Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libopus/celt/mathops.h
Line
Count
Source (jump to first uncovered line)
1
/* Copyright (c) 2002-2008 Jean-Marc Valin
2
   Copyright (c) 2007-2008 CSIRO
3
   Copyright (c) 2007-2009 Xiph.Org Foundation
4
   Written by Jean-Marc Valin */
5
/**
6
   @file mathops.h
7
   @brief Various math functions
8
*/
9
/*
10
   Redistribution and use in source and binary forms, with or without
11
   modification, are permitted provided that the following conditions
12
   are met:
13
14
   - Redistributions of source code must retain the above copyright
15
   notice, this list of conditions and the following disclaimer.
16
17
   - Redistributions in binary form must reproduce the above copyright
18
   notice, this list of conditions and the following disclaimer in the
19
   documentation and/or other materials provided with the distribution.
20
21
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
25
   OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
*/
33
34
#ifndef MATHOPS_H
35
#define MATHOPS_H
36
37
#include "arch.h"
38
#include "entcode.h"
39
#include "os_support.h"
40
41
0
#define PI 3.141592653f
42
43
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
44
0
#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
45
46
unsigned isqrt32(opus_uint32 _val);
47
48
/* CELT doesn't need it for fixed-point, by analysis.c does. */
49
#if !defined(FIXED_POINT) || defined(ANALYSIS_C)
50
0
#define cA 0.43157974f
51
0
#define cB 0.67848403f
52
0
#define cC 0.08595542f
53
0
#define cE ((float)PI/2)
54
0
static OPUS_INLINE float fast_atan2f(float y, float x) {
55
0
   float x2, y2;
56
0
   x2 = x*x;
57
0
   y2 = y*y;
58
0
   /* For very small values, we don't care about the answer, so
59
0
      we can just return 0. */
60
0
   if (x2 + y2 < 1e-18f)
61
0
   {
62
0
      return 0;
63
0
   }
64
0
   if(x2<y2){
65
0
      float den = (y2 + cB*x2) * (y2 + cC*x2);
66
0
      return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
67
0
   }else{
68
0
      float den = (x2 + cB*y2) * (x2 + cC*y2);
69
0
      return  x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
70
0
   }
71
0
}
Unexecuted instantiation: celt.c:fast_atan2f
Unexecuted instantiation: celt_decoder.c:fast_atan2f
Unexecuted instantiation: celt_encoder.c:fast_atan2f
Unexecuted instantiation: celt_lpc_sse4_1.c:fast_atan2f
Unexecuted instantiation: pitch_sse.c:fast_atan2f
Unexecuted instantiation: pitch_sse2.c:fast_atan2f
Unexecuted instantiation: pitch_sse4_1.c:fast_atan2f
Unexecuted instantiation: vq_sse2.c:fast_atan2f
Unexecuted instantiation: Unified_c_media_libopus0.c:fast_atan2f
Unexecuted instantiation: Unified_c_media_libopus7.c:fast_atan2f
Unexecuted instantiation: Unified_c_media_libopus8.c:fast_atan2f
72
#undef cA
73
#undef cB
74
#undef cC
75
#undef cE
76
#endif
77
78
79
#ifndef OVERRIDE_CELT_MAXABS16
80
static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
81
0
{
82
0
   int i;
83
0
   opus_val16 maxval = 0;
84
0
   opus_val16 minval = 0;
85
0
   for (i=0;i<len;i++)
86
0
   {
87
0
      maxval = MAX16(maxval, x[i]);
88
0
      minval = MIN16(minval, x[i]);
89
0
   }
90
0
   return MAX32(EXTEND32(maxval),-EXTEND32(minval));
91
0
}
Unexecuted instantiation: celt.c:celt_maxabs16
Unexecuted instantiation: celt_decoder.c:celt_maxabs16
Unexecuted instantiation: celt_encoder.c:celt_maxabs16
Unexecuted instantiation: celt_lpc_sse4_1.c:celt_maxabs16
Unexecuted instantiation: pitch_sse.c:celt_maxabs16
Unexecuted instantiation: pitch_sse2.c:celt_maxabs16
Unexecuted instantiation: pitch_sse4_1.c:celt_maxabs16
Unexecuted instantiation: vq_sse2.c:celt_maxabs16
Unexecuted instantiation: Unified_c_media_libopus0.c:celt_maxabs16
Unexecuted instantiation: Unified_c_media_libopus7.c:celt_maxabs16
Unexecuted instantiation: Unified_c_media_libopus8.c:celt_maxabs16
92
#endif
93
94
#ifndef OVERRIDE_CELT_MAXABS32
95
#ifdef FIXED_POINT
96
static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
97
{
98
   int i;
99
   opus_val32 maxval = 0;
100
   opus_val32 minval = 0;
101
   for (i=0;i<len;i++)
102
   {
103
      maxval = MAX32(maxval, x[i]);
104
      minval = MIN32(minval, x[i]);
105
   }
106
   return MAX32(maxval, -minval);
107
}
108
#else
109
#define celt_maxabs32(x,len) celt_maxabs16(x,len)
110
#endif
111
#endif
112
113
114
#ifndef FIXED_POINT
115
116
0
#define celt_sqrt(x) ((float)sqrt(x))
117
0
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
118
0
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
119
0
#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
120
0
#define celt_rcp(x) (1.f/(x))
121
0
#define celt_div(a,b) ((a)/(b))
122
0
#define frac_div32(a,b) ((float)(a)/(b))
123
124
#ifdef FLOAT_APPROX
125
126
/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
127
         denorm, +/- inf and NaN are *not* handled */
128
129
/** Base-2 log approximation (log2(x)). */
130
static OPUS_INLINE float celt_log2(float x)
131
{
132
   int integer;
133
   float frac;
134
   union {
135
      float f;
136
      opus_uint32 i;
137
   } in;
138
   in.f = x;
139
   integer = (in.i>>23)-127;
140
   in.i -= integer<<23;
141
   frac = in.f - 1.5f;
142
   frac = -0.41445418f + frac*(0.95909232f
143
          + frac*(-0.33951290f + frac*0.16541097f));
144
   return 1+integer+frac;
145
}
146
147
/** Base-2 exponential approximation (2^x). */
148
static OPUS_INLINE float celt_exp2(float x)
149
{
150
   int integer;
151
   float frac;
152
   union {
153
      float f;
154
      opus_uint32 i;
155
   } res;
156
   integer = floor(x);
157
   if (integer < -50)
158
      return 0;
159
   frac = x-integer;
160
   /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
161
   res.f = 0.99992522f + frac * (0.69583354f
162
           + frac * (0.22606716f + 0.078024523f*frac));
163
   res.i = (res.i + (integer<<23)) & 0x7fffffff;
164
   return res.f;
165
}
166
167
#else
168
0
#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
169
0
#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
170
#endif
171
172
#endif
173
174
#ifdef FIXED_POINT
175
176
#include "os_support.h"
177
178
#ifndef OVERRIDE_CELT_ILOG2
179
/** Integer log in base2. Undefined for zero and negative numbers */
180
static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
181
{
182
   celt_sig_assert(x>0);
183
   return EC_ILOG(x)-1;
184
}
185
#endif
186
187
188
/** Integer log in base2. Defined for zero, but not for negative numbers */
189
static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
190
{
191
   return x <= 0 ? 0 : celt_ilog2(x);
192
}
193
194
opus_val16 celt_rsqrt_norm(opus_val32 x);
195
196
opus_val32 celt_sqrt(opus_val32 x);
197
198
opus_val16 celt_cos_norm(opus_val32 x);
199
200
/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
201
static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
202
{
203
   int i;
204
   opus_val16 n, frac;
205
   /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
206
       0.15530808010959576, -0.08556153059057618 */
207
   static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
208
   if (x==0)
209
      return -32767;
210
   i = celt_ilog2(x);
211
   n = VSHR32(x,i-15)-32768-16384;
212
   frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
213
   return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
214
}
215
216
/*
217
 K0 = 1
218
 K1 = log(2)
219
 K2 = 3-4*log(2)
220
 K3 = 3*log(2) - 2
221
*/
222
#define D0 16383
223
#define D1 22804
224
#define D2 14819
225
#define D3 10204
226
227
static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
228
{
229
   opus_val16 frac;
230
   frac = SHL16(x, 4);
231
   return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
232
}
233
/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
234
static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
235
{
236
   int integer;
237
   opus_val16 frac;
238
   integer = SHR16(x,10);
239
   if (integer>14)
240
      return 0x7f000000;
241
   else if (integer < -15)
242
      return 0;
243
   frac = celt_exp2_frac(x-SHL16(integer,10));
244
   return VSHR32(EXTEND32(frac), -integer-2);
245
}
246
247
opus_val32 celt_rcp(opus_val32 x);
248
249
#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
250
251
opus_val32 frac_div32(opus_val32 a, opus_val32 b);
252
253
#define M1 32767
254
#define M2 -21
255
#define M3 -11943
256
#define M4 4936
257
258
/* Atan approximation using a 4th order polynomial. Input is in Q15 format
259
   and normalized by pi/4. Output is in Q15 format */
260
static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
261
{
262
   return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
263
}
264
265
#undef M1
266
#undef M2
267
#undef M3
268
#undef M4
269
270
/* atan2() approximation valid for positive input values */
271
static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
272
{
273
   if (y < x)
274
   {
275
      opus_val32 arg;
276
      arg = celt_div(SHL32(EXTEND32(y),15),x);
277
      if (arg >= 32767)
278
         arg = 32767;
279
      return SHR16(celt_atan01(EXTRACT16(arg)),1);
280
   } else {
281
      opus_val32 arg;
282
      arg = celt_div(SHL32(EXTEND32(x),15),y);
283
      if (arg >= 32767)
284
         arg = 32767;
285
      return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
286
   }
287
}
288
289
#endif /* FIXED_POINT */
290
#endif /* MATHOPS_H */