0
  long c0total = 0;
492
0
  long c1total = 0;
493
0
  long c2total = 0;
494
0
495
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
496
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
497
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
498
0
499
0
  for (c0 = c0min; c0 <= c0max; c0++)
500
0
    for (c1 = c1min; c1 <= c1max; c1++) {
501
0
      histp = & histogram[c0][c1][c2min];
502
0
      for (c2 = c2min; c2 <= c2max; c2++) {
503
0
        if ((count = *histp++) != 0) {
504
0
          total += count;
505
0
          c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
506
0
          c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
507
0
          c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
508
0
        }
509
0
      }
510
0
    }
511
0
512
0
  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
513
0
  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
514
0
  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
515
0
}
516
517
518
LOCAL(void)
519
select_colors (j_decompress_ptr cinfo, int desired_colors)
520
/* Master routine for color selection */
521
0
{
522
0
  boxptr boxlist;
523
0
  int numboxes;
524
0
  int i;
525
0
526
0
  /* Allocate workspace for box list */
527
0
  boxlist = (boxptr) (*cinfo->mem->alloc_small)
528
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
529
0
  /* Initialize one box containing whole space */
530
0
  numboxes = 1;
531
0
  boxlist[0].c0min = 0;
532
0
  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
533
0
  boxlist[0].c1min = 0;
534
0
  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
535
0
  boxlist[0].c2min = 0;
536
0
  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
537
0
  /* Shrink it to actually-used volume and set its statistics */
538
0
  update_box(cinfo, & boxlist[0]);
539
0
  /* Perform median-cut to produce final box list */
540
0
  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
541
0
  /* Compute the representative color for each box, fill colormap */
542
0
  for (i = 0; i < numboxes; i++)
543
0
    compute_color(cinfo, & boxlist[i], i);
544
0
  cinfo->actual_number_of_colors = numboxes;
545
0
  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
546
0
}
547
548
549
/*
550
 * These routines are concerned with the time-critical task of mapping input
551
 * colors to the nearest color in the selected colormap.
552
 *
553
 * We re-use the histogram space as an "inverse color map", essentially a
554
 * cache for the results of nearest-color searches.  All colors within a
555
 * histogram cell will be mapped to the same colormap entry, namely the one
556
 * closest to the cell's center.  This may not be quite the closest entry to
557
 * the actual input color, but it's almost as good.  A zero in the cache
558
 * indicates we haven't found the nearest color for that cell yet; the array
559
 * is cleared to zeroes before starting the mapping pass.  When we find the
560
 * nearest color for a cell, its colormap index plus one is recorded in the
561
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
562
 * when they need to use an unfilled entry in the cache.
563
 *
564
 * Our method of efficiently finding nearest colors is based on the "locally
565
 * sorted search" idea described by Heckbert and on the incremental distance
566
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
567
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
568
 * the distances from a given colormap entry to each cell of the histogram can
569
 * be computed quickly using an incremental method: the differences between
570
 * distances to adjacent cells themselves differ by a constant.  This allows a
571
 * fairly fast implementation of the "brute force" approach of computing the
572
 * distance from every colormap entry to every histogram cell.  Unfortunately,
573
 * it needs a work array to hold the best-distance-so-far for each histogram
574
 * cell (because the inner loop has to be over cells, not colormap entries).
575
 * The work array elements have to be JLONGs, so the work array would need
576
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
577
 *
578
 * To get around these problems, we apply Thomas' method to compute the
579
 * nearest colors for only the cells within a small subbox of the histogram.
580
 * The work array need be only as big as the subbox, so the memory usage
581
 * problem is solved.  Furthermore, we need not fill subboxes that are never
582
 * referenced in pass2; many images use only part of the color gamut, so a
583
 * fair amount of work is saved.  An additional advantage of this
584
 * approach is that we can apply Heckbert's locality criterion to quickly
585
 * eliminate colormap entries that are far away from the subbox; typically
586
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
587
 * and we need not compute their distances to individual cells in the subbox.
588
 * The speed of this approach is heavily influenced by the subbox size: too
589
 * small means too much overhead, too big loses because Heckbert's criterion
590
 * can't eliminate as many colormap entries.  Empirically the best subbox
591
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
592
 *
593
 * Thomas' article also describes a refined method which is asymptotically
594
 * faster than the brute-force method, but it is also far more complex and
595
 * cannot efficiently be applied to small subboxes.  It is therefore not
596
 * useful for programs intended to be portable to DOS machines.  On machines
597
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
598
 * refined method might be faster than the present code --- but then again,
599
 * it might not be any faster, and it's certainly more complicated.
600
 */
601
602
603
/* log2(histogram cells in update box) for each axis; this can be adjusted */
604
0
#define BOX_C0_LOG  (HIST_C0_BITS-3)
605
0
#define BOX_C1_LOG  (HIST_C1_BITS-3)
606
0
#define BOX_C2_LOG  (HIST_C2_BITS-3)
607
608
0
#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
609
0
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
610
0
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
611
612
0
#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
613
0
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
614
0
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
615
616
617
/*
618
 * The next three routines implement inverse colormap filling.  They could
619
 * all be folded into one big routine, but splitting them up this way saves
620
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
621
 * and may allow some compilers to produce better code by registerizing more
622
 * inner-loop variables.
623
 */
624
625
LOCAL(int)
626
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
627
                    JSAMPLE colorlist[])
628
/* Locate the colormap entries close enough to an update box to be candidates
629
 * for the nearest entry to some cell(s) in the update box.  The update box
630
 * is specified by the center coordinates of its first cell.  The number of
631
 * candidate colormap entries is returned, and their colormap indexes are
632
 * placed in colorlist[].
633
 * This routine uses Heckbert's "locally sorted search" criterion to select
634
 * the colors that need further consideration.
635
 */
636
0
{
637
0
  int numcolors = cinfo->actual_number_of_colors;
638
0
  int maxc0, maxc1, maxc2;
639
0
  int centerc0, centerc1, centerc2;
640
0
  int i, x, ncolors;
641
0
  JLONG minmaxdist, min_dist, max_dist, tdist;
642
0
  JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
643
0
644
0
  /* Compute true coordinates of update box's upper corner and center.
645
0
   * Actually we compute the coordinates of the center of the upper-corner
646
0
   * histogram cell, which are the upper bounds of the volume we care about.
647
0
   * Note that since ">>" rounds down, the "center" values may be closer to
648
0
   * min than to max; hence comparisons to them must be "<=", not "<".
649
0
   */
650
0
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
651
0
  centerc0 = (minc0 + maxc0) >> 1;
652
0
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
653
0
  centerc1 = (minc1 + maxc1) >> 1;
654
0
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
655
0
  centerc2 = (minc2 + maxc2) >> 1;
656
0
657
0
  /* For each color in colormap, find:
658
0
   *  1. its minimum squared-distance to any point in the update box
659
0
   *     (zero if color is within update box);
660
0
   *  2. its maximum squared-distance to any point in the update box.
661
0
   * Both of these can be found by considering only the corners of the box.
662
0
   * We save the minimum distance for each color in mindist[];
663
0
   * only the smallest maximum distance is of interest.
664
0
   */
665
0
  minmaxdist = 0x7FFFFFFFL;
666
0
667
0
  for (i = 0; i < numcolors; i++) {
668
0
    /* We compute the squared-c0-distance term, then add in the other two. */
669
0
    x = GETJSAMPLE(cinfo->colormap[0][i]);
670
0
    if (x < minc0) {
671
0
      tdist = (x - minc0) * C0_SCALE;
672
0
      min_dist = tdist*tdist;
673
0
      tdist = (x - maxc0) * C0_SCALE;
674
0
      max_dist = tdist*tdist;
675
0
    } else if (x > maxc0) {
676
0
      tdist = (x - maxc0) * C0_SCALE;
677
0
      min_dist = tdist*tdist;
678
0
      tdist = (x - minc0) * C0_SCALE;
679
0
      max_dist = tdist*tdist;
680
0
    } else {
681
0
      /* within cell range so no contribution to min_dist */
682
0
      min_dist = 0;
683
0
      if (x <= centerc0) {
684
0
        tdist = (x - maxc0) * C0_SCALE;
685
0
        max_dist = tdist*tdist;
686
0
      } else {
687
0
        tdist = (x - minc0) * C0_SCALE;
688
0
        max_dist = tdist*tdist;
689
0
      }
690
0
    }
691
0
692
0
    x = GETJSAMPLE(cinfo->colormap[1][i]);
693
0
    if (x < minc1) {
694
0
      tdist = (x - minc1) * C1_SCALE;
695
0
      min_dist += tdist*tdist;
696
0
      tdist = (x - maxc1) * C1_SCALE;
697
0
      max_dist += tdist*tdist;
698
0
    } else if (x > maxc1) {
699
0
      tdist = (x - maxc1) * C1_SCALE;
700
0
      min_dist += tdist*tdist;
701
0
      tdist = (x - minc1) * C1_SCALE;
702
0
      max_dist += tdist*tdist;
703
0
    } else {
704
0
      /* within cell range so no contribution to min_dist */
705
0
      if (x <= centerc1) {
706
0
        tdist = (x - maxc1) * C1_SCALE;
707
0
        max_dist += tdist*tdist;
708
0
      } else {
709
0
        tdist = (x - minc1) * C1_SCALE;
710
0
        max_dist += tdist*tdist;
711
0
      }
712
0
    }
713
0
714
0
    x = GETJSAMPLE(cinfo->colormap[2][i]);
715
0
    if (x < minc2) {
716
0
      tdist = (x - minc2) * C2_SCALE;
717
0
      min_dist += tdist*tdist;
718
0
      tdist = (x - maxc2) * C2_SCALE;
719
0
      max_dist += tdist*tdist;
720
0
    } else if (x > maxc2) {
721
0
      tdist = (x - maxc2) * C2_SCALE;
722
0
      min_dist += tdist*tdist;
723
0
      tdist = (x - minc2) * C2_SCALE;
724
0
      max_dist += tdist*tdist;
725
0
    } else {
726
0
      /* within cell range so no contribution to min_dist */
727
0
      if (x <= centerc2) {
728
0
        tdist = (x - maxc2) * C2_SCALE;
729
0
        max_dist += tdist*tdist;
730
0
      } else {
731
0
        tdist = (x - minc2) * C2_SCALE;
732
0
        max_dist += tdist*tdist;
733
0
      }
734
0
    }
735
0
736
0
    mindist[i] = min_dist;      /* save away the results */
737
0
    if (max_dist < minmaxdist)
738
0
      minmaxdist = max_dist;
739
0
  }
740
0
741
0
  /* Now we know that no cell in the update box is more than minmaxdist
742
0
   * away from some colormap entry.  Therefore, only colors that are
743
0
   * within minmaxdist of some part of the box need be considered.
744
0
   */
745
0
  ncolors = 0;
746
0
  for (i = 0; i < numcolors; i++) {
747
0
    if (mindist[i] <= minmaxdist)
748
0
      colorlist[ncolors++] = (JSAMPLE) i;
749
0
  }
750
0
  return ncolors;
751
0
}
752
753
754
LOCAL(void)
755
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
756
                  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
757
/* Find the closest colormap entry for each cell in the update box,
758
 * given the list of candidate colors prepared by find_nearby_colors.
759
 * Return the indexes of the closest entries in the bestcolor[] array.
760
 * This routine uses Thomas' incremental distance calculation method to
761
 * find the distance from a colormap entry to successive cells in the box.
762
 */
763
0
{
764
0
  int ic0, ic1, ic2;
765
0
  int i, icolor;
766
0
  register JLONG *bptr;         /* pointer into bestdist[] array */
767
0
  JSAMPLE *cptr;                /* pointer into bestcolor[] array */
768
0
  JLONG dist0, dist1;           /* initial distance values */
769
0
  register JLONG dist2;         /* current distance in inner loop */
770
0
  JLONG xx0, xx1;               /* distance increments */
771
0
  register JLONG xx2;
772
0
  JLONG inc0, inc1, inc2;       /* initial values for increments */
773
0
  /* This array holds the distance to the nearest-so-far color for each cell */
774
0
  JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
775
0
776
0
  /* Initialize best-distance for each cell of the update box */
777
0
  bptr = bestdist;
778
0
  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
779
0
    *bptr++ = 0x7FFFFFFFL;
780
0
781
0
  /* For each color selected by find_nearby_colors,
782
0
   * compute its distance to the center of each cell in the box.
783
0
   * If that's less than best-so-far, update best distance and color number.
784
0
   */
785
0
786
0
  /* Nominal steps between cell centers ("x" in Thomas article) */
787
0
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
788
0
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
789
0
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
790
0
791
0
  for (i = 0; i < numcolors; i++) {
792
0
    icolor = GETJSAMPLE(colorlist[i]);
793
0
    /* Compute (square of) distance from minc0/c1/c2 to this color */
794
0
    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
795
0
    dist0 = inc0*inc0;
796
0
    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
797
0
    dist0 += inc1*inc1;
798
0
    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
799
0
    dist0 += inc2*inc2;
800
0
    /* Form the initial difference increments */
801
0
    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
802
0
    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
803
0
    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
804
0
    /* Now loop over all cells in box, updating distance per Thomas method */
805
0
    bptr = bestdist;
806
0
    cptr = bestcolor;
807
0
    xx0 = inc0;
808
0
    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
809
0
      dist1 = dist0;
810
0
      xx1 = inc1;
811
0
      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
812
0
        dist2 = dist1;
813
0
        xx2 = inc2;
814
0
        for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
815
0
          if (dist2 < *bptr) {
816
0
            *bptr = dist2;
817
0
            *cptr = (JSAMPLE) icolor;
818
0
          }
819
0
          dist2 += xx2;
820
0
          xx2 += 2 * STEP_C2 * STEP_C2;
821
0
          bptr++;
822
0
          cptr++;
823
0
        }
824
0
        dist1 += xx1;
825
0
        xx1 += 2 * STEP_C1 * STEP_C1;
826
0
      }
827
0
      dist0 += xx0;
828
0
      xx0 += 2 * STEP_C0 * STEP_C0;
829
0
    }
830
0
  }
831
0
}
832
833
834
LOCAL(void)
835
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
836
/* Fill the inverse-colormap entries in the update box that contains */
837
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
838
/* we can fill as many others as we wish.) */
839
0
{
840
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
841
0
  hist3d histogram = cquantize->histogram;
842
0
  int minc0, minc1, minc2;      /* lower left corner of update box */
843
0
  int ic0, ic1, ic2;
844
0
  register JSAMPLE *cptr;       /* pointer into bestcolor[] array */
845
0
  register histptr cachep;      /* pointer into main cache array */
846
0
  /* This array lists the candidate colormap indexes. */
847
0
  JSAMPLE colorlist[MAXNUMCOLORS];
848
0
  int numcolors;                /* number of candidate colors */
849
0
  /* This array holds the actually closest colormap index for each cell. */
850
0
  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
851
0
852
0
  /* Convert cell coordinates to update box ID */
853
0
  c0 >>= BOX_C0_LOG;
854
0
  c1 >>= BOX_C1_LOG;
855
0
  c2 >>= BOX_C2_LOG;
856
0
857
0
  /* Compute true coordinates of update box's origin corner.
858
0
   * Actually we compute the coordinates of the center of the corner
859
0
   * histogram cell, which are the lower bounds of the volume we care about.
860
0
   */
861
0
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
862
0
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
863
0
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
864
0
865
0
  /* Determine which colormap entries are close enough to be candidates
866
0
   * for the nearest entry to some cell in the update box.
867
0
   */
868
0
  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
869
0
870
0
  /* Determine the actually nearest colors. */
871
0
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
872
0
                   bestcolor);
873
0
874
0
  /* Save the best color numbers (plus 1) in the main cache array */
875
0
  c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
876
0
  c1 <<= BOX_C1_LOG;
877
0
  c2 <<= BOX_C2_LOG;
878
0
  cptr = bestcolor;
879
0
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
880
0
    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
881
0
      cachep = & histogram[c0+ic0][c1+ic1][c2];
882
0
      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
883
0
        *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
884
0
      }
885
0
    }
886
0
  }
887
0
}
888
889
890
/*
891
 * Map some rows of pixels to the output colormapped representation.
892
 */
893
894
METHODDEF(void)
895
pass2_no_dither (j_decompress_ptr cinfo,
896
                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
897
/* This version performs no dithering */
898
0
{
899
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
900
0
  hist3d histogram = cquantize->histogram;
901
0
  register JSAMPROW inptr, outptr;
902
0
  register histptr cachep;
903
0
  register int c0, c1, c2;
904
0
  int row;
905
0
  JDIMENSION col;
906
0
  JDIMENSION width = cinfo->output_width;
907
0
908
0
  for (row = 0; row < num_rows; row++) {
909
0
    inptr = input_buf[row];
910
0
    outptr = output_buf[row];
911
0
    for (col = width; col > 0; col--) {
912
0
      /* get pixel value and index into the cache */
913
0
      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
914
0
      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
915
0
      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
916
0
      cachep = & histogram[c0][c1][c2];
917
0
      /* If we have not seen this color before, find nearest colormap entry */
918
0
      /* and update the cache */
919
0
      if (*cachep == 0)
920
0
        fill_inverse_cmap(cinfo, c0,c1,c2);
921
0
      /* Now emit the colormap index for this cell */
922
0
      *outptr++ = (JSAMPLE) (*cachep - 1);
923
0
    }
924
0
  }
925
0
}
926
927
928
METHODDEF(void)
929
pass2_fs_dither (j_decompress_ptr cinfo,
930
                 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
931
/* This version performs Floyd-Steinberg dithering */
932
0
{
933
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
934
0
  hist3d histogram = cquantize->histogram;
935
0
  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
936
0
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
937
0
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
938
0
  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
939
0
  JSAMPROW inptr;               /* => current input pixel */
940
0
  JSAMPROW outptr;              /* => current output pixel */
941
0
  histptr cachep;
942
0
  int dir;                      /* +1 or -1 depending on direction */
943
0
  int dir3;                     /* 3*dir, for advancing inptr & errorptr */
944
0
  int row;
945
0
  JDIMENSION col;
946
0
  JDIMENSION width = cinfo->output_width;
947
0
  JSAMPLE *range_limit = cinfo->sample_range_limit;
948
0
  int *error_limit = cquantize->error_limiter;
949
0
  JSAMPROW colormap0 = cinfo->colormap[0];
950
0
  JSAMPROW colormap1 = cinfo->colormap[1];
951
0
  JSAMPROW colormap2 = cinfo->colormap[2];
952
0
  SHIFT_TEMPS
953
0
954
0
  for (row = 0; row < num_rows; row++) {
955
0
    inptr = input_buf[row];
956
0
    outptr = output_buf[row];
957
0
    if (cquantize->on_odd_row) {
958
0
      /* work right to left in this row */
959
0
      inptr += (width-1) * 3;   /* so point to rightmost pixel */
960
0
      outptr += width-1;
961
0
      dir = -1;
962
0
      dir3 = -3;
963
0
      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
964
0
      cquantize->on_odd_row = FALSE; /* flip for next time */
965
0
    } else {
966
0
      /* work left to right in this row */
967
0
      dir = 1;
968
0
      dir3 = 3;
969
0
      errorptr = cquantize->fserrors; /* => entry before first real column */
970
0
      cquantize->on_odd_row = TRUE; /* flip for next time */
971
0
    }
972
0
    /* Preset error values: no error propagated to first pixel from left */
973
0
    cur0 = cur1 = cur2 = 0;
974
0
    /* and no error propagated to row below yet */
975
0
    belowerr0 = belowerr1 = belowerr2 = 0;
976
0
    bpreverr0 = bpreverr1 = bpreverr2 = 0;
977
0
978
0
    for (col = width; col > 0; col--) {
979
0
      /* curN holds the error propagated from the previous pixel on the
980
0
       * current line.  Add the error propagated from the previous line
981
0
       * to form the complete error correction term for this pixel, and
982
0
       * round the error term (which is expressed * 16) to an integer.
983
0
       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
984
0
       * for either sign of the error value.
985
0
       * Note: errorptr points to *previous* column's array entry.
986
0
       */
987
0
      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
988
0
      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
989
0
      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
990
0
      /* Limit the error using transfer function set by init_error_limit.
991
0
       * See comments with init_error_limit for rationale.
992
0
       */
993
0
      cur0 = error_limit[cur0];
994
0
      cur1 = error_limit[cur1];
995
0
      cur2 = error_limit[cur2];
996
0
      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
997
0
       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
998
0
       * this sets the required size of the range_limit array.
999
0
       */
1000
0
      cur0 += GETJSAMPLE(inptr[0]);
1001
0
      cur1 += GETJSAMPLE(inptr[1]);
1002
0
      cur2 += GETJSAMPLE(inptr[2]);
1003
0
      cur0 = GETJSAMPLE(range_limit[cur0]);
1004
0
      cur1 = GETJSAMPLE(range_limit[cur1]);
1005
0
      cur2 = GETJSAMPLE(range_limit[cur2]);
1006
0
      /* Index into the cache with adjusted pixel value */
1007
0
      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1008
0
      /* If we have not seen this color before, find nearest colormap */
1009
0
      /* entry and update the cache */
1010
0
      if (*cachep == 0)
1011
0
        fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1012
0
      /* Now emit the colormap index for this cell */
1013
0
      { register int pixcode = *cachep - 1;
1014
0
        *outptr = (JSAMPLE) pixcode;
1015
0
        /* Compute representation error for this pixel */
1016
0
        cur0 -= GETJSAMPLE(colormap0[pixcode]);
1017
0
        cur1 -= GETJSAMPLE(colormap1[pixcode]);
1018
0
        cur2 -= GETJSAMPLE(colormap2[pixcode]);
1019
0
      }
1020
0
      /* Compute error fractions to be propagated to adjacent pixels.
1021
0
       * Add these into the running sums, and simultaneously shift the
1022
0
       * next-line error sums left by 1 column.
1023
0
       */
1024
0
      { register LOCFSERROR bnexterr;
1025
0
1026
0
        bnexterr = cur0;        /* Process component 0 */
1027
0
        errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3);
1028
0
        bpreverr0 = belowerr0 + cur0 * 5;
1029
0
        belowerr0 = bnexterr;
1030
0
        cur0 *= 7;
1031
0
        bnexterr = cur1;        /* Process component 1 */
1032
0
        errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3);
1033
0
        bpreverr1 = belowerr1 + cur1 * 5;
1034
0
        belowerr1 = bnexterr;
1035
0
        cur1 *= 7;
1036
0
        bnexterr = cur2;        /* Process component 2 */
1037
0
        errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3);
1038
0
        bpreverr2 = belowerr2 + cur2 * 5;
1039
0
        belowerr2 = bnexterr;
1040
0
        cur2 *= 7;
1041
0
      }
1042
0
      /* At this point curN contains the 7/16 error value to be propagated
1043
0
       * to the next pixel on the current line, and all the errors for the
1044
0
       * next line have been shifted over.  We are therefore ready to move on.
1045
0
       */
1046
0
      inptr += dir3;            /* Advance pixel pointers to next column */
1047
0
      outptr += dir;
1048
0
      errorptr += dir3;         /* advance errorptr to current column */
1049
0
    }
1050
0
    /* Post-loop cleanup: we must unload the final error values into the
1051
0
     * final fserrors[] entry.  Note we need not unload belowerrN because
1052
0
     * it is for the dummy column before or after the actual array.
1053
0
     */
1054
0
    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1055
0
    errorptr[1] = (FSERROR) bpreverr1;
1056
0
    errorptr[2] = (FSERROR) bpreverr2;
1057
0
  }
1058
0
}
1059
1060
1061
/*
1062
 * Initialize the error-limiting transfer function (lookup table).
1063
 * The raw F-S error computation can potentially compute error values of up to
1064
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1065
 * much less, otherwise obviously wrong pixels will be created.  (Typical
1066
 * effects include weird fringes at color-area boundaries, isolated bright
1067
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1068
 * is to ensure that the "corners" of the color cube are allocated as output
1069
 * colors; then repeated errors in the same direction cannot cause cascading
1070
 * error buildup.  However, that only prevents the error from getting
1071
 * completely out of hand; Aaron Giles reports that error limiting improves
1072
 * the results even with corner colors allocated.
1073
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1074
 * well, but the smoother transfer function used below is even better.  Thanks
1075
 * to Aaron Giles for this idea.
1076
 */
1077
1078
LOCAL(void)
1079
init_error_limit (j_decompress_ptr cinfo)
1080
/* Allocate and fill in the error_limiter table */
1081
0
{
1082
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1083
0
  int *table;
1084
0
  int in, out;
1085
0
1086
0
  table = (int *) (*cinfo->mem->alloc_small)
1087
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int));
1088
0
  table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1089
0
  cquantize->error_limiter = table;
1090
0
1091
0
#define STEPSIZE ((MAXJSAMPLE+1)/16)
1092
0
  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1093
0
  out = 0;
1094
0
  for (in = 0; in < STEPSIZE; in++, out++) {
1095
0
    table[in] = out; table[-in] = -out;
1096
0
  }
1097
0
  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1098
0
  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1099
0
    table[in] = out; table[-in] = -out;
1100
0
  }
1101
0
  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1102
0
  for (; in <= MAXJSAMPLE; in++) {
1103
0
    table[in] = out; table[-in] = -out;
1104
0
  }
1105
0
#undef STEPSIZE
1106
0
}
1107
1108
1109
/*
1110
 * Finish up at the end of each pass.
1111
 */
1112
1113
METHODDEF(void)
1114
finish_pass1 (j_decompress_ptr cinfo)
1115
0
{
1116
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1117
0
1118
0
  /* Select the representative colors and fill in cinfo->colormap */
1119
0
  cinfo->colormap = cquantize->sv_colormap;
1120
0
  select_colors(cinfo, cquantize->desired);
1121
0
  /* Force next pass to zero the color index table */
1122
0
  cquantize->needs_zeroed = TRUE;
1123
0
}
1124
1125
1126
METHODDEF(void)
1127
finish_pass2 (j_decompress_ptr cinfo)
1128
0
{
1129
0
  /* no work */
1130
0
}
1131
1132
1133
/*
1134
 * Initialize for each processing pass.
1135
 */
1136
1137
METHODDEF(void)
1138
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1139
0
{
1140
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1141
0
  hist3d histogram = cquantize->histogram;
1142
0
  int i;
1143
0
1144
0
  /* Only F-S dithering or no dithering is supported. */
1145
0
  /* If user asks for ordered dither, give him F-S. */
1146
0
  if (cinfo->dither_mode != JDITHER_NONE)
1147
0
    cinfo->dither_mode = JDITHER_FS;
1148
0
1149
0
  if (is_pre_scan) {
1150
0
    /* Set up method pointers */
1151
0
    cquantize->pub.color_quantize = prescan_quantize;
1152
0
    cquantize->pub.finish_pass = finish_pass1;
1153
0
    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1154
0
  } else {
1155
0
    /* Set up method pointers */
1156
0
    if (cinfo->dither_mode == JDITHER_FS)
1157
0
      cquantize->pub.color_quantize = pass2_fs_dither;
1158
0
    else
1159
0
      cquantize->pub.color_quantize = pass2_no_dither;
1160
0
    cquantize->pub.finish_pass = finish_pass2;
1161
0
1162
0
    /* Make sure color count is acceptable */
1163
0
    i = cinfo->actual_number_of_colors;
1164
0
    if (i < 1)
1165
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1166
0
    if (i > MAXNUMCOLORS)
1167
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1168
0
1169
0
    if (cinfo->dither_mode == JDITHER_FS) {
1170
0
      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1171
0
                                   (3 * sizeof(FSERROR)));
1172
0
      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1173
0
      if (cquantize->fserrors == NULL)
1174
0
        cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1175
0
          ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1176
0
      /* Initialize the propagated errors to zero. */
1177
0
      jzero_far((void *) cquantize->fserrors, arraysize);
1178
0
      /* Make the error-limit table if we didn't already. */
1179
0
      if (cquantize->error_limiter == NULL)
1180
0
        init_error_limit(cinfo);
1181
0
      cquantize->on_odd_row = FALSE;
1182
0
    }
1183
0
1184
0
  }
1185
0
  /* Zero the histogram or inverse color map, if necessary */
1186
0
  if (cquantize->needs_zeroed) {
1187
0
    for (i = 0; i < HIST_C0_ELEMS; i++) {
1188
0
      jzero_far((void *) histogram[i],
1189
0
                HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1190
0
    }
1191
0
    cquantize->needs_zeroed = FALSE;
1192
0
  }
1193
0
}
1194
1195
1196
/*
1197
 * Switch to a new external colormap between output passes.
1198
 */
1199
1200
METHODDEF(void)
1201
new_color_map_2_quant (j_decompress_ptr cinfo)
1202
0
{
1203
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1204
0
1205
0
  /* Reset the inverse color map */
1206
0
  cquantize->needs_zeroed = TRUE;
1207
0
}
1208
1209
1210
/*
1211
 * Module initialization routine for 2-pass color quantization.
1212
 */
1213
1214
GLOBAL(void)
1215
jinit_2pass_quantizer (j_decompress_ptr cinfo)
1216
0
{
1217
0
  my_cquantize_ptr cquantize;
1218
0
  int i;
1219
0
1220
0
  cquantize = (my_cquantize_ptr)
1221
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1222
0
                                sizeof(my_cquantizer));
1223
0
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1224
0
  cquantize->pub.start_pass = start_pass_2_quant;
1225
0
  cquantize->pub.new_color_map = new_color_map_2_quant;
1226
0
  cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1227
0
  cquantize->error_limiter = NULL;
1228
0
1229
0
  /* Make sure jdmaster didn't give me a case I can't handle */
1230
0
  if (cinfo->out_color_components != 3)
1231
0
    ERREXIT(cinfo, JERR_NOTIMPL);
1232
0
1233
0
  /* Allocate the histogram/inverse colormap storage */
1234
0
  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1235
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1236
0
  for (i = 0; i < HIST_C0_ELEMS; i++) {
1237
0
    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1238
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1239
0
       HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1240
0
  }
1241
0
  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1242
0
1243
0
  /* Allocate storage for the completed colormap, if required.
1244
0
   * We do this now since it may affect the memory manager's space
1245
0
   * calculations.
1246
0
   */
1247
0
  if (cinfo->enable_2pass_quant) {
1248
0
    /* Make sure color count is acceptable */
1249
0
    int desired = cinfo->desired_number_of_colors;
1250
0
    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1251
0
    if (desired < 8)
1252
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1253
0
    /* Make sure colormap indexes can be represented by JSAMPLEs */
1254
0
    if (desired > MAXNUMCOLORS)
1255
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1256
0
    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1257
0
      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1258
0
    cquantize->desired = desired;
1259
0
  } else
1260
0
    cquantize->sv_colormap = NULL;
1261
0
1262
0
  /* Only F-S dithering or no dithering is supported. */
1263
0
  /* If user asks for ordered dither, give him F-S. */
1264
0
  if (cinfo->dither_mode != JDITHER_NONE)
1265
0
    cinfo->dither_mode = JDITHER_FS;
1266
0
1267
0
  /* Allocate Floyd-Steinberg workspace if necessary.
1268
0
   * This isn't really needed until pass 2, but again it may affect the memory
1269
0
   * manager's space calculations.  Although we will cope with a later change
1270
0
   * in dither_mode, we do not promise to honor max_memory_to_use if
1271
0
   * dither_mode changes.
1272
0
   */
1273
0
  if (cinfo->dither_mode == JDITHER_FS) {
1274
0
    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1275
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1276
0
       (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1277
0
    /* Might as well create the error-limiting table too. */
1278
0
    init_error_limit(cinfo);
1279
0
  }
1280
0
}
1281
1282
#endif /* QUANT_2PASS_SUPPORTED */