Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libpng/png.c
Line
Count
Source (jump to first uncovered line)
1
2
/* png.c - location for general purpose libpng functions
3
 *
4
 * Last changed in libpng 1.6.35 [July 15, 2018]
5
 * Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson
6
 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
7
 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
8
 *
9
 * This code is released under the libpng license.
10
 * For conditions of distribution and use, see the disclaimer
11
 * and license in png.h
12
 */
13
14
#include "pngpriv.h"
15
16
/* Generate a compiler error if there is an old png.h in the search path. */
17
typedef png_libpng_version_1_6_35 Your_png_h_is_not_version_1_6_35;
18
19
#ifdef __GNUC__
20
/* The version tests may need to be added to, but the problem warning has
21
 * consistently been fixed in GCC versions which obtain wide-spread release.
22
 * The problem is that many versions of GCC rearrange comparison expressions in
23
 * the optimizer in such a way that the results of the comparison will change
24
 * if signed integer overflow occurs.  Such comparisons are not permitted in
25
 * ANSI C90, however GCC isn't clever enough to work out that that do not occur
26
 * below in png_ascii_from_fp and png_muldiv, so it produces a warning with
27
 * -Wextra.  Unfortunately this is highly dependent on the optimizer and the
28
 * machine architecture so the warning comes and goes unpredictably and is
29
 * impossible to "fix", even were that a good idea.
30
 */
31
#if __GNUC__ == 7 && __GNUC_MINOR__ == 1
32
#define GCC_STRICT_OVERFLOW 1
33
#endif /* GNU 7.1.x */
34
#endif /* GNU */
35
#ifndef GCC_STRICT_OVERFLOW
36
#define GCC_STRICT_OVERFLOW 0
37
#endif
38
39
/* Tells libpng that we have already handled the first "num_bytes" bytes
40
 * of the PNG file signature.  If the PNG data is embedded into another
41
 * stream we can set num_bytes = 8 so that libpng will not attempt to read
42
 * or write any of the magic bytes before it starts on the IHDR.
43
 */
44
45
#ifdef PNG_READ_SUPPORTED
46
void PNGAPI
47
png_set_sig_bytes(png_structrp png_ptr, int num_bytes)
48
0
{
49
0
   unsigned int nb = (unsigned int)num_bytes;
50
0
51
0
   png_debug(1, "in png_set_sig_bytes");
52
0
53
0
   if (png_ptr == NULL)
54
0
      return;
55
0
56
0
   if (num_bytes < 0)
57
0
      nb = 0;
58
0
59
0
   if (nb > 8)
60
0
      png_error(png_ptr, "Too many bytes for PNG signature");
61
0
62
0
   png_ptr->sig_bytes = (png_byte)nb;
63
0
}
64
65
/* Checks whether the supplied bytes match the PNG signature.  We allow
66
 * checking less than the full 8-byte signature so that those apps that
67
 * already read the first few bytes of a file to determine the file type
68
 * can simply check the remaining bytes for extra assurance.  Returns
69
 * an integer less than, equal to, or greater than zero if sig is found,
70
 * respectively, to be less than, to match, or be greater than the correct
71
 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
72
 */
73
int PNGAPI
74
png_sig_cmp(png_const_bytep sig, size_t start, size_t num_to_check)
75
0
{
76
0
   png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
77
0
78
0
   if (num_to_check > 8)
79
0
      num_to_check = 8;
80
0
81
0
   else if (num_to_check < 1)
82
0
      return (-1);
83
0
84
0
   if (start > 7)
85
0
      return (-1);
86
0
87
0
   if (start + num_to_check > 8)
88
0
      num_to_check = 8 - start;
89
0
90
0
   return ((int)(memcmp(&sig[start], &png_signature[start], num_to_check)));
91
0
}
92
93
#endif /* READ */
94
95
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
96
/* Function to allocate memory for zlib */
97
PNG_FUNCTION(voidpf /* PRIVATE */,
98
png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
99
0
{
100
0
   png_alloc_size_t num_bytes = size;
101
0
102
0
   if (png_ptr == NULL)
103
0
      return NULL;
104
0
105
0
   if (items >= (~(png_alloc_size_t)0)/size)
106
0
   {
107
0
      png_warning (png_voidcast(png_structrp, png_ptr),
108
0
          "Potential overflow in png_zalloc()");
109
0
      return NULL;
110
0
   }
111
0
112
0
   num_bytes *= items;
113
0
   return png_malloc_warn(png_voidcast(png_structrp, png_ptr), num_bytes);
114
0
}
115
116
/* Function to free memory for zlib */
117
void /* PRIVATE */
118
png_zfree(voidpf png_ptr, voidpf ptr)
119
0
{
120
0
   png_free(png_voidcast(png_const_structrp,png_ptr), ptr);
121
0
}
122
123
/* Reset the CRC variable to 32 bits of 1's.  Care must be taken
124
 * in case CRC is > 32 bits to leave the top bits 0.
125
 */
126
void /* PRIVATE */
127
png_reset_crc(png_structrp png_ptr)
128
0
{
129
0
   /* The cast is safe because the crc is a 32-bit value. */
130
0
   png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
131
0
}
132
133
/* Calculate the CRC over a section of data.  We can only pass as
134
 * much data to this routine as the largest single buffer size.  We
135
 * also check that this data will actually be used before going to the
136
 * trouble of calculating it.
137
 */
138
void /* PRIVATE */
139
png_calculate_crc(png_structrp png_ptr, png_const_bytep ptr, size_t length)
140
0
{
141
0
   int need_crc = 1;
142
0
143
0
   if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) != 0)
144
0
   {
145
0
      if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
146
0
          (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
147
0
         need_crc = 0;
148
0
   }
149
0
150
0
   else /* critical */
151
0
   {
152
0
      if ((png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) != 0)
153
0
         need_crc = 0;
154
0
   }
155
0
156
0
   /* 'uLong' is defined in zlib.h as unsigned long; this means that on some
157
0
    * systems it is a 64-bit value.  crc32, however, returns 32 bits so the
158
0
    * following cast is safe.  'uInt' may be no more than 16 bits, so it is
159
0
    * necessary to perform a loop here.
160
0
    */
161
0
   if (need_crc != 0 && length > 0)
162
0
   {
163
0
      uLong crc = png_ptr->crc; /* Should never issue a warning */
164
0
165
0
      do
166
0
      {
167
0
         uInt safe_length = (uInt)length;
168
0
#ifndef __COVERITY__
169
0
         if (safe_length == 0)
170
0
            safe_length = (uInt)-1; /* evil, but safe */
171
0
#endif
172
0
173
0
         crc = crc32(crc, ptr, safe_length);
174
0
175
0
         /* The following should never issue compiler warnings; if they do the
176
0
          * target system has characteristics that will probably violate other
177
0
          * assumptions within the libpng code.
178
0
          */
179
0
         ptr += safe_length;
180
0
         length -= safe_length;
181
0
      }
182
0
      while (length > 0);
183
0
184
0
      /* And the following is always safe because the crc is only 32 bits. */
185
0
      png_ptr->crc = (png_uint_32)crc;
186
0
   }
187
0
}
188
189
/* Check a user supplied version number, called from both read and write
190
 * functions that create a png_struct.
191
 */
192
int
193
png_user_version_check(png_structrp png_ptr, png_const_charp user_png_ver)
194
0
{
195
0
   /* Libpng versions 1.0.0 and later are binary compatible if the version
196
0
    * string matches through the second '.'; we must recompile any
197
0
    * applications that use any older library version.
198
0
    */
199
0
200
0
   if (user_png_ver != NULL)
201
0
   {
202
0
      int i = -1;
203
0
      int found_dots = 0;
204
0
205
0
      do
206
0
      {
207
0
         i++;
208
0
         if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])
209
0
            png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
210
0
         if (user_png_ver[i] == '.')
211
0
            found_dots++;
212
0
      } while (found_dots < 2 && user_png_ver[i] != 0 &&
213
0
            PNG_LIBPNG_VER_STRING[i] != 0);
214
0
   }
215
0
216
0
   else
217
0
      png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
218
0
219
0
   if ((png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) != 0)
220
0
   {
221
0
#ifdef PNG_WARNINGS_SUPPORTED
222
0
      size_t pos = 0;
223
0
      char m[128];
224
0
225
0
      pos = png_safecat(m, (sizeof m), pos,
226
0
          "Application built with libpng-");
227
0
      pos = png_safecat(m, (sizeof m), pos, user_png_ver);
228
0
      pos = png_safecat(m, (sizeof m), pos, " but running with ");
229
0
      pos = png_safecat(m, (sizeof m), pos, PNG_LIBPNG_VER_STRING);
230
0
      PNG_UNUSED(pos)
231
0
232
0
      png_warning(png_ptr, m);
233
0
#endif
234
0
235
#ifdef PNG_ERROR_NUMBERS_SUPPORTED
236
      png_ptr->flags = 0;
237
#endif
238
239
0
      return 0;
240
0
   }
241
0
242
0
   /* Success return. */
243
0
   return 1;
244
0
}
245
246
/* Generic function to create a png_struct for either read or write - this
247
 * contains the common initialization.
248
 */
249
PNG_FUNCTION(png_structp /* PRIVATE */,
250
png_create_png_struct,(png_const_charp user_png_ver, png_voidp error_ptr,
251
    png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,
252
    png_malloc_ptr malloc_fn, png_free_ptr free_fn),PNG_ALLOCATED)
253
0
{
254
0
   png_struct create_struct;
255
0
#  ifdef PNG_SETJMP_SUPPORTED
256
0
      jmp_buf create_jmp_buf;
257
0
#  endif
258
0
259
0
   /* This temporary stack-allocated structure is used to provide a place to
260
0
    * build enough context to allow the user provided memory allocator (if any)
261
0
    * to be called.
262
0
    */
263
0
   memset(&create_struct, 0, (sizeof create_struct));
264
0
265
0
   /* Added at libpng-1.2.6 */
266
0
#  ifdef PNG_USER_LIMITS_SUPPORTED
267
0
      create_struct.user_width_max = PNG_USER_WIDTH_MAX;
268
0
      create_struct.user_height_max = PNG_USER_HEIGHT_MAX;
269
0
270
0
#     ifdef PNG_USER_CHUNK_CACHE_MAX
271
0
      /* Added at libpng-1.2.43 and 1.4.0 */
272
0
      create_struct.user_chunk_cache_max = PNG_USER_CHUNK_CACHE_MAX;
273
0
#     endif
274
0
275
0
#     ifdef PNG_USER_CHUNK_MALLOC_MAX
276
0
      /* Added at libpng-1.2.43 and 1.4.1, required only for read but exists
277
0
       * in png_struct regardless.
278
0
       */
279
0
      create_struct.user_chunk_malloc_max = PNG_USER_CHUNK_MALLOC_MAX;
280
0
#     endif
281
0
#  endif
282
0
283
0
   /* The following two API calls simply set fields in png_struct, so it is safe
284
0
    * to do them now even though error handling is not yet set up.
285
0
    */
286
#  ifdef PNG_USER_MEM_SUPPORTED
287
      png_set_mem_fn(&create_struct, mem_ptr, malloc_fn, free_fn);
288
#  else
289
0
      PNG_UNUSED(mem_ptr)
290
0
      PNG_UNUSED(malloc_fn)
291
0
      PNG_UNUSED(free_fn)
292
0
#  endif
293
0
294
0
   /* (*error_fn) can return control to the caller after the error_ptr is set,
295
0
    * this will result in a memory leak unless the error_fn does something
296
0
    * extremely sophisticated.  The design lacks merit but is implicit in the
297
0
    * API.
298
0
    */
299
0
   png_set_error_fn(&create_struct, error_ptr, error_fn, warn_fn);
300
0
301
0
#  ifdef PNG_SETJMP_SUPPORTED
302
0
      if (!setjmp(create_jmp_buf))
303
0
#  endif
304
0
      {
305
0
#  ifdef PNG_SETJMP_SUPPORTED
306
0
         /* Temporarily fake out the longjmp information until we have
307
0
          * successfully completed this function.  This only works if we have
308
0
          * setjmp() support compiled in, but it is safe - this stuff should
309
0
          * never happen.
310
0
          */
311
0
         create_struct.jmp_buf_ptr = &create_jmp_buf;
312
0
         create_struct.jmp_buf_size = 0; /*stack allocation*/
313
0
         create_struct.longjmp_fn = longjmp;
314
0
#  endif
315
0
         /* Call the general version checker (shared with read and write code):
316
0
          */
317
0
         if (png_user_version_check(&create_struct, user_png_ver) != 0)
318
0
         {
319
0
            png_structrp png_ptr = png_voidcast(png_structrp,
320
0
                png_malloc_warn(&create_struct, (sizeof *png_ptr)));
321
0
322
0
            if (png_ptr != NULL)
323
0
            {
324
0
               /* png_ptr->zstream holds a back-pointer to the png_struct, so
325
0
                * this can only be done now:
326
0
                */
327
0
               create_struct.zstream.zalloc = png_zalloc;
328
0
               create_struct.zstream.zfree = png_zfree;
329
0
               create_struct.zstream.opaque = png_ptr;
330
0
331
0
#              ifdef PNG_SETJMP_SUPPORTED
332
0
               /* Eliminate the local error handling: */
333
0
               create_struct.jmp_buf_ptr = NULL;
334
0
               create_struct.jmp_buf_size = 0;
335
0
               create_struct.longjmp_fn = 0;
336
0
#              endif
337
0
338
0
               *png_ptr = create_struct;
339
0
340
0
               /* This is the successful return point */
341
0
               return png_ptr;
342
0
            }
343
0
         }
344
0
      }
345
0
346
0
   /* A longjmp because of a bug in the application storage allocator or a
347
0
    * simple failure to allocate the png_struct.
348
0
    */
349
0
   return NULL;
350
0
}
351
352
/* Allocate the memory for an info_struct for the application. */
353
PNG_FUNCTION(png_infop,PNGAPI
354
png_create_info_struct,(png_const_structrp png_ptr),PNG_ALLOCATED)
355
0
{
356
0
   png_inforp info_ptr;
357
0
358
0
   png_debug(1, "in png_create_info_struct");
359
0
360
0
   if (png_ptr == NULL)
361
0
      return NULL;
362
0
363
0
   /* Use the internal API that does not (or at least should not) error out, so
364
0
    * that this call always returns ok.  The application typically sets up the
365
0
    * error handling *after* creating the info_struct because this is the way it
366
0
    * has always been done in 'example.c'.
367
0
    */
368
0
   info_ptr = png_voidcast(png_inforp, png_malloc_base(png_ptr,
369
0
       (sizeof *info_ptr)));
370
0
371
0
   if (info_ptr != NULL)
372
0
      memset(info_ptr, 0, (sizeof *info_ptr));
373
0
374
0
   return info_ptr;
375
0
}
376
377
/* This function frees the memory associated with a single info struct.
378
 * Normally, one would use either png_destroy_read_struct() or
379
 * png_destroy_write_struct() to free an info struct, but this may be
380
 * useful for some applications.  From libpng 1.6.0 this function is also used
381
 * internally to implement the png_info release part of the 'struct' destroy
382
 * APIs.  This ensures that all possible approaches free the same data (all of
383
 * it).
384
 */
385
void PNGAPI
386
png_destroy_info_struct(png_const_structrp png_ptr, png_infopp info_ptr_ptr)
387
0
{
388
0
   png_inforp info_ptr = NULL;
389
0
390
0
   png_debug(1, "in png_destroy_info_struct");
391
0
392
0
   if (png_ptr == NULL)
393
0
      return;
394
0
395
0
   if (info_ptr_ptr != NULL)
396
0
      info_ptr = *info_ptr_ptr;
397
0
398
0
   if (info_ptr != NULL)
399
0
   {
400
0
      /* Do this first in case of an error below; if the app implements its own
401
0
       * memory management this can lead to png_free calling png_error, which
402
0
       * will abort this routine and return control to the app error handler.
403
0
       * An infinite loop may result if it then tries to free the same info
404
0
       * ptr.
405
0
       */
406
0
      *info_ptr_ptr = NULL;
407
0
408
0
      png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
409
0
      memset(info_ptr, 0, (sizeof *info_ptr));
410
0
      png_free(png_ptr, info_ptr);
411
0
   }
412
0
}
413
414
/* Initialize the info structure.  This is now an internal function (0.89)
415
 * and applications using it are urged to use png_create_info_struct()
416
 * instead.  Use deprecated in 1.6.0, internal use removed (used internally it
417
 * is just a memset).
418
 *
419
 * NOTE: it is almost inconceivable that this API is used because it bypasses
420
 * the user-memory mechanism and the user error handling/warning mechanisms in
421
 * those cases where it does anything other than a memset.
422
 */
423
PNG_FUNCTION(void,PNGAPI
424
png_info_init_3,(png_infopp ptr_ptr, size_t png_info_struct_size),
425
    PNG_DEPRECATED)
426
0
{
427
0
   png_inforp info_ptr = *ptr_ptr;
428
0
429
0
   png_debug(1, "in png_info_init_3");
430
0
431
0
   if (info_ptr == NULL)
432
0
      return;
433
0
434
0
   if ((sizeof (png_info)) > png_info_struct_size)
435
0
   {
436
0
      *ptr_ptr = NULL;
437
0
      /* The following line is why this API should not be used: */
438
0
      free(info_ptr);
439
0
      info_ptr = png_voidcast(png_inforp, png_malloc_base(NULL,
440
0
          (sizeof *info_ptr)));
441
0
      if (info_ptr == NULL)
442
0
         return;
443
0
      *ptr_ptr = info_ptr;
444
0
   }
445
0
446
0
   /* Set everything to 0 */
447
0
   memset(info_ptr, 0, (sizeof *info_ptr));
448
0
}
449
450
/* The following API is not called internally */
451
void PNGAPI
452
png_data_freer(png_const_structrp png_ptr, png_inforp info_ptr,
453
    int freer, png_uint_32 mask)
454
0
{
455
0
   png_debug(1, "in png_data_freer");
456
0
457
0
   if (png_ptr == NULL || info_ptr == NULL)
458
0
      return;
459
0
460
0
   if (freer == PNG_DESTROY_WILL_FREE_DATA)
461
0
      info_ptr->free_me |= mask;
462
0
463
0
   else if (freer == PNG_USER_WILL_FREE_DATA)
464
0
      info_ptr->free_me &= ~mask;
465
0
466
0
   else
467
0
      png_error(png_ptr, "Unknown freer parameter in png_data_freer");
468
0
}
469
470
void PNGAPI
471
png_free_data(png_const_structrp png_ptr, png_inforp info_ptr, png_uint_32 mask,
472
    int num)
473
0
{
474
0
   png_debug(1, "in png_free_data");
475
0
476
0
   if (png_ptr == NULL || info_ptr == NULL)
477
0
      return;
478
0
479
#ifdef PNG_TEXT_SUPPORTED
480
   /* Free text item num or (if num == -1) all text items */
481
   if (info_ptr->text != NULL &&
482
       ((mask & PNG_FREE_TEXT) & info_ptr->free_me) != 0)
483
   {
484
      if (num != -1)
485
      {
486
         png_free(png_ptr, info_ptr->text[num].key);
487
         info_ptr->text[num].key = NULL;
488
      }
489
490
      else
491
      {
492
         int i;
493
494
         for (i = 0; i < info_ptr->num_text; i++)
495
            png_free(png_ptr, info_ptr->text[i].key);
496
497
         png_free(png_ptr, info_ptr->text);
498
         info_ptr->text = NULL;
499
         info_ptr->num_text = 0;
500
         info_ptr->max_text = 0;
501
      }
502
   }
503
#endif
504
505
0
#ifdef PNG_tRNS_SUPPORTED
506
0
   /* Free any tRNS entry */
507
0
   if (((mask & PNG_FREE_TRNS) & info_ptr->free_me) != 0)
508
0
   {
509
0
      info_ptr->valid &= ~PNG_INFO_tRNS;
510
0
      png_free(png_ptr, info_ptr->trans_alpha);
511
0
      info_ptr->trans_alpha = NULL;
512
0
      info_ptr->num_trans = 0;
513
0
   }
514
0
#endif
515
0
516
#ifdef PNG_sCAL_SUPPORTED
517
   /* Free any sCAL entry */
518
   if (((mask & PNG_FREE_SCAL) & info_ptr->free_me) != 0)
519
   {
520
      png_free(png_ptr, info_ptr->scal_s_width);
521
      png_free(png_ptr, info_ptr->scal_s_height);
522
      info_ptr->scal_s_width = NULL;
523
      info_ptr->scal_s_height = NULL;
524
      info_ptr->valid &= ~PNG_INFO_sCAL;
525
   }
526
#endif
527
528
#ifdef PNG_pCAL_SUPPORTED
529
   /* Free any pCAL entry */
530
   if (((mask & PNG_FREE_PCAL) & info_ptr->free_me) != 0)
531
   {
532
      png_free(png_ptr, info_ptr->pcal_purpose);
533
      png_free(png_ptr, info_ptr->pcal_units);
534
      info_ptr->pcal_purpose = NULL;
535
      info_ptr->pcal_units = NULL;
536
537
      if (info_ptr->pcal_params != NULL)
538
         {
539
            int i;
540
541
            for (i = 0; i < info_ptr->pcal_nparams; i++)
542
               png_free(png_ptr, info_ptr->pcal_params[i]);
543
544
            png_free(png_ptr, info_ptr->pcal_params);
545
            info_ptr->pcal_params = NULL;
546
         }
547
      info_ptr->valid &= ~PNG_INFO_pCAL;
548
   }
549
#endif
550
551
0
#ifdef PNG_iCCP_SUPPORTED
552
0
   /* Free any profile entry */
553
0
   if (((mask & PNG_FREE_ICCP) & info_ptr->free_me) != 0)
554
0
   {
555
0
      png_free(png_ptr, info_ptr->iccp_name);
556
0
      png_free(png_ptr, info_ptr->iccp_profile);
557
0
      info_ptr->iccp_name = NULL;
558
0
      info_ptr->iccp_profile = NULL;
559
0
      info_ptr->valid &= ~PNG_INFO_iCCP;
560
0
   }
561
0
#endif
562
0
563
#ifdef PNG_sPLT_SUPPORTED
564
   /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
565
   if (info_ptr->splt_palettes != NULL &&
566
       ((mask & PNG_FREE_SPLT) & info_ptr->free_me) != 0)
567
   {
568
      if (num != -1)
569
      {
570
         png_free(png_ptr, info_ptr->splt_palettes[num].name);
571
         png_free(png_ptr, info_ptr->splt_palettes[num].entries);
572
         info_ptr->splt_palettes[num].name = NULL;
573
         info_ptr->splt_palettes[num].entries = NULL;
574
      }
575
576
      else
577
      {
578
         int i;
579
580
         for (i = 0; i < info_ptr->splt_palettes_num; i++)
581
         {
582
            png_free(png_ptr, info_ptr->splt_palettes[i].name);
583
            png_free(png_ptr, info_ptr->splt_palettes[i].entries);
584
         }
585
586
         png_free(png_ptr, info_ptr->splt_palettes);
587
         info_ptr->splt_palettes = NULL;
588
         info_ptr->splt_palettes_num = 0;
589
         info_ptr->valid &= ~PNG_INFO_sPLT;
590
      }
591
   }
592
#endif
593
594
#ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
595
   if (info_ptr->unknown_chunks != NULL &&
596
       ((mask & PNG_FREE_UNKN) & info_ptr->free_me) != 0)
597
   {
598
      if (num != -1)
599
      {
600
          png_free(png_ptr, info_ptr->unknown_chunks[num].data);
601
          info_ptr->unknown_chunks[num].data = NULL;
602
      }
603
604
      else
605
      {
606
         int i;
607
608
         for (i = 0; i < info_ptr->unknown_chunks_num; i++)
609
            png_free(png_ptr, info_ptr->unknown_chunks[i].data);
610
611
         png_free(png_ptr, info_ptr->unknown_chunks);
612
         info_ptr->unknown_chunks = NULL;
613
         info_ptr->unknown_chunks_num = 0;
614
      }
615
   }
616
#endif
617
618
#ifdef PNG_eXIf_SUPPORTED
619
   /* Free any eXIf entry */
620
   if (((mask & PNG_FREE_EXIF) & info_ptr->free_me) != 0)
621
   {
622
# ifdef PNG_READ_eXIf_SUPPORTED
623
      if (info_ptr->eXIf_buf)
624
      {
625
         png_free(png_ptr, info_ptr->eXIf_buf);
626
         info_ptr->eXIf_buf = NULL;
627
      }
628
# endif
629
      if (info_ptr->exif)
630
      {
631
         png_free(png_ptr, info_ptr->exif);
632
         info_ptr->exif = NULL;
633
      }
634
      info_ptr->valid &= ~PNG_INFO_eXIf;
635
   }
636
#endif
637
638
#ifdef PNG_hIST_SUPPORTED
639
   /* Free any hIST entry */
640
   if (((mask & PNG_FREE_HIST) & info_ptr->free_me) != 0)
641
   {
642
      png_free(png_ptr, info_ptr->hist);
643
      info_ptr->hist = NULL;
644
      info_ptr->valid &= ~PNG_INFO_hIST;
645
   }
646
#endif
647
648
0
   /* Free any PLTE entry that was internally allocated */
649
0
   if (((mask & PNG_FREE_PLTE) & info_ptr->free_me) != 0)
650
0
   {
651
0
      png_free(png_ptr, info_ptr->palette);
652
0
      info_ptr->palette = NULL;
653
0
      info_ptr->valid &= ~PNG_INFO_PLTE;
654
0
      info_ptr->num_palette = 0;
655
0
   }
656
0
657
#ifdef PNG_INFO_IMAGE_SUPPORTED
658
   /* Free any image bits attached to the info structure */
659
   if (((mask & PNG_FREE_ROWS) & info_ptr->free_me) != 0)
660
   {
661
      if (info_ptr->row_pointers != NULL)
662
      {
663
         png_uint_32 row;
664
         for (row = 0; row < info_ptr->height; row++)
665
            png_free(png_ptr, info_ptr->row_pointers[row]);
666
667
         png_free(png_ptr, info_ptr->row_pointers);
668
         info_ptr->row_pointers = NULL;
669
      }
670
      info_ptr->valid &= ~PNG_INFO_IDAT;
671
   }
672
#endif
673
674
0
   if (num != -1)
675
0
      mask &= ~PNG_FREE_MUL;
676
0
677
0
   info_ptr->free_me &= ~mask;
678
0
}
679
#endif /* READ || WRITE */
680
681
/* This function returns a pointer to the io_ptr associated with the user
682
 * functions.  The application should free any memory associated with this
683
 * pointer before png_write_destroy() or png_read_destroy() are called.
684
 */
685
png_voidp PNGAPI
686
png_get_io_ptr(png_const_structrp png_ptr)
687
0
{
688
0
   if (png_ptr == NULL)
689
0
      return (NULL);
690
0
691
0
   return (png_ptr->io_ptr);
692
0
}
693
694
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
695
#  ifdef PNG_STDIO_SUPPORTED
696
/* Initialize the default input/output functions for the PNG file.  If you
697
 * use your own read or write routines, you can call either png_set_read_fn()
698
 * or png_set_write_fn() instead of png_init_io().  If you have defined
699
 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
700
 * function of your own because "FILE *" isn't necessarily available.
701
 */
702
void PNGAPI
703
png_init_io(png_structrp png_ptr, png_FILE_p fp)
704
0
{
705
0
   png_debug(1, "in png_init_io");
706
0
707
0
   if (png_ptr == NULL)
708
0
      return;
709
0
710
0
   png_ptr->io_ptr = (png_voidp)fp;
711
0
}
712
#  endif
713
714
#  ifdef PNG_SAVE_INT_32_SUPPORTED
715
/* PNG signed integers are saved in 32-bit 2's complement format.  ANSI C-90
716
 * defines a cast of a signed integer to an unsigned integer either to preserve
717
 * the value, if it is positive, or to calculate:
718
 *
719
 *     (UNSIGNED_MAX+1) + integer
720
 *
721
 * Where UNSIGNED_MAX is the appropriate maximum unsigned value, so when the
722
 * negative integral value is added the result will be an unsigned value
723
 * correspnding to the 2's complement representation.
724
 */
725
void PNGAPI
726
png_save_int_32(png_bytep buf, png_int_32 i)
727
{
728
   png_save_uint_32(buf, (png_uint_32)i);
729
}
730
#  endif
731
732
#  ifdef PNG_TIME_RFC1123_SUPPORTED
733
/* Convert the supplied time into an RFC 1123 string suitable for use in
734
 * a "Creation Time" or other text-based time string.
735
 */
736
int PNGAPI
737
png_convert_to_rfc1123_buffer(char out[29], png_const_timep ptime)
738
{
739
   static PNG_CONST char short_months[12][4] =
740
        {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
741
         "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
742
743
   if (out == NULL)
744
      return 0;
745
746
   if (ptime->year > 9999 /* RFC1123 limitation */ ||
747
       ptime->month == 0    ||  ptime->month > 12  ||
748
       ptime->day   == 0    ||  ptime->day   > 31  ||
749
       ptime->hour  > 23    ||  ptime->minute > 59 ||
750
       ptime->second > 60)
751
      return 0;
752
753
   {
754
      size_t pos = 0;
755
      char number_buf[5]; /* enough for a four-digit year */
756
757
#     define APPEND_STRING(string) pos = png_safecat(out, 29, pos, (string))
758
#     define APPEND_NUMBER(format, value)\
759
         APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
760
#     define APPEND(ch) if (pos < 28) out[pos++] = (ch)
761
762
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day);
763
      APPEND(' ');
764
      APPEND_STRING(short_months[(ptime->month - 1)]);
765
      APPEND(' ');
766
      APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
767
      APPEND(' ');
768
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour);
769
      APPEND(':');
770
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute);
771
      APPEND(':');
772
      APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second);
773
      APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
774
      PNG_UNUSED (pos)
775
776
#     undef APPEND
777
#     undef APPEND_NUMBER
778
#     undef APPEND_STRING
779
   }
780
781
   return 1;
782
}
783
784
#    if PNG_LIBPNG_VER < 10700
785
/* To do: remove the following from libpng-1.7 */
786
/* Original API that uses a private buffer in png_struct.
787
 * Deprecated because it causes png_struct to carry a spurious temporary
788
 * buffer (png_struct::time_buffer), better to have the caller pass this in.
789
 */
790
png_const_charp PNGAPI
791
png_convert_to_rfc1123(png_structrp png_ptr, png_const_timep ptime)
792
{
793
   if (png_ptr != NULL)
794
   {
795
      /* The only failure above if png_ptr != NULL is from an invalid ptime */
796
      if (png_convert_to_rfc1123_buffer(png_ptr->time_buffer, ptime) == 0)
797
         png_warning(png_ptr, "Ignoring invalid time value");
798
799
      else
800
         return png_ptr->time_buffer;
801
   }
802
803
   return NULL;
804
}
805
#    endif /* LIBPNG_VER < 10700 */
806
#  endif /* TIME_RFC1123 */
807
808
#endif /* READ || WRITE */
809
810
png_const_charp PNGAPI
811
png_get_copyright(png_const_structrp png_ptr)
812
0
{
813
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
814
#ifdef PNG_STRING_COPYRIGHT
815
   return PNG_STRING_COPYRIGHT
816
#else
817
#  ifdef __STDC__
818
0
   return PNG_STRING_NEWLINE \
819
0
      "libpng version 1.6.35+apng - July 15, 2018" PNG_STRING_NEWLINE \
820
0
      "Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson" \
821
0
      PNG_STRING_NEWLINE \
822
0
      "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
823
0
      "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
824
0
      PNG_STRING_NEWLINE \
825
0
      "Portions Copyright (c) 2006-2007 Andrew Smith" PNG_STRING_NEWLINE \
826
0
      "Portions Copyright (c) 2008-2018 Max Stepin" PNG_STRING_NEWLINE ;
827
#  else
828
   return "libpng version 1.6.35+apng - July 15, 2018\
829
      Copyright (c) 1998-2002,2004,2006-2018 Glenn Randers-Pehrson\
830
      Copyright (c) 1996-1997 Andreas Dilger\
831
      Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.\
832
      Portions Copyright (c) 2006-2007 Andrew Smith\
833
      Portions Copyright (c) 2008-2018 Max Stepin";
834
#  endif
835
#endif
836
0
}
837
838
/* The following return the library version as a short string in the
839
 * format 1.0.0 through 99.99.99zz.  To get the version of *.h files
840
 * used with your application, print out PNG_LIBPNG_VER_STRING, which
841
 * is defined in png.h.
842
 * Note: now there is no difference between png_get_libpng_ver() and
843
 * png_get_header_ver().  Due to the version_nn_nn_nn typedef guard,
844
 * it is guaranteed that png.c uses the correct version of png.h.
845
 */
846
png_const_charp PNGAPI
847
png_get_libpng_ver(png_const_structrp png_ptr)
848
0
{
849
0
   /* Version of *.c files used when building libpng */
850
0
   return png_get_header_ver(png_ptr);
851
0
}
852
853
png_const_charp PNGAPI
854
png_get_header_ver(png_const_structrp png_ptr)
855
0
{
856
0
   /* Version of *.h files used when building libpng */
857
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
858
0
   return PNG_LIBPNG_VER_STRING;
859
0
}
860
861
png_const_charp PNGAPI
862
png_get_header_version(png_const_structrp png_ptr)
863
0
{
864
0
   /* Returns longer string containing both version and date */
865
0
   PNG_UNUSED(png_ptr)  /* Silence compiler warning about unused png_ptr */
866
0
#ifdef __STDC__
867
0
   return PNG_HEADER_VERSION_STRING
868
#  ifndef PNG_READ_SUPPORTED
869
      " (NO READ SUPPORT)"
870
#  endif
871
0
      PNG_STRING_NEWLINE;
872
#else
873
   return PNG_HEADER_VERSION_STRING;
874
#endif
875
}
876
877
#ifdef PNG_BUILD_GRAYSCALE_PALETTE_SUPPORTED
878
/* NOTE: this routine is not used internally! */
879
/* Build a grayscale palette.  Palette is assumed to be 1 << bit_depth
880
 * large of png_color.  This lets grayscale images be treated as
881
 * paletted.  Most useful for gamma correction and simplification
882
 * of code.  This API is not used internally.
883
 */
884
void PNGAPI
885
png_build_grayscale_palette(int bit_depth, png_colorp palette)
886
{
887
   int num_palette;
888
   int color_inc;
889
   int i;
890
   int v;
891
892
   png_debug(1, "in png_do_build_grayscale_palette");
893
894
   if (palette == NULL)
895
      return;
896
897
   switch (bit_depth)
898
   {
899
      case 1:
900
         num_palette = 2;
901
         color_inc = 0xff;
902
         break;
903
904
      case 2:
905
         num_palette = 4;
906
         color_inc = 0x55;
907
         break;
908
909
      case 4:
910
         num_palette = 16;
911
         color_inc = 0x11;
912
         break;
913
914
      case 8:
915
         num_palette = 256;
916
         color_inc = 1;
917
         break;
918
919
      default:
920
         num_palette = 0;
921
         color_inc = 0;
922
         break;
923
   }
924
925
   for (i = 0, v = 0; i < num_palette; i++, v += color_inc)
926
   {
927
      palette[i].red = (png_byte)(v & 0xff);
928
      palette[i].green = (png_byte)(v & 0xff);
929
      palette[i].blue = (png_byte)(v & 0xff);
930
   }
931
}
932
#endif
933
934
#ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
935
int PNGAPI
936
png_handle_as_unknown(png_const_structrp png_ptr, png_const_bytep chunk_name)
937
{
938
   /* Check chunk_name and return "keep" value if it's on the list, else 0 */
939
   png_const_bytep p, p_end;
940
941
   if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list == 0)
942
      return PNG_HANDLE_CHUNK_AS_DEFAULT;
943
944
   p_end = png_ptr->chunk_list;
945
   p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
946
947
   /* The code is the fifth byte after each four byte string.  Historically this
948
    * code was always searched from the end of the list, this is no longer
949
    * necessary because the 'set' routine handles duplicate entries correctly.
950
    */
951
   do /* num_chunk_list > 0, so at least one */
952
   {
953
      p -= 5;
954
955
      if (memcmp(chunk_name, p, 4) == 0)
956
         return p[4];
957
   }
958
   while (p > p_end);
959
960
   /* This means that known chunks should be processed and unknown chunks should
961
    * be handled according to the value of png_ptr->unknown_default; this can be
962
    * confusing because, as a result, there are two levels of defaulting for
963
    * unknown chunks.
964
    */
965
   return PNG_HANDLE_CHUNK_AS_DEFAULT;
966
}
967
968
#if defined(PNG_READ_UNKNOWN_CHUNKS_SUPPORTED) ||\
969
   defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED)
970
int /* PRIVATE */
971
png_chunk_unknown_handling(png_const_structrp png_ptr, png_uint_32 chunk_name)
972
{
973
   png_byte chunk_string[5];
974
975
   PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
976
   return png_handle_as_unknown(png_ptr, chunk_string);
977
}
978
#endif /* READ_UNKNOWN_CHUNKS || HANDLE_AS_UNKNOWN */
979
#endif /* SET_UNKNOWN_CHUNKS */
980
981
#ifdef PNG_READ_SUPPORTED
982
/* This function, added to libpng-1.0.6g, is untested. */
983
int PNGAPI
984
png_reset_zstream(png_structrp png_ptr)
985
0
{
986
0
   if (png_ptr == NULL)
987
0
      return Z_STREAM_ERROR;
988
0
989
0
   /* WARNING: this resets the window bits to the maximum! */
990
0
   return (inflateReset(&png_ptr->zstream));
991
0
}
992
#endif /* READ */
993
994
/* This function was added to libpng-1.0.7 */
995
png_uint_32 PNGAPI
996
png_access_version_number(void)
997
0
{
998
0
   /* Version of *.c files used when building libpng */
999
0
   return((png_uint_32)PNG_LIBPNG_VER);
1000
0
}
1001
1002
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
1003
/* Ensure that png_ptr->zstream.msg holds some appropriate error message string.
1004
 * If it doesn't 'ret' is used to set it to something appropriate, even in cases
1005
 * like Z_OK or Z_STREAM_END where the error code is apparently a success code.
1006
 */
1007
void /* PRIVATE */
1008
png_zstream_error(png_structrp png_ptr, int ret)
1009
0
{
1010
0
   /* Translate 'ret' into an appropriate error string, priority is given to the
1011
0
    * one in zstream if set.  This always returns a string, even in cases like
1012
0
    * Z_OK or Z_STREAM_END where the error code is a success code.
1013
0
    */
1014
0
   if (png_ptr->zstream.msg == NULL) switch (ret)
1015
0
   {
1016
0
      default:
1017
0
      case Z_OK:
1018
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return code");
1019
0
         break;
1020
0
1021
0
      case Z_STREAM_END:
1022
0
         /* Normal exit */
1023
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected end of LZ stream");
1024
0
         break;
1025
0
1026
0
      case Z_NEED_DICT:
1027
0
         /* This means the deflate stream did not have a dictionary; this
1028
0
          * indicates a bogus PNG.
1029
0
          */
1030
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("missing LZ dictionary");
1031
0
         break;
1032
0
1033
0
      case Z_ERRNO:
1034
0
         /* gz APIs only: should not happen */
1035
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("zlib IO error");
1036
0
         break;
1037
0
1038
0
      case Z_STREAM_ERROR:
1039
0
         /* internal libpng error */
1040
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("bad parameters to zlib");
1041
0
         break;
1042
0
1043
0
      case Z_DATA_ERROR:
1044
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("damaged LZ stream");
1045
0
         break;
1046
0
1047
0
      case Z_MEM_ERROR:
1048
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("insufficient memory");
1049
0
         break;
1050
0
1051
0
      case Z_BUF_ERROR:
1052
0
         /* End of input or output; not a problem if the caller is doing
1053
0
          * incremental read or write.
1054
0
          */
1055
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("truncated");
1056
0
         break;
1057
0
1058
0
      case Z_VERSION_ERROR:
1059
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unsupported zlib version");
1060
0
         break;
1061
0
1062
0
      case PNG_UNEXPECTED_ZLIB_RETURN:
1063
0
         /* Compile errors here mean that zlib now uses the value co-opted in
1064
0
          * pngpriv.h for PNG_UNEXPECTED_ZLIB_RETURN; update the switch above
1065
0
          * and change pngpriv.h.  Note that this message is "... return",
1066
0
          * whereas the default/Z_OK one is "... return code".
1067
0
          */
1068
0
         png_ptr->zstream.msg = PNGZ_MSG_CAST("unexpected zlib return");
1069
0
         break;
1070
0
   }
1071
0
}
1072
1073
/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
1074
 * at libpng 1.5.5!
1075
 */
1076
1077
/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
1078
#ifdef PNG_GAMMA_SUPPORTED /* always set if COLORSPACE */
1079
static int
1080
png_colorspace_check_gamma(png_const_structrp png_ptr,
1081
    png_colorspacerp colorspace, png_fixed_point gAMA, int from)
1082
   /* This is called to check a new gamma value against an existing one.  The
1083
    * routine returns false if the new gamma value should not be written.
1084
    *
1085
    * 'from' says where the new gamma value comes from:
1086
    *
1087
    *    0: the new gamma value is the libpng estimate for an ICC profile
1088
    *    1: the new gamma value comes from a gAMA chunk
1089
    *    2: the new gamma value comes from an sRGB chunk
1090
    */
1091
0
{
1092
0
   png_fixed_point gtest;
1093
0
1094
0
   if ((colorspace->flags & PNG_COLORSPACE_HAVE_GAMMA) != 0 &&
1095
0
       (png_muldiv(&gtest, colorspace->gamma, PNG_FP_1, gAMA) == 0  ||
1096
0
      png_gamma_significant(gtest) != 0))
1097
0
   {
1098
0
      /* Either this is an sRGB image, in which case the calculated gamma
1099
0
       * approximation should match, or this is an image with a profile and the
1100
0
       * value libpng calculates for the gamma of the profile does not match the
1101
0
       * value recorded in the file.  The former, sRGB, case is an error, the
1102
0
       * latter is just a warning.
1103
0
       */
1104
0
      if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0 || from == 2)
1105
0
      {
1106
0
         png_chunk_report(png_ptr, "gamma value does not match sRGB",
1107
0
             PNG_CHUNK_ERROR);
1108
0
         /* Do not overwrite an sRGB value */
1109
0
         return from == 2;
1110
0
      }
1111
0
1112
0
      else /* sRGB tag not involved */
1113
0
      {
1114
0
         png_chunk_report(png_ptr, "gamma value does not match libpng estimate",
1115
0
             PNG_CHUNK_WARNING);
1116
0
         return from == 1;
1117
0
      }
1118
0
   }
1119
0
1120
0
   return 1;
1121
0
}
1122
1123
void /* PRIVATE */
1124
png_colorspace_set_gamma(png_const_structrp png_ptr,
1125
    png_colorspacerp colorspace, png_fixed_point gAMA)
1126
0
{
1127
0
   /* Changed in libpng-1.5.4 to limit the values to ensure overflow can't
1128
0
    * occur.  Since the fixed point representation is asymetrical it is
1129
0
    * possible for 1/gamma to overflow the limit of 21474 and this means the
1130
0
    * gamma value must be at least 5/100000 and hence at most 20000.0.  For
1131
0
    * safety the limits here are a little narrower.  The values are 0.00016 to
1132
0
    * 6250.0, which are truly ridiculous gamma values (and will produce
1133
0
    * displays that are all black or all white.)
1134
0
    *
1135
0
    * In 1.6.0 this test replaces the ones in pngrutil.c, in the gAMA chunk
1136
0
    * handling code, which only required the value to be >0.
1137
0
    */
1138
0
   png_const_charp errmsg;
1139
0
1140
0
   if (gAMA < 16 || gAMA > 625000000)
1141
0
      errmsg = "gamma value out of range";
1142
0
1143
0
#  ifdef PNG_READ_gAMA_SUPPORTED
1144
0
   /* Allow the application to set the gamma value more than once */
1145
0
   else if ((png_ptr->mode & PNG_IS_READ_STRUCT) != 0 &&
1146
0
      (colorspace->flags & PNG_COLORSPACE_FROM_gAMA) != 0)
1147
0
      errmsg = "duplicate";
1148
0
#  endif
1149
0
1150
0
   /* Do nothing if the colorspace is already invalid */
1151
0
   else if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1152
0
      return;
1153
0
1154
0
   else
1155
0
   {
1156
0
      if (png_colorspace_check_gamma(png_ptr, colorspace, gAMA,
1157
0
          1/*from gAMA*/) != 0)
1158
0
      {
1159
0
         /* Store this gamma value. */
1160
0
         colorspace->gamma = gAMA;
1161
0
         colorspace->flags |=
1162
0
            (PNG_COLORSPACE_HAVE_GAMMA | PNG_COLORSPACE_FROM_gAMA);
1163
0
      }
1164
0
1165
0
      /* At present if the check_gamma test fails the gamma of the colorspace is
1166
0
       * not updated however the colorspace is not invalidated.  This
1167
0
       * corresponds to the case where the existing gamma comes from an sRGB
1168
0
       * chunk or profile.  An error message has already been output.
1169
0
       */
1170
0
      return;
1171
0
   }
1172
0
1173
0
   /* Error exit - errmsg has been set. */
1174
0
   colorspace->flags |= PNG_COLORSPACE_INVALID;
1175
0
   png_chunk_report(png_ptr, errmsg, PNG_CHUNK_WRITE_ERROR);
1176
0
}
1177
1178
void /* PRIVATE */
1179
png_colorspace_sync_info(png_const_structrp png_ptr, png_inforp info_ptr)
1180
0
{
1181
0
   if ((info_ptr->colorspace.flags & PNG_COLORSPACE_INVALID) != 0)
1182
0
   {
1183
0
      /* Everything is invalid */
1184
0
      info_ptr->valid &= ~(PNG_INFO_gAMA|PNG_INFO_cHRM|PNG_INFO_sRGB|
1185
0
         PNG_INFO_iCCP);
1186
0
1187
0
#     ifdef PNG_COLORSPACE_SUPPORTED
1188
0
      /* Clean up the iCCP profile now if it won't be used. */
1189
0
      png_free_data(png_ptr, info_ptr, PNG_FREE_ICCP, -1/*not used*/);
1190
#     else
1191
      PNG_UNUSED(png_ptr)
1192
#     endif
1193
   }
1194
0
1195
0
   else
1196
0
   {
1197
0
#     ifdef PNG_COLORSPACE_SUPPORTED
1198
0
      /* Leave the INFO_iCCP flag set if the pngset.c code has already set
1199
0
       * it; this allows a PNG to contain a profile which matches sRGB and
1200
0
       * yet still have that profile retrievable by the application.
1201
0
       */
1202
0
      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_MATCHES_sRGB) != 0)
1203
0
         info_ptr->valid |= PNG_INFO_sRGB;
1204
0
1205
0
      else
1206
0
         info_ptr->valid &= ~PNG_INFO_sRGB;
1207
0
1208
0
      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
1209
0
         info_ptr->valid |= PNG_INFO_cHRM;
1210
0
1211
0
      else
1212
0
         info_ptr->valid &= ~PNG_INFO_cHRM;
1213
0
#     endif
1214
0
1215
0
      if ((info_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_GAMMA) != 0)
1216
0
         info_ptr->valid |= PNG_INFO_gAMA;
1217
0
1218
0
      else
1219
0
         info_ptr->valid &= ~PNG_INFO_gAMA;
1220
0
   }
1221
0
}
1222
1223
#ifdef PNG_READ_SUPPORTED
1224
void /* PRIVATE */
1225
png_colorspace_sync(png_const_structrp png_ptr, png_inforp info_ptr)
1226
0
{
1227
0
   if (info_ptr == NULL) /* reduce code size; check here not in the caller */
1228
0
      return;
1229
0
1230
0
   info_ptr->colorspace = png_ptr->colorspace;
1231
0
   png_colorspace_sync_info(png_ptr, info_ptr);
1232
0
}
1233
#endif
1234
#endif /* GAMMA */
1235
1236
#ifdef PNG_COLORSPACE_SUPPORTED
1237
/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
1238
 * cHRM, as opposed to using chromaticities.  These internal APIs return
1239
 * non-zero on a parameter error.  The X, Y and Z values are required to be
1240
 * positive and less than 1.0.
1241
 */
1242
static int
1243
png_xy_from_XYZ(png_xy *xy, const png_XYZ *XYZ)
1244
0
{
1245
0
   png_int_32 d, dwhite, whiteX, whiteY;
1246
0
1247
0
   d = XYZ->red_X + XYZ->red_Y + XYZ->red_Z;
1248
0
   if (png_muldiv(&xy->redx, XYZ->red_X, PNG_FP_1, d) == 0)
1249
0
      return 1;
1250
0
   if (png_muldiv(&xy->redy, XYZ->red_Y, PNG_FP_1, d) == 0)
1251
0
      return 1;
1252
0
   dwhite = d;
1253
0
   whiteX = XYZ->red_X;
1254
0
   whiteY = XYZ->red_Y;
1255
0
1256
0
   d = XYZ->green_X + XYZ->green_Y + XYZ->green_Z;
1257
0
   if (png_muldiv(&xy->greenx, XYZ->green_X, PNG_FP_1, d) == 0)
1258
0
      return 1;
1259
0
   if (png_muldiv(&xy->greeny, XYZ->green_Y, PNG_FP_1, d) == 0)
1260
0
      return 1;
1261
0
   dwhite += d;
1262
0
   whiteX += XYZ->green_X;
1263
0
   whiteY += XYZ->green_Y;
1264
0
1265
0
   d = XYZ->blue_X + XYZ->blue_Y + XYZ->blue_Z;
1266
0
   if (png_muldiv(&xy->bluex, XYZ->blue_X, PNG_FP_1, d) == 0)
1267
0
      return 1;
1268
0
   if (png_muldiv(&xy->bluey, XYZ->blue_Y, PNG_FP_1, d) == 0)
1269
0
      return 1;
1270
0
   dwhite += d;
1271
0
   whiteX += XYZ->blue_X;
1272
0
   whiteY += XYZ->blue_Y;
1273
0
1274
0
   /* The reference white is simply the sum of the end-point (X,Y,Z) vectors,
1275
0
    * thus:
1276
0
    */
1277
0
   if (png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite) == 0)
1278
0
      return 1;
1279
0
   if (png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite) == 0)
1280
0
      return 1;
1281
0
1282
0
   return 0;
1283
0
}
1284
1285
static int
1286
png_XYZ_from_xy(png_XYZ *XYZ, const png_xy *xy)
1287
0
{
1288
0
   png_fixed_point red_inverse, green_inverse, blue_scale;
1289
0
   png_fixed_point left, right, denominator;
1290
0
1291
0
   /* Check xy and, implicitly, z.  Note that wide gamut color spaces typically
1292
0
    * have end points with 0 tristimulus values (these are impossible end
1293
0
    * points, but they are used to cover the possible colors).  We check
1294
0
    * xy->whitey against 5, not 0, to avoid a possible integer overflow.
1295
0
    */
1296
0
   if (xy->redx   < 0 || xy->redx > PNG_FP_1) return 1;
1297
0
   if (xy->redy   < 0 || xy->redy > PNG_FP_1-xy->redx) return 1;
1298
0
   if (xy->greenx < 0 || xy->greenx > PNG_FP_1) return 1;
1299
0
   if (xy->greeny < 0 || xy->greeny > PNG_FP_1-xy->greenx) return 1;
1300
0
   if (xy->bluex  < 0 || xy->bluex > PNG_FP_1) return 1;
1301
0
   if (xy->bluey  < 0 || xy->bluey > PNG_FP_1-xy->bluex) return 1;
1302
0
   if (xy->whitex < 0 || xy->whitex > PNG_FP_1) return 1;
1303
0
   if (xy->whitey < 5 || xy->whitey > PNG_FP_1-xy->whitex) return 1;
1304
0
1305
0
   /* The reverse calculation is more difficult because the original tristimulus
1306
0
    * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
1307
0
    * derived values were recorded in the cHRM chunk;
1308
0
    * (red,green,blue,white)x(x,y).  This loses one degree of freedom and
1309
0
    * therefore an arbitrary ninth value has to be introduced to undo the
1310
0
    * original transformations.
1311
0
    *
1312
0
    * Think of the original end-points as points in (X,Y,Z) space.  The
1313
0
    * chromaticity values (c) have the property:
1314
0
    *
1315
0
    *           C
1316
0
    *   c = ---------
1317
0
    *       X + Y + Z
1318
0
    *
1319
0
    * For each c (x,y,z) from the corresponding original C (X,Y,Z).  Thus the
1320
0
    * three chromaticity values (x,y,z) for each end-point obey the
1321
0
    * relationship:
1322
0
    *
1323
0
    *   x + y + z = 1
1324
0
    *
1325
0
    * This describes the plane in (X,Y,Z) space that intersects each axis at the
1326
0
    * value 1.0; call this the chromaticity plane.  Thus the chromaticity
1327
0
    * calculation has scaled each end-point so that it is on the x+y+z=1 plane
1328
0
    * and chromaticity is the intersection of the vector from the origin to the
1329
0
    * (X,Y,Z) value with the chromaticity plane.
1330
0
    *
1331
0
    * To fully invert the chromaticity calculation we would need the three
1332
0
    * end-point scale factors, (red-scale, green-scale, blue-scale), but these
1333
0
    * were not recorded.  Instead we calculated the reference white (X,Y,Z) and
1334
0
    * recorded the chromaticity of this.  The reference white (X,Y,Z) would have
1335
0
    * given all three of the scale factors since:
1336
0
    *
1337
0
    *    color-C = color-c * color-scale
1338
0
    *    white-C = red-C + green-C + blue-C
1339
0
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1340
0
    *
1341
0
    * But cHRM records only white-x and white-y, so we have lost the white scale
1342
0
    * factor:
1343
0
    *
1344
0
    *    white-C = white-c*white-scale
1345
0
    *
1346
0
    * To handle this the inverse transformation makes an arbitrary assumption
1347
0
    * about white-scale:
1348
0
    *
1349
0
    *    Assume: white-Y = 1.0
1350
0
    *    Hence:  white-scale = 1/white-y
1351
0
    *    Or:     red-Y + green-Y + blue-Y = 1.0
1352
0
    *
1353
0
    * Notice the last statement of the assumption gives an equation in three of
1354
0
    * the nine values we want to calculate.  8 more equations come from the
1355
0
    * above routine as summarised at the top above (the chromaticity
1356
0
    * calculation):
1357
0
    *
1358
0
    *    Given: color-x = color-X / (color-X + color-Y + color-Z)
1359
0
    *    Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
1360
0
    *
1361
0
    * This is 9 simultaneous equations in the 9 variables "color-C" and can be
1362
0
    * solved by Cramer's rule.  Cramer's rule requires calculating 10 9x9 matrix
1363
0
    * determinants, however this is not as bad as it seems because only 28 of
1364
0
    * the total of 90 terms in the various matrices are non-zero.  Nevertheless
1365
0
    * Cramer's rule is notoriously numerically unstable because the determinant
1366
0
    * calculation involves the difference of large, but similar, numbers.  It is
1367
0
    * difficult to be sure that the calculation is stable for real world values
1368
0
    * and it is certain that it becomes unstable where the end points are close
1369
0
    * together.
1370
0
    *
1371
0
    * So this code uses the perhaps slightly less optimal but more
1372
0
    * understandable and totally obvious approach of calculating color-scale.
1373
0
    *
1374
0
    * This algorithm depends on the precision in white-scale and that is
1375
0
    * (1/white-y), so we can immediately see that as white-y approaches 0 the
1376
0
    * accuracy inherent in the cHRM chunk drops off substantially.
1377
0
    *
1378
0
    * libpng arithmetic: a simple inversion of the above equations
1379
0
    * ------------------------------------------------------------
1380
0
    *
1381
0
    *    white_scale = 1/white-y
1382
0
    *    white-X = white-x * white-scale
1383
0
    *    white-Y = 1.0
1384
0
    *    white-Z = (1 - white-x - white-y) * white_scale
1385
0
    *
1386
0
    *    white-C = red-C + green-C + blue-C
1387
0
    *            = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
1388
0
    *
1389
0
    * This gives us three equations in (red-scale,green-scale,blue-scale) where
1390
0
    * all the coefficients are now known:
1391
0
    *
1392
0
    *    red-x*red-scale + green-x*green-scale + blue-x*blue-scale
1393
0
    *       = white-x/white-y
1394
0
    *    red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
1395
0
    *    red-z*red-scale + green-z*green-scale + blue-z*blue-scale
1396
0
    *       = (1 - white-x - white-y)/white-y
1397
0
    *
1398
0
    * In the last equation color-z is (1 - color-x - color-y) so we can add all
1399
0
    * three equations together to get an alternative third:
1400
0
    *
1401
0
    *    red-scale + green-scale + blue-scale = 1/white-y = white-scale
1402
0
    *
1403
0
    * So now we have a Cramer's rule solution where the determinants are just
1404
0
    * 3x3 - far more tractible.  Unfortunately 3x3 determinants still involve
1405
0
    * multiplication of three coefficients so we can't guarantee to avoid
1406
0
    * overflow in the libpng fixed point representation.  Using Cramer's rule in
1407
0
    * floating point is probably a good choice here, but it's not an option for
1408
0
    * fixed point.  Instead proceed to simplify the first two equations by
1409
0
    * eliminating what is likely to be the largest value, blue-scale:
1410
0
    *
1411
0
    *    blue-scale = white-scale - red-scale - green-scale
1412
0
    *
1413
0
    * Hence:
1414
0
    *
1415
0
    *    (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1416
0
    *                (white-x - blue-x)*white-scale
1417
0
    *
1418
0
    *    (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1419
0
    *                1 - blue-y*white-scale
1420
0
    *
1421
0
    * And now we can trivially solve for (red-scale,green-scale):
1422
0
    *
1423
0
    *    green-scale =
1424
0
    *                (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1425
0
    *                -----------------------------------------------------------
1426
0
    *                                  green-x - blue-x
1427
0
    *
1428
0
    *    red-scale =
1429
0
    *                1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1430
0
    *                ---------------------------------------------------------
1431
0
    *                                  red-y - blue-y
1432
0
    *
1433
0
    * Hence:
1434
0
    *
1435
0
    *    red-scale =
1436
0
    *          ( (green-x - blue-x) * (white-y - blue-y) -
1437
0
    *            (green-y - blue-y) * (white-x - blue-x) ) / white-y
1438
0
    * -------------------------------------------------------------------------
1439
0
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1440
0
    *
1441
0
    *    green-scale =
1442
0
    *          ( (red-y - blue-y) * (white-x - blue-x) -
1443
0
    *            (red-x - blue-x) * (white-y - blue-y) ) / white-y
1444
0
    * -------------------------------------------------------------------------
1445
0
    *  (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1446
0
    *
1447
0
    * Accuracy:
1448
0
    * The input values have 5 decimal digits of accuracy.  The values are all in
1449
0
    * the range 0 < value < 1, so simple products are in the same range but may
1450
0
    * need up to 10 decimal digits to preserve the original precision and avoid
1451
0
    * underflow.  Because we are using a 32-bit signed representation we cannot
1452
0
    * match this; the best is a little over 9 decimal digits, less than 10.
1453
0
    *
1454
0
    * The approach used here is to preserve the maximum precision within the
1455
0
    * signed representation.  Because the red-scale calculation above uses the
1456
0
    * difference between two products of values that must be in the range -1..+1
1457
0
    * it is sufficient to divide the product by 7; ceil(100,000/32767*2).  The
1458
0
    * factor is irrelevant in the calculation because it is applied to both
1459
0
    * numerator and denominator.
1460
0
    *
1461
0
    * Note that the values of the differences of the products of the
1462
0
    * chromaticities in the above equations tend to be small, for example for
1463
0
    * the sRGB chromaticities they are:
1464
0
    *
1465
0
    * red numerator:    -0.04751
1466
0
    * green numerator:  -0.08788
1467
0
    * denominator:      -0.2241 (without white-y multiplication)
1468
0
    *
1469
0
    *  The resultant Y coefficients from the chromaticities of some widely used
1470
0
    *  color space definitions are (to 15 decimal places):
1471
0
    *
1472
0
    *  sRGB
1473
0
    *    0.212639005871510 0.715168678767756 0.072192315360734
1474
0
    *  Kodak ProPhoto
1475
0
    *    0.288071128229293 0.711843217810102 0.000085653960605
1476
0
    *  Adobe RGB
1477
0
    *    0.297344975250536 0.627363566255466 0.075291458493998
1478
0
    *  Adobe Wide Gamut RGB
1479
0
    *    0.258728243040113 0.724682314948566 0.016589442011321
1480
0
    */
1481
0
   /* By the argument, above overflow should be impossible here. The return
1482
0
    * value of 2 indicates an internal error to the caller.
1483
0
    */
1484
0
   if (png_muldiv(&left, xy->greenx-xy->bluex, xy->redy - xy->bluey, 7) == 0)
1485
0
      return 2;
1486
0
   if (png_muldiv(&right, xy->greeny-xy->bluey, xy->redx - xy->bluex, 7) == 0)
1487
0
      return 2;
1488
0
   denominator = left - right;
1489
0
1490
0
   /* Now find the red numerator. */
1491
0
   if (png_muldiv(&left, xy->greenx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
1492
0
      return 2;
1493
0
   if (png_muldiv(&right, xy->greeny-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
1494
0
      return 2;
1495
0
1496
0
   /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1497
0
    * chunk values.  This calculation actually returns the reciprocal of the
1498
0
    * scale value because this allows us to delay the multiplication of white-y
1499
0
    * into the denominator, which tends to produce a small number.
1500
0
    */
1501
0
   if (png_muldiv(&red_inverse, xy->whitey, denominator, left-right) == 0 ||
1502
0
       red_inverse <= xy->whitey /* r+g+b scales = white scale */)
1503
0
      return 1;
1504
0
1505
0
   /* Similarly for green_inverse: */
1506
0
   if (png_muldiv(&left, xy->redy-xy->bluey, xy->whitex-xy->bluex, 7) == 0)
1507
0
      return 2;
1508
0
   if (png_muldiv(&right, xy->redx-xy->bluex, xy->whitey-xy->bluey, 7) == 0)
1509
0
      return 2;
1510
0
   if (png_muldiv(&green_inverse, xy->whitey, denominator, left-right) == 0 ||
1511
0
       green_inverse <= xy->whitey)
1512
0
      return 1;
1513
0
1514
0
   /* And the blue scale, the checks above guarantee this can't overflow but it
1515
0
    * can still produce 0 for extreme cHRM values.
1516
0
    */
1517
0
   blue_scale = png_reciprocal(xy->whitey) - png_reciprocal(red_inverse) -
1518
0
       png_reciprocal(green_inverse);
1519
0
   if (blue_scale <= 0)
1520
0
      return 1;
1521
0
1522
0
1523
0
   /* And fill in the png_XYZ: */
1524
0
   if (png_muldiv(&XYZ->red_X, xy->redx, PNG_FP_1, red_inverse) == 0)
1525
0
      return 1;
1526
0
   if (png_muldiv(&XYZ->red_Y, xy->redy, PNG_FP_1, red_inverse) == 0)
1527
0
      return 1;
1528
0
   if (png_muldiv(&XYZ->red_Z, PNG_FP_1 - xy->redx - xy->redy, PNG_FP_1,
1529
0
       red_inverse) == 0)
1530
0
      return 1;
1531
0
1532
0
   if (png_muldiv(&XYZ->green_X, xy->greenx, PNG_FP_1, green_inverse) == 0)
1533
0
      return 1;
1534
0
   if (png_muldiv(&XYZ->green_Y, xy->greeny, PNG_FP_1, green_inverse) == 0)
1535
0
      return 1;
1536
0
   if (png_muldiv(&XYZ->green_Z, PNG_FP_1 - xy->greenx - xy->greeny, PNG_FP_1,
1537
0
       green_inverse) == 0)
1538
0
      return 1;
1539
0
1540
0
   if (png_muldiv(&XYZ->blue_X, xy->bluex, blue_scale, PNG_FP_1) == 0)
1541
0
      return 1;
1542
0
   if (png_muldiv(&XYZ->blue_Y, xy->bluey, blue_scale, PNG_FP_1) == 0)
1543
0
      return 1;
1544
0
   if (png_muldiv(&XYZ->blue_Z, PNG_FP_1 - xy->bluex - xy->bluey, blue_scale,
1545
0
       PNG_FP_1) == 0)
1546
0
      return 1;
1547
0
1548
0
   return 0; /*success*/
1549
0
}
1550
1551
static int
1552
png_XYZ_normalize(png_XYZ *XYZ)
1553
0
{
1554
0
   png_int_32 Y;
1555
0
1556
0
   if (XYZ->red_Y < 0 || XYZ->green_Y < 0 || XYZ->blue_Y < 0 ||
1557
0
      XYZ->red_X < 0 || XYZ->green_X < 0 || XYZ->blue_X < 0 ||
1558
0
      XYZ->red_Z < 0 || XYZ->green_Z < 0 || XYZ->blue_Z < 0)
1559
0
      return 1;
1560
0
1561
0
   /* Normalize by scaling so the sum of the end-point Y values is PNG_FP_1.
1562
0
    * IMPLEMENTATION NOTE: ANSI requires signed overflow not to occur, therefore
1563
0
    * relying on addition of two positive values producing a negative one is not
1564
0
    * safe.
1565
0
    */
1566
0
   Y = XYZ->red_Y;
1567
0
   if (0x7fffffff - Y < XYZ->green_X)
1568
0
      return 1;
1569
0
   Y += XYZ->green_Y;
1570
0
   if (0x7fffffff - Y < XYZ->blue_X)
1571
0
      return 1;
1572
0
   Y += XYZ->blue_Y;
1573
0
1574
0
   if (Y != PNG_FP_1)
1575
0
   {
1576
0
      if (png_muldiv(&XYZ->red_X, XYZ->red_X, PNG_FP_1, Y) == 0)
1577
0
         return 1;
1578
0
      if (png_muldiv(&XYZ->red_Y, XYZ->red_Y, PNG_FP_1, Y) == 0)
1579
0
         return 1;
1580
0
      if (png_muldiv(&XYZ->red_Z, XYZ->red_Z, PNG_FP_1, Y) == 0)
1581
0
         return 1;
1582
0
1583
0
      if (png_muldiv(&XYZ->green_X, XYZ->green_X, PNG_FP_1, Y) == 0)
1584
0
         return 1;
1585
0
      if (png_muldiv(&XYZ->green_Y, XYZ->green_Y, PNG_FP_1, Y) == 0)
1586
0
         return 1;
1587
0
      if (png_muldiv(&XYZ->green_Z, XYZ->green_Z, PNG_FP_1, Y) == 0)
1588
0
         return 1;
1589
0
1590
0
      if (png_muldiv(&XYZ->blue_X, XYZ->blue_X, PNG_FP_1, Y) == 0)
1591
0
         return 1;
1592
0
      if (png_muldiv(&XYZ->blue_Y, XYZ->blue_Y, PNG_FP_1, Y) == 0)
1593
0
         return 1;
1594
0
      if (png_muldiv(&XYZ->blue_Z, XYZ->blue_Z, PNG_FP_1, Y) == 0)
1595
0
         return 1;
1596
0
   }
1597
0
1598
0
   return 0;
1599
0
}
1600
1601
static int
1602
png_colorspace_endpoints_match(const png_xy *xy1, const png_xy *xy2, int delta)
1603
0
{
1604
0
   /* Allow an error of +/-0.01 (absolute value) on each chromaticity */
1605
0
   if (PNG_OUT_OF_RANGE(xy1->whitex, xy2->whitex,delta) ||
1606
0
       PNG_OUT_OF_RANGE(xy1->whitey, xy2->whitey,delta) ||
1607
0
       PNG_OUT_OF_RANGE(xy1->redx,   xy2->redx,  delta) ||
1608
0
       PNG_OUT_OF_RANGE(xy1->redy,   xy2->redy,  delta) ||
1609
0
       PNG_OUT_OF_RANGE(xy1->greenx, xy2->greenx,delta) ||
1610
0
       PNG_OUT_OF_RANGE(xy1->greeny, xy2->greeny,delta) ||
1611
0
       PNG_OUT_OF_RANGE(xy1->bluex,  xy2->bluex, delta) ||
1612
0
       PNG_OUT_OF_RANGE(xy1->bluey,  xy2->bluey, delta))
1613
0
      return 0;
1614
0
   return 1;
1615
0
}
1616
1617
/* Added in libpng-1.6.0, a different check for the validity of a set of cHRM
1618
 * chunk chromaticities.  Earlier checks used to simply look for the overflow
1619
 * condition (where the determinant of the matrix to solve for XYZ ends up zero
1620
 * because the chromaticity values are not all distinct.)  Despite this it is
1621
 * theoretically possible to produce chromaticities that are apparently valid
1622
 * but that rapidly degrade to invalid, potentially crashing, sets because of
1623
 * arithmetic inaccuracies when calculations are performed on them.  The new
1624
 * check is to round-trip xy -> XYZ -> xy and then check that the result is
1625
 * within a small percentage of the original.
1626
 */
1627
static int
1628
png_colorspace_check_xy(png_XYZ *XYZ, const png_xy *xy)
1629
0
{
1630
0
   int result;
1631
0
   png_xy xy_test;
1632
0
1633
0
   /* As a side-effect this routine also returns the XYZ endpoints. */
1634
0
   result = png_XYZ_from_xy(XYZ, xy);
1635
0
   if (result != 0)
1636
0
      return result;
1637
0
1638
0
   result = png_xy_from_XYZ(&xy_test, XYZ);
1639
0
   if (result != 0)
1640
0
      return result;
1641
0
1642
0
   if (png_colorspace_endpoints_match(xy, &xy_test,
1643
0
       5/*actually, the math is pretty accurate*/) != 0)
1644
0
      return 0;
1645
0
1646
0
   /* Too much slip */
1647
0
   return 1;
1648
0
}
1649
1650
/* This is the check going the other way.  The XYZ is modified to normalize it
1651
 * (another side-effect) and the xy chromaticities are returned.
1652
 */
1653
static int
1654
png_colorspace_check_XYZ(png_xy *xy, png_XYZ *XYZ)
1655
0
{
1656
0
   int result;
1657
0
   png_XYZ XYZtemp;
1658
0
1659
0
   result = png_XYZ_normalize(XYZ);
1660
0
   if (result != 0)
1661
0
      return result;
1662
0
1663
0
   result = png_xy_from_XYZ(xy, XYZ);
1664
0
   if (result != 0)
1665
0
      return result;
1666
0
1667
0
   XYZtemp = *XYZ;
1668
0
   return png_colorspace_check_xy(&XYZtemp, xy);
1669
0
}
1670
1671
/* Used to check for an endpoint match against sRGB */
1672
static const png_xy sRGB_xy = /* From ITU-R BT.709-3 */
1673
{
1674
   /* color      x       y */
1675
   /* red   */ 64000, 33000,
1676
   /* green */ 30000, 60000,
1677
   /* blue  */ 15000,  6000,
1678
   /* white */ 31270, 32900
1679
};
1680
1681
static int
1682
png_colorspace_set_xy_and_XYZ(png_const_structrp png_ptr,
1683
    png_colorspacerp colorspace, const png_xy *xy, const png_XYZ *XYZ,
1684
    int preferred)
1685
0
{
1686
0
   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1687
0
      return 0;
1688
0
1689
0
   /* The consistency check is performed on the chromaticities; this factors out
1690
0
    * variations because of the normalization (or not) of the end point Y
1691
0
    * values.
1692
0
    */
1693
0
   if (preferred < 2 &&
1694
0
       (colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
1695
0
   {
1696
0
      /* The end points must be reasonably close to any we already have.  The
1697
0
       * following allows an error of up to +/-.001
1698
0
       */
1699
0
      if (png_colorspace_endpoints_match(xy, &colorspace->end_points_xy,
1700
0
          100) == 0)
1701
0
      {
1702
0
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1703
0
         png_benign_error(png_ptr, "inconsistent chromaticities");
1704
0
         return 0; /* failed */
1705
0
      }
1706
0
1707
0
      /* Only overwrite with preferred values */
1708
0
      if (preferred == 0)
1709
0
         return 1; /* ok, but no change */
1710
0
   }
1711
0
1712
0
   colorspace->end_points_xy = *xy;
1713
0
   colorspace->end_points_XYZ = *XYZ;
1714
0
   colorspace->flags |= PNG_COLORSPACE_HAVE_ENDPOINTS;
1715
0
1716
0
   /* The end points are normally quoted to two decimal digits, so allow +/-0.01
1717
0
    * on this test.
1718
0
    */
1719
0
   if (png_colorspace_endpoints_match(xy, &sRGB_xy, 1000) != 0)
1720
0
      colorspace->flags |= PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB;
1721
0
1722
0
   else
1723
0
      colorspace->flags &= PNG_COLORSPACE_CANCEL(
1724
0
         PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1725
0
1726
0
   return 2; /* ok and changed */
1727
0
}
1728
1729
int /* PRIVATE */
1730
png_colorspace_set_chromaticities(png_const_structrp png_ptr,
1731
    png_colorspacerp colorspace, const png_xy *xy, int preferred)
1732
0
{
1733
0
   /* We must check the end points to ensure they are reasonable - in the past
1734
0
    * color management systems have crashed as a result of getting bogus
1735
0
    * colorant values, while this isn't the fault of libpng it is the
1736
0
    * responsibility of libpng because PNG carries the bomb and libpng is in a
1737
0
    * position to protect against it.
1738
0
    */
1739
0
   png_XYZ XYZ;
1740
0
1741
0
   switch (png_colorspace_check_xy(&XYZ, xy))
1742
0
   {
1743
0
      case 0: /* success */
1744
0
         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, xy, &XYZ,
1745
0
             preferred);
1746
0
1747
0
      case 1:
1748
0
         /* We can't invert the chromaticities so we can't produce value XYZ
1749
0
          * values.  Likely as not a color management system will fail too.
1750
0
          */
1751
0
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1752
0
         png_benign_error(png_ptr, "invalid chromaticities");
1753
0
         break;
1754
0
1755
0
      default:
1756
0
         /* libpng is broken; this should be a warning but if it happens we
1757
0
          * want error reports so for the moment it is an error.
1758
0
          */
1759
0
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1760
0
         png_error(png_ptr, "internal error checking chromaticities");
1761
0
   }
1762
0
1763
0
   return 0; /* failed */
1764
0
}
1765
1766
int /* PRIVATE */
1767
png_colorspace_set_endpoints(png_const_structrp png_ptr,
1768
    png_colorspacerp colorspace, const png_XYZ *XYZ_in, int preferred)
1769
0
{
1770
0
   png_XYZ XYZ = *XYZ_in;
1771
0
   png_xy xy;
1772
0
1773
0
   switch (png_colorspace_check_XYZ(&xy, &XYZ))
1774
0
   {
1775
0
      case 0:
1776
0
         return png_colorspace_set_xy_and_XYZ(png_ptr, colorspace, &xy, &XYZ,
1777
0
             preferred);
1778
0
1779
0
      case 1:
1780
0
         /* End points are invalid. */
1781
0
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1782
0
         png_benign_error(png_ptr, "invalid end points");
1783
0
         break;
1784
0
1785
0
      default:
1786
0
         colorspace->flags |= PNG_COLORSPACE_INVALID;
1787
0
         png_error(png_ptr, "internal error checking chromaticities");
1788
0
   }
1789
0
1790
0
   return 0; /* failed */
1791
0
}
1792
1793
#if defined(PNG_sRGB_SUPPORTED) || defined(PNG_iCCP_SUPPORTED)
1794
/* Error message generation */
1795
static char
1796
png_icc_tag_char(png_uint_32 byte)
1797
0
{
1798
0
   byte &= 0xff;
1799
0
   if (byte >= 32 && byte <= 126)
1800
0
      return (char)byte;
1801
0
   else
1802
0
      return '?';
1803
0
}
1804
1805
static void
1806
png_icc_tag_name(char *name, png_uint_32 tag)
1807
0
{
1808
0
   name[0] = '\'';
1809
0
   name[1] = png_icc_tag_char(tag >> 24);
1810
0
   name[2] = png_icc_tag_char(tag >> 16);
1811
0
   name[3] = png_icc_tag_char(tag >>  8);
1812
0
   name[4] = png_icc_tag_char(tag      );
1813
0
   name[5] = '\'';
1814
0
}
1815
1816
static int
1817
is_ICC_signature_char(png_alloc_size_t it)
1818
0
{
1819
0
   return it == 32 || (it >= 48 && it <= 57) || (it >= 65 && it <= 90) ||
1820
0
      (it >= 97 && it <= 122);
1821
0
}
1822
1823
static int
1824
is_ICC_signature(png_alloc_size_t it)
1825
0
{
1826
0
   return is_ICC_signature_char(it >> 24) /* checks all the top bits */ &&
1827
0
      is_ICC_signature_char((it >> 16) & 0xff) &&
1828
0
      is_ICC_signature_char((it >> 8) & 0xff) &&
1829
0
      is_ICC_signature_char(it & 0xff);
1830
0
}
1831
1832
static int
1833
png_icc_profile_error(png_const_structrp png_ptr, png_colorspacerp colorspace,
1834
    png_const_charp name, png_alloc_size_t value, png_const_charp reason)
1835
0
{
1836
0
   size_t pos;
1837
0
   char message[196]; /* see below for calculation */
1838
0
1839
0
   if (colorspace != NULL)
1840
0
      colorspace->flags |= PNG_COLORSPACE_INVALID;
1841
0
1842
0
   pos = png_safecat(message, (sizeof message), 0, "profile '"); /* 9 chars */
1843
0
   pos = png_safecat(message, pos+79, pos, name); /* Truncate to 79 chars */
1844
0
   pos = png_safecat(message, (sizeof message), pos, "': "); /* +2 = 90 */
1845
0
   if (is_ICC_signature(value) != 0)
1846
0
   {
1847
0
      /* So 'value' is at most 4 bytes and the following cast is safe */
1848
0
      png_icc_tag_name(message+pos, (png_uint_32)value);
1849
0
      pos += 6; /* total +8; less than the else clause */
1850
0
      message[pos++] = ':';
1851
0
      message[pos++] = ' ';
1852
0
   }
1853
0
#  ifdef PNG_WARNINGS_SUPPORTED
1854
0
   else
1855
0
      {
1856
0
         char number[PNG_NUMBER_BUFFER_SIZE]; /* +24 = 114*/
1857
0
1858
0
         pos = png_safecat(message, (sizeof message), pos,
1859
0
             png_format_number(number, number+(sizeof number),
1860
0
             PNG_NUMBER_FORMAT_x, value));
1861
0
         pos = png_safecat(message, (sizeof message), pos, "h: "); /*+2 = 116*/
1862
0
      }
1863
0
#  endif
1864
0
   /* The 'reason' is an arbitrary message, allow +79 maximum 195 */
1865
0
   pos = png_safecat(message, (sizeof message), pos, reason);
1866
0
   PNG_UNUSED(pos)
1867
0
1868
0
   /* This is recoverable, but make it unconditionally an app_error on write to
1869
0
    * avoid writing invalid ICC profiles into PNG files (i.e., we handle them
1870
0
    * on read, with a warning, but on write unless the app turns off
1871
0
    * application errors the PNG won't be written.)
1872
0
    */
1873
0
   png_chunk_report(png_ptr, message,
1874
0
       (colorspace != NULL) ? PNG_CHUNK_ERROR : PNG_CHUNK_WRITE_ERROR);
1875
0
1876
0
   return 0;
1877
0
}
1878
#endif /* sRGB || iCCP */
1879
1880
#ifdef PNG_sRGB_SUPPORTED
1881
int /* PRIVATE */
1882
png_colorspace_set_sRGB(png_const_structrp png_ptr, png_colorspacerp colorspace,
1883
    int intent)
1884
0
{
1885
0
   /* sRGB sets known gamma, end points and (from the chunk) intent. */
1886
0
   /* IMPORTANT: these are not necessarily the values found in an ICC profile
1887
0
    * because ICC profiles store values adapted to a D50 environment; it is
1888
0
    * expected that the ICC profile mediaWhitePointTag will be D50; see the
1889
0
    * checks and code elsewhere to understand this better.
1890
0
    *
1891
0
    * These XYZ values, which are accurate to 5dp, produce rgb to gray
1892
0
    * coefficients of (6968,23435,2366), which are reduced (because they add up
1893
0
    * to 32769 not 32768) to (6968,23434,2366).  These are the values that
1894
0
    * libpng has traditionally used (and are the best values given the 15bit
1895
0
    * algorithm used by the rgb to gray code.)
1896
0
    */
1897
0
   static const png_XYZ sRGB_XYZ = /* D65 XYZ (*not* the D50 adapted values!) */
1898
0
   {
1899
0
      /* color      X      Y      Z */
1900
0
      /* red   */ 41239, 21264,  1933,
1901
0
      /* green */ 35758, 71517, 11919,
1902
0
      /* blue  */ 18048,  7219, 95053
1903
0
   };
1904
0
1905
0
   /* Do nothing if the colorspace is already invalidated. */
1906
0
   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
1907
0
      return 0;
1908
0
1909
0
   /* Check the intent, then check for existing settings.  It is valid for the
1910
0
    * PNG file to have cHRM or gAMA chunks along with sRGB, but the values must
1911
0
    * be consistent with the correct values.  If, however, this function is
1912
0
    * called below because an iCCP chunk matches sRGB then it is quite
1913
0
    * conceivable that an older app recorded incorrect gAMA and cHRM because of
1914
0
    * an incorrect calculation based on the values in the profile - this does
1915
0
    * *not* invalidate the profile (though it still produces an error, which can
1916
0
    * be ignored.)
1917
0
    */
1918
0
   if (intent < 0 || intent >= PNG_sRGB_INTENT_LAST)
1919
0
      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1920
0
          (png_alloc_size_t)intent, "invalid sRGB rendering intent");
1921
0
1922
0
   if ((colorspace->flags & PNG_COLORSPACE_HAVE_INTENT) != 0 &&
1923
0
       colorspace->rendering_intent != intent)
1924
0
      return png_icc_profile_error(png_ptr, colorspace, "sRGB",
1925
0
         (png_alloc_size_t)intent, "inconsistent rendering intents");
1926
0
1927
0
   if ((colorspace->flags & PNG_COLORSPACE_FROM_sRGB) != 0)
1928
0
   {
1929
0
      png_benign_error(png_ptr, "duplicate sRGB information ignored");
1930
0
      return 0;
1931
0
   }
1932
0
1933
0
   /* If the standard sRGB cHRM chunk does not match the one from the PNG file
1934
0
    * warn but overwrite the value with the correct one.
1935
0
    */
1936
0
   if ((colorspace->flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0 &&
1937
0
       !png_colorspace_endpoints_match(&sRGB_xy, &colorspace->end_points_xy,
1938
0
       100))
1939
0
      png_chunk_report(png_ptr, "cHRM chunk does not match sRGB",
1940
0
         PNG_CHUNK_ERROR);
1941
0
1942
0
   /* This check is just done for the error reporting - the routine always
1943
0
    * returns true when the 'from' argument corresponds to sRGB (2).
1944
0
    */
1945
0
   (void)png_colorspace_check_gamma(png_ptr, colorspace, PNG_GAMMA_sRGB_INVERSE,
1946
0
       2/*from sRGB*/);
1947
0
1948
0
   /* intent: bugs in GCC force 'int' to be used as the parameter type. */
1949
0
   colorspace->rendering_intent = (png_uint_16)intent;
1950
0
   colorspace->flags |= PNG_COLORSPACE_HAVE_INTENT;
1951
0
1952
0
   /* endpoints */
1953
0
   colorspace->end_points_xy = sRGB_xy;
1954
0
   colorspace->end_points_XYZ = sRGB_XYZ;
1955
0
   colorspace->flags |=
1956
0
      (PNG_COLORSPACE_HAVE_ENDPOINTS|PNG_COLORSPACE_ENDPOINTS_MATCH_sRGB);
1957
0
1958
0
   /* gamma */
1959
0
   colorspace->gamma = PNG_GAMMA_sRGB_INVERSE;
1960
0
   colorspace->flags |= PNG_COLORSPACE_HAVE_GAMMA;
1961
0
1962
0
   /* Finally record that we have an sRGB profile */
1963
0
   colorspace->flags |=
1964
0
      (PNG_COLORSPACE_MATCHES_sRGB|PNG_COLORSPACE_FROM_sRGB);
1965
0
1966
0
   return 1; /* set */
1967
0
}
1968
#endif /* sRGB */
1969
1970
#ifdef PNG_iCCP_SUPPORTED
1971
/* Encoded value of D50 as an ICC XYZNumber.  From the ICC 2010 spec the value
1972
 * is XYZ(0.9642,1.0,0.8249), which scales to:
1973
 *
1974
 *    (63189.8112, 65536, 54060.6464)
1975
 */
1976
static const png_byte D50_nCIEXYZ[12] =
1977
   { 0x00, 0x00, 0xf6, 0xd6, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0xd3, 0x2d };
1978
1979
static int /* bool */
1980
icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1981
    png_const_charp name, png_uint_32 profile_length)
1982
0
{
1983
0
   if (profile_length < 132)
1984
0
      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
1985
0
          "too short");
1986
0
   return 1;
1987
0
}
1988
1989
#ifdef PNG_READ_iCCP_SUPPORTED
1990
int /* PRIVATE */
1991
png_icc_check_length(png_const_structrp png_ptr, png_colorspacerp colorspace,
1992
    png_const_charp name, png_uint_32 profile_length)
1993
0
{
1994
0
   if (!icc_check_length(png_ptr, colorspace, name, profile_length))
1995
0
      return 0;
1996
0
1997
0
   /* This needs to be here because the 'normal' check is in
1998
0
    * png_decompress_chunk, yet this happens after the attempt to
1999
0
    * png_malloc_base the required data.  We only need this on read; on write
2000
0
    * the caller supplies the profile buffer so libpng doesn't allocate it.  See
2001
0
    * the call to icc_check_length below (the write case).
2002
0
    */
2003
0
#  ifdef PNG_SET_USER_LIMITS_SUPPORTED
2004
0
      else if (png_ptr->user_chunk_malloc_max > 0 &&
2005
0
               png_ptr->user_chunk_malloc_max < profile_length)
2006
0
         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2007
0
             "exceeds application limits");
2008
#  elif PNG_USER_CHUNK_MALLOC_MAX > 0
2009
      else if (PNG_USER_CHUNK_MALLOC_MAX < profile_length)
2010
         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2011
             "exceeds libpng limits");
2012
#  else /* !SET_USER_LIMITS */
2013
      /* This will get compiled out on all 32-bit and better systems. */
2014
      else if (PNG_SIZE_MAX < profile_length)
2015
         return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2016
             "exceeds system limits");
2017
#  endif /* !SET_USER_LIMITS */
2018
2019
0
   return 1;
2020
0
}
2021
#endif /* READ_iCCP */
2022
2023
int /* PRIVATE */
2024
png_icc_check_header(png_const_structrp png_ptr, png_colorspacerp colorspace,
2025
    png_const_charp name, png_uint_32 profile_length,
2026
    png_const_bytep profile/* first 132 bytes only */, int color_type)
2027
0
{
2028
0
   png_uint_32 temp;
2029
0
2030
0
   /* Length check; this cannot be ignored in this code because profile_length
2031
0
    * is used later to check the tag table, so even if the profile seems over
2032
0
    * long profile_length from the caller must be correct.  The caller can fix
2033
0
    * this up on read or write by just passing in the profile header length.
2034
0
    */
2035
0
   temp = png_get_uint_32(profile);
2036
0
   if (temp != profile_length)
2037
0
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2038
0
          "length does not match profile");
2039
0
2040
0
   temp = (png_uint_32) (*(profile+8));
2041
0
   if (temp > 3 && (profile_length & 3))
2042
0
      return png_icc_profile_error(png_ptr, colorspace, name, profile_length,
2043
0
          "invalid length");
2044
0
2045
0
   temp = png_get_uint_32(profile+128); /* tag count: 12 bytes/tag */
2046
0
   if (temp > 357913930 || /* (2^32-4-132)/12: maximum possible tag count */
2047
0
      profile_length < 132+12*temp) /* truncated tag table */
2048
0
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2049
0
          "tag count too large");
2050
0
2051
0
   /* The 'intent' must be valid or we can't store it, ICC limits the intent to
2052
0
    * 16 bits.
2053
0
    */
2054
0
   temp = png_get_uint_32(profile+64);
2055
0
   if (temp >= 0xffff) /* The ICC limit */
2056
0
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2057
0
          "invalid rendering intent");
2058
0
2059
0
   /* This is just a warning because the profile may be valid in future
2060
0
    * versions.
2061
0
    */
2062
0
   if (temp >= PNG_sRGB_INTENT_LAST)
2063
0
      (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2064
0
          "intent outside defined range");
2065
0
2066
0
   /* At this point the tag table can't be checked because it hasn't necessarily
2067
0
    * been loaded; however, various header fields can be checked.  These checks
2068
0
    * are for values permitted by the PNG spec in an ICC profile; the PNG spec
2069
0
    * restricts the profiles that can be passed in an iCCP chunk (they must be
2070
0
    * appropriate to processing PNG data!)
2071
0
    */
2072
0
2073
0
   /* Data checks (could be skipped).  These checks must be independent of the
2074
0
    * version number; however, the version number doesn't accommodate changes in
2075
0
    * the header fields (just the known tags and the interpretation of the
2076
0
    * data.)
2077
0
    */
2078
0
   temp = png_get_uint_32(profile+36); /* signature 'ascp' */
2079
0
   if (temp != 0x61637370)
2080
0
      return png_icc_profile_error(png_ptr, colorspace, name, temp,
2081
0
          "invalid signature");
2082
0
2083
0
   /* Currently the PCS illuminant/adopted white point (the computational
2084
0
    * white point) are required to be D50,
2085
0
    * however the profile contains a record of the illuminant so perhaps ICC
2086
0
    * expects to be able to change this in the future (despite the rationale in
2087
0
    * the introduction for using a fixed PCS adopted white.)  Consequently the
2088
0
    * following is just a warning.
2089
0
    */
2090
0
   if (memcmp(profile+68, D50_nCIEXYZ, 12) != 0)
2091
0
      (void)png_icc_profile_error(png_ptr, NULL, name, 0/*no tag value*/,
2092
0
          "PCS illuminant is not D50");
2093
0
2094
0
   /* The PNG spec requires this:
2095
0
    * "If the iCCP chunk is present, the image samples conform to the colour
2096
0
    * space represented by the embedded ICC profile as defined by the
2097
0
    * International Color Consortium [ICC]. The colour space of the ICC profile
2098
0
    * shall be an RGB colour space for colour images (PNG colour types 2, 3, and
2099
0
    * 6), or a greyscale colour space for greyscale images (PNG colour types 0
2100
0
    * and 4)."
2101
0
    *
2102
0
    * This checking code ensures the embedded profile (on either read or write)
2103
0
    * conforms to the specification requirements.  Notice that an ICC 'gray'
2104
0
    * color-space profile contains the information to transform the monochrome
2105
0
    * data to XYZ or L*a*b (according to which PCS the profile uses) and this
2106
0
    * should be used in preference to the standard libpng K channel replication
2107
0
    * into R, G and B channels.
2108
0
    *
2109
0
    * Previously it was suggested that an RGB profile on grayscale data could be
2110
0
    * handled.  However it it is clear that using an RGB profile in this context
2111
0
    * must be an error - there is no specification of what it means.  Thus it is
2112
0
    * almost certainly more correct to ignore the profile.
2113
0
    */
2114
0
   temp = png_get_uint_32(profile+16); /* data colour space field */
2115
0
   switch (temp)
2116
0
   {
2117
0
      case 0x52474220: /* 'RGB ' */
2118
0
         if ((color_type & PNG_COLOR_MASK_COLOR) == 0)
2119
0
            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2120
0
                "RGB color space not permitted on grayscale PNG");
2121
0
         break;
2122
0
2123
0
      case 0x47524159: /* 'GRAY' */
2124
0
         if ((color_type & PNG_COLOR_MASK_COLOR) != 0)
2125
0
            return png_icc_profile_error(png_ptr, colorspace, name, temp,
2126
0
                "Gray color space not permitted on RGB PNG");
2127
0
         break;
2128
0
2129
0
      default:
2130
0
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2131
0
             "invalid ICC profile color space");
2132
0
   }
2133
0
2134
0
   /* It is up to the application to check that the profile class matches the
2135
0
    * application requirements; the spec provides no guidance, but it's pretty
2136
0
    * weird if the profile is not scanner ('scnr'), monitor ('mntr'), printer
2137
0
    * ('prtr') or 'spac' (for generic color spaces).  Issue a warning in these
2138
0
    * cases.  Issue an error for device link or abstract profiles - these don't
2139
0
    * contain the records necessary to transform the color-space to anything
2140
0
    * other than the target device (and not even that for an abstract profile).
2141
0
    * Profiles of these classes may not be embedded in images.
2142
0
    */
2143
0
   temp = png_get_uint_32(profile+12); /* profile/device class */
2144
0
   switch (temp)
2145
0
   {
2146
0
      case 0x73636e72: /* 'scnr' */
2147
0
      case 0x6d6e7472: /* 'mntr' */
2148
0
      case 0x70727472: /* 'prtr' */
2149
0
      case 0x73706163: /* 'spac' */
2150
0
         /* All supported */
2151
0
         break;
2152
0
2153
0
      case 0x61627374: /* 'abst' */
2154
0
         /* May not be embedded in an image */
2155
0
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2156
0
             "invalid embedded Abstract ICC profile");
2157
0
2158
0
      case 0x6c696e6b: /* 'link' */
2159
0
         /* DeviceLink profiles cannot be interpreted in a non-device specific
2160
0
          * fashion, if an app uses the AToB0Tag in the profile the results are
2161
0
          * undefined unless the result is sent to the intended device,
2162
0
          * therefore a DeviceLink profile should not be found embedded in a
2163
0
          * PNG.
2164
0
          */
2165
0
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2166
0
             "unexpected DeviceLink ICC profile class");
2167
0
2168
0
      case 0x6e6d636c: /* 'nmcl' */
2169
0
         /* A NamedColor profile is also device specific, however it doesn't
2170
0
          * contain an AToB0 tag that is open to misinterpretation.  Almost
2171
0
          * certainly it will fail the tests below.
2172
0
          */
2173
0
         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2174
0
             "unexpected NamedColor ICC profile class");
2175
0
         break;
2176
0
2177
0
      default:
2178
0
         /* To allow for future enhancements to the profile accept unrecognized
2179
0
          * profile classes with a warning, these then hit the test below on the
2180
0
          * tag content to ensure they are backward compatible with one of the
2181
0
          * understood profiles.
2182
0
          */
2183
0
         (void)png_icc_profile_error(png_ptr, NULL, name, temp,
2184
0
             "unrecognized ICC profile class");
2185
0
         break;
2186
0
   }
2187
0
2188
0
   /* For any profile other than a device link one the PCS must be encoded
2189
0
    * either in XYZ or Lab.
2190
0
    */
2191
0
   temp = png_get_uint_32(profile+20);
2192
0
   switch (temp)
2193
0
   {
2194
0
      case 0x58595a20: /* 'XYZ ' */
2195
0
      case 0x4c616220: /* 'Lab ' */
2196
0
         break;
2197
0
2198
0
      default:
2199
0
         return png_icc_profile_error(png_ptr, colorspace, name, temp,
2200
0
             "unexpected ICC PCS encoding");
2201
0
   }
2202
0
2203
0
   return 1;
2204
0
}
2205
2206
int /* PRIVATE */
2207
png_icc_check_tag_table(png_const_structrp png_ptr, png_colorspacerp colorspace,
2208
    png_const_charp name, png_uint_32 profile_length,
2209
    png_const_bytep profile /* header plus whole tag table */)
2210
0
{
2211
0
   png_uint_32 tag_count = png_get_uint_32(profile+128);
2212
0
   png_uint_32 itag;
2213
0
   png_const_bytep tag = profile+132; /* The first tag */
2214
0
2215
0
   /* First scan all the tags in the table and add bits to the icc_info value
2216
0
    * (temporarily in 'tags').
2217
0
    */
2218
0
   for (itag=0; itag < tag_count; ++itag, tag += 12)
2219
0
   {
2220
0
      png_uint_32 tag_id = png_get_uint_32(tag+0);
2221
0
      png_uint_32 tag_start = png_get_uint_32(tag+4); /* must be aligned */
2222
0
      png_uint_32 tag_length = png_get_uint_32(tag+8);/* not padded */
2223
0
2224
0
      /* The ICC specification does not exclude zero length tags, therefore the
2225
0
       * start might actually be anywhere if there is no data, but this would be
2226
0
       * a clear abuse of the intent of the standard so the start is checked for
2227
0
       * being in range.  All defined tag types have an 8 byte header - a 4 byte
2228
0
       * type signature then 0.
2229
0
       */
2230
0
2231
0
      /* This is a hard error; potentially it can cause read outside the
2232
0
       * profile.
2233
0
       */
2234
0
      if (tag_start > profile_length || tag_length > profile_length - tag_start)
2235
0
         return png_icc_profile_error(png_ptr, colorspace, name, tag_id,
2236
0
             "ICC profile tag outside profile");
2237
0
2238
0
      if ((tag_start & 3) != 0)
2239
0
      {
2240
0
         /* CNHP730S.icc shipped with Microsoft Windows 64 violates this; it is
2241
0
          * only a warning here because libpng does not care about the
2242
0
          * alignment.
2243
0
          */
2244
0
         (void)png_icc_profile_error(png_ptr, NULL, name, tag_id,
2245
0
             "ICC profile tag start not a multiple of 4");
2246
0
      }
2247
0
   }
2248
0
2249
0
   return 1; /* success, maybe with warnings */
2250
0
}
2251
2252
#ifdef PNG_sRGB_SUPPORTED
2253
#if PNG_sRGB_PROFILE_CHECKS >= 0
2254
/* Information about the known ICC sRGB profiles */
2255
static const struct
2256
{
2257
   png_uint_32 adler, crc, length;
2258
   png_uint_32 md5[4];
2259
   png_byte    have_md5;
2260
   png_byte    is_broken;
2261
   png_uint_16 intent;
2262
2263
#  define PNG_MD5(a,b,c,d) { a, b, c, d }, (a!=0)||(b!=0)||(c!=0)||(d!=0)
2264
#  define PNG_ICC_CHECKSUM(adler, crc, md5, intent, broke, date, length, fname)\
2265
      { adler, crc, length, md5, broke, intent },
2266
2267
} png_sRGB_checks[] =
2268
{
2269
   /* This data comes from contrib/tools/checksum-icc run on downloads of
2270
    * all four ICC sRGB profiles from www.color.org.
2271
    */
2272
   /* adler32, crc32, MD5[4], intent, date, length, file-name */
2273
   PNG_ICC_CHECKSUM(0x0a3fd9f6, 0x3b8772b9,
2274
       PNG_MD5(0x29f83dde, 0xaff255ae, 0x7842fae4, 0xca83390d), 0, 0,
2275
       "2009/03/27 21:36:31", 3048, "sRGB_IEC61966-2-1_black_scaled.icc")
2276
2277
   /* ICC sRGB v2 perceptual no black-compensation: */
2278
   PNG_ICC_CHECKSUM(0x4909e5e1, 0x427ebb21,
2279
       PNG_MD5(0xc95bd637, 0xe95d8a3b, 0x0df38f99, 0xc1320389), 1, 0,
2280
       "2009/03/27 21:37:45", 3052, "sRGB_IEC61966-2-1_no_black_scaling.icc")
2281
2282
   PNG_ICC_CHECKSUM(0xfd2144a1, 0x306fd8ae,
2283
       PNG_MD5(0xfc663378, 0x37e2886b, 0xfd72e983, 0x8228f1b8), 0, 0,
2284
       "2009/08/10 17:28:01", 60988, "sRGB_v4_ICC_preference_displayclass.icc")
2285
2286
   /* ICC sRGB v4 perceptual */
2287
   PNG_ICC_CHECKSUM(0x209c35d2, 0xbbef7812,
2288
       PNG_MD5(0x34562abf, 0x994ccd06, 0x6d2c5721, 0xd0d68c5d), 0, 0,
2289
       "2007/07/25 00:05:37", 60960, "sRGB_v4_ICC_preference.icc")
2290
2291
   /* The following profiles have no known MD5 checksum. If there is a match
2292
    * on the (empty) MD5 the other fields are used to attempt a match and
2293
    * a warning is produced.  The first two of these profiles have a 'cprt' tag
2294
    * which suggests that they were also made by Hewlett Packard.
2295
    */
2296
   PNG_ICC_CHECKSUM(0xa054d762, 0x5d5129ce,
2297
       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 0,
2298
       "2004/07/21 18:57:42", 3024, "sRGB_IEC61966-2-1_noBPC.icc")
2299
2300
   /* This is a 'mntr' (display) profile with a mediaWhitePointTag that does not
2301
    * match the D50 PCS illuminant in the header (it is in fact the D65 values,
2302
    * so the white point is recorded as the un-adapted value.)  The profiles
2303
    * below only differ in one byte - the intent - and are basically the same as
2304
    * the previous profile except for the mediaWhitePointTag error and a missing
2305
    * chromaticAdaptationTag.
2306
    */
2307
   PNG_ICC_CHECKSUM(0xf784f3fb, 0x182ea552,
2308
       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 0, 1/*broken*/,
2309
       "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 perceptual")
2310
2311
   PNG_ICC_CHECKSUM(0x0398f3fc, 0xf29e526d,
2312
       PNG_MD5(0x00000000, 0x00000000, 0x00000000, 0x00000000), 1, 1/*broken*/,
2313
       "1998/02/09 06:49:00", 3144, "HP-Microsoft sRGB v2 media-relative")
2314
};
2315
2316
static int
2317
png_compare_ICC_profile_with_sRGB(png_const_structrp png_ptr,
2318
    png_const_bytep profile, uLong adler)
2319
{
2320
   /* The quick check is to verify just the MD5 signature and trust the
2321
    * rest of the data.  Because the profile has already been verified for
2322
    * correctness this is safe.  png_colorspace_set_sRGB will check the 'intent'
2323
    * field too, so if the profile has been edited with an intent not defined
2324
    * by sRGB (but maybe defined by a later ICC specification) the read of
2325
    * the profile will fail at that point.
2326
    */
2327
2328
   png_uint_32 length = 0;
2329
   png_uint_32 intent = 0x10000; /* invalid */
2330
#if PNG_sRGB_PROFILE_CHECKS > 1
2331
   uLong crc = 0; /* the value for 0 length data */
2332
#endif
2333
   unsigned int i;
2334
2335
#ifdef PNG_SET_OPTION_SUPPORTED
2336
   /* First see if PNG_SKIP_sRGB_CHECK_PROFILE has been set to "on" */
2337
   if (((png_ptr->options >> PNG_SKIP_sRGB_CHECK_PROFILE) & 3) ==
2338
               PNG_OPTION_ON)
2339
      return 0;
2340
#endif
2341
2342
   for (i=0; i < (sizeof png_sRGB_checks) / (sizeof png_sRGB_checks[0]); ++i)
2343
   {
2344
      if (png_get_uint_32(profile+84) == png_sRGB_checks[i].md5[0] &&
2345
         png_get_uint_32(profile+88) == png_sRGB_checks[i].md5[1] &&
2346
         png_get_uint_32(profile+92) == png_sRGB_checks[i].md5[2] &&
2347
         png_get_uint_32(profile+96) == png_sRGB_checks[i].md5[3])
2348
      {
2349
         /* This may be one of the old HP profiles without an MD5, in that
2350
          * case we can only use the length and Adler32 (note that these
2351
          * are not used by default if there is an MD5!)
2352
          */
2353
#        if PNG_sRGB_PROFILE_CHECKS == 0
2354
            if (png_sRGB_checks[i].have_md5 != 0)
2355
               return 1+png_sRGB_checks[i].is_broken;
2356
#        endif
2357
2358
         /* Profile is unsigned or more checks have been configured in. */
2359
         if (length == 0)
2360
         {
2361
            length = png_get_uint_32(profile);
2362
            intent = png_get_uint_32(profile+64);
2363
         }
2364
2365
         /* Length *and* intent must match */
2366
         if (length == (png_uint_32) png_sRGB_checks[i].length &&
2367
            intent == (png_uint_32) png_sRGB_checks[i].intent)
2368
         {
2369
            /* Now calculate the adler32 if not done already. */
2370
            if (adler == 0)
2371
            {
2372
               adler = adler32(0, NULL, 0);
2373
               adler = adler32(adler, profile, length);
2374
            }
2375
2376
            if (adler == png_sRGB_checks[i].adler)
2377
            {
2378
               /* These basic checks suggest that the data has not been
2379
                * modified, but if the check level is more than 1 perform
2380
                * our own crc32 checksum on the data.
2381
                */
2382
#              if PNG_sRGB_PROFILE_CHECKS > 1
2383
                  if (crc == 0)
2384
                  {
2385
                     crc = crc32(0, NULL, 0);
2386
                     crc = crc32(crc, profile, length);
2387
                  }
2388
2389
                  /* So this check must pass for the 'return' below to happen.
2390
                   */
2391
                  if (crc == png_sRGB_checks[i].crc)
2392
#              endif
2393
               {
2394
                  if (png_sRGB_checks[i].is_broken != 0)
2395
                  {
2396
                     /* These profiles are known to have bad data that may cause
2397
                      * problems if they are used, therefore attempt to
2398
                      * discourage their use, skip the 'have_md5' warning below,
2399
                      * which is made irrelevant by this error.
2400
                      */
2401
                     png_chunk_report(png_ptr, "known incorrect sRGB profile",
2402
                         PNG_CHUNK_ERROR);
2403
                  }
2404
2405
                  /* Warn that this being done; this isn't even an error since
2406
                   * the profile is perfectly valid, but it would be nice if
2407
                   * people used the up-to-date ones.
2408
                   */
2409
                  else if (png_sRGB_checks[i].have_md5 == 0)
2410
                  {
2411
                     png_chunk_report(png_ptr,
2412
                         "out-of-date sRGB profile with no signature",
2413
                         PNG_CHUNK_WARNING);
2414
                  }
2415
2416
                  return 1+png_sRGB_checks[i].is_broken;
2417
               }
2418
            }
2419
2420
# if PNG_sRGB_PROFILE_CHECKS > 0
2421
         /* The signature matched, but the profile had been changed in some
2422
          * way.  This probably indicates a data error or uninformed hacking.
2423
          * Fall through to "no match".
2424
          */
2425
         png_chunk_report(png_ptr,
2426
             "Not recognizing known sRGB profile that has been edited",
2427
             PNG_CHUNK_WARNING);
2428
         break;
2429
# endif
2430
         }
2431
      }
2432
   }
2433
2434
   return 0; /* no match */
2435
}
2436
2437
void /* PRIVATE */
2438
png_icc_set_sRGB(png_const_structrp png_ptr,
2439
    png_colorspacerp colorspace, png_const_bytep profile, uLong adler)
2440
{
2441
   /* Is this profile one of the known ICC sRGB profiles?  If it is, just set
2442
    * the sRGB information.
2443
    */
2444
   if (png_compare_ICC_profile_with_sRGB(png_ptr, profile, adler) != 0)
2445
      (void)png_colorspace_set_sRGB(png_ptr, colorspace,
2446
         (int)/*already checked*/png_get_uint_32(profile+64));
2447
}
2448
#endif /* PNG_sRGB_PROFILE_CHECKS >= 0 */
2449
#endif /* sRGB */
2450
2451
int /* PRIVATE */
2452
png_colorspace_set_ICC(png_const_structrp png_ptr, png_colorspacerp colorspace,
2453
    png_const_charp name, png_uint_32 profile_length, png_const_bytep profile,
2454
    int color_type)
2455
0
{
2456
0
   if ((colorspace->flags & PNG_COLORSPACE_INVALID) != 0)
2457
0
      return 0;
2458
0
2459
0
   if (icc_check_length(png_ptr, colorspace, name, profile_length) != 0 &&
2460
0
       png_icc_check_header(png_ptr, colorspace, name, profile_length, profile,
2461
0
           color_type) != 0 &&
2462
0
       png_icc_check_tag_table(png_ptr, colorspace, name, profile_length,
2463
0
           profile) != 0)
2464
0
   {
2465
#     if defined(PNG_sRGB_SUPPORTED) && PNG_sRGB_PROFILE_CHECKS >= 0
2466
         /* If no sRGB support, don't try storing sRGB information */
2467
         png_icc_set_sRGB(png_ptr, colorspace, profile, 0);
2468
#     endif
2469
      return 1;
2470
0
   }
2471
0
2472
0
   /* Failure case */
2473
0
   return 0;
2474
0
}
2475
#endif /* iCCP */
2476
2477
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED
2478
void /* PRIVATE */
2479
png_colorspace_set_rgb_coefficients(png_structrp png_ptr)
2480
{
2481
   /* Set the rgb_to_gray coefficients from the colorspace. */
2482
   if (png_ptr->rgb_to_gray_coefficients_set == 0 &&
2483
      (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_ENDPOINTS) != 0)
2484
   {
2485
      /* png_set_background has not been called, get the coefficients from the Y
2486
       * values of the colorspace colorants.
2487
       */
2488
      png_fixed_point r = png_ptr->colorspace.end_points_XYZ.red_Y;
2489
      png_fixed_point g = png_ptr->colorspace.end_points_XYZ.green_Y;
2490
      png_fixed_point b = png_ptr->colorspace.end_points_XYZ.blue_Y;
2491
      png_fixed_point total = r+g+b;
2492
2493
      if (total > 0 &&
2494
         r >= 0 && png_muldiv(&r, r, 32768, total) && r >= 0 && r <= 32768 &&
2495
         g >= 0 && png_muldiv(&g, g, 32768, total) && g >= 0 && g <= 32768 &&
2496
         b >= 0 && png_muldiv(&b, b, 32768, total) && b >= 0 && b <= 32768 &&
2497
         r+g+b <= 32769)
2498
      {
2499
         /* We allow 0 coefficients here.  r+g+b may be 32769 if two or
2500
          * all of the coefficients were rounded up.  Handle this by
2501
          * reducing the *largest* coefficient by 1; this matches the
2502
          * approach used for the default coefficients in pngrtran.c
2503
          */
2504
         int add = 0;
2505
2506
         if (r+g+b > 32768)
2507
            add = -1;
2508
         else if (r+g+b < 32768)
2509
            add = 1;
2510
2511
         if (add != 0)
2512
         {
2513
            if (g >= r && g >= b)
2514
               g += add;
2515
            else if (r >= g && r >= b)
2516
               r += add;
2517
            else
2518
               b += add;
2519
         }
2520
2521
         /* Check for an internal error. */
2522
         if (r+g+b != 32768)
2523
            png_error(png_ptr,
2524
                "internal error handling cHRM coefficients");
2525
2526
         else
2527
         {
2528
            png_ptr->rgb_to_gray_red_coeff   = (png_uint_16)r;
2529
            png_ptr->rgb_to_gray_green_coeff = (png_uint_16)g;
2530
         }
2531
      }
2532
2533
      /* This is a png_error at present even though it could be ignored -
2534
       * it should never happen, but it is important that if it does, the
2535
       * bug is fixed.
2536
       */
2537
      else
2538
         png_error(png_ptr, "internal error handling cHRM->XYZ");
2539
   }
2540
}
2541
#endif /* READ_RGB_TO_GRAY */
2542
2543
#endif /* COLORSPACE */
2544
2545
#ifdef __GNUC__
2546
/* This exists solely to work round a warning from GNU C. */
2547
static int /* PRIVATE */
2548
png_gt(size_t a, size_t b)
2549
0
{
2550
0
   return a > b;
2551
0
}
2552
#else
2553
#   define png_gt(a,b) ((a) > (b))
2554
#endif
2555
2556
void /* PRIVATE */
2557
png_check_IHDR(png_const_structrp png_ptr,
2558
    png_uint_32 width, png_uint_32 height, int bit_depth,
2559
    int color_type, int interlace_type, int compression_type,
2560
    int filter_type)
2561
0
{
2562
0
   int error = 0;
2563
0
2564
0
   /* Check for width and height valid values */
2565
0
   if (width == 0)
2566
0
   {
2567
0
      png_warning(png_ptr, "Image width is zero in IHDR");
2568
0
      error = 1;
2569
0
   }
2570
0
2571
0
   if (width > PNG_UINT_31_MAX)
2572
0
   {
2573
0
      png_warning(png_ptr, "Invalid image width in IHDR");
2574
0
      error = 1;
2575
0
   }
2576
0
2577
0
   if (png_gt(((width + 7) & (~7U)),
2578
0
       ((PNG_SIZE_MAX
2579
0
           - 48        /* big_row_buf hack */
2580
0
           - 1)        /* filter byte */
2581
0
           / 8)        /* 8-byte RGBA pixels */
2582
0
           - 1))       /* extra max_pixel_depth pad */
2583
0
   {
2584
0
      /* The size of the row must be within the limits of this architecture.
2585
0
       * Because the read code can perform arbitrary transformations the
2586
0
       * maximum size is checked here.  Because the code in png_read_start_row
2587
0
       * adds extra space "for safety's sake" in several places a conservative
2588
0
       * limit is used here.
2589
0
       *
2590
0
       * NOTE: it would be far better to check the size that is actually used,
2591
0
       * but the effect in the real world is minor and the changes are more
2592
0
       * extensive, therefore much more dangerous and much more difficult to
2593
0
       * write in a way that avoids compiler warnings.
2594
0
       */
2595
0
      png_warning(png_ptr, "Image width is too large for this architecture");
2596
0
      error = 1;
2597
0
   }
2598
0
2599
0
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2600
0
   if (width > png_ptr->user_width_max)
2601
#else
2602
   if (width > PNG_USER_WIDTH_MAX)
2603
#endif
2604
0
   {
2605
0
      png_warning(png_ptr, "Image width exceeds user limit in IHDR");
2606
0
      error = 1;
2607
0
   }
2608
0
2609
0
   if (height == 0)
2610
0
   {
2611
0
      png_warning(png_ptr, "Image height is zero in IHDR");
2612
0
      error = 1;
2613
0
   }
2614
0
2615
0
   if (height > PNG_UINT_31_MAX)
2616
0
   {
2617
0
      png_warning(png_ptr, "Invalid image height in IHDR");
2618
0
      error = 1;
2619
0
   }
2620
0
2621
0
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
2622
0
   if (height > png_ptr->user_height_max)
2623
#else
2624
   if (height > PNG_USER_HEIGHT_MAX)
2625
#endif
2626
0
   {
2627
0
      png_warning(png_ptr, "Image height exceeds user limit in IHDR");
2628
0
      error = 1;
2629
0
   }
2630
0
2631
0
   /* Check other values */
2632
0
   if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
2633
0
       bit_depth != 8 && bit_depth != 16)
2634
0
   {
2635
0
      png_warning(png_ptr, "Invalid bit depth in IHDR");
2636
0
      error = 1;
2637
0
   }
2638
0
2639
0
   if (color_type < 0 || color_type == 1 ||
2640
0
       color_type == 5 || color_type > 6)
2641
0
   {
2642
0
      png_warning(png_ptr, "Invalid color type in IHDR");
2643
0
      error = 1;
2644
0
   }
2645
0
2646
0
   if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
2647
0
       ((color_type == PNG_COLOR_TYPE_RGB ||
2648
0
         color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
2649
0
         color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
2650
0
   {
2651
0
      png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
2652
0
      error = 1;
2653
0
   }
2654
0
2655
0
   if (interlace_type >= PNG_INTERLACE_LAST)
2656
0
   {
2657
0
      png_warning(png_ptr, "Unknown interlace method in IHDR");
2658
0
      error = 1;
2659
0
   }
2660
0
2661
0
   if (compression_type != PNG_COMPRESSION_TYPE_BASE)
2662
0
   {
2663
0
      png_warning(png_ptr, "Unknown compression method in IHDR");
2664
0
      error = 1;
2665
0
   }
2666
0
2667
#ifdef PNG_MNG_FEATURES_SUPPORTED
2668
   /* Accept filter_method 64 (intrapixel differencing) only if
2669
    * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
2670
    * 2. Libpng did not read a PNG signature (this filter_method is only
2671
    *    used in PNG datastreams that are embedded in MNG datastreams) and
2672
    * 3. The application called png_permit_mng_features with a mask that
2673
    *    included PNG_FLAG_MNG_FILTER_64 and
2674
    * 4. The filter_method is 64 and
2675
    * 5. The color_type is RGB or RGBA
2676
    */
2677
   if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0 &&
2678
       png_ptr->mng_features_permitted != 0)
2679
      png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
2680
2681
   if (filter_type != PNG_FILTER_TYPE_BASE)
2682
   {
2683
      if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) != 0 &&
2684
          (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
2685
          ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
2686
          (color_type == PNG_COLOR_TYPE_RGB ||
2687
          color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
2688
      {
2689
         png_warning(png_ptr, "Unknown filter method in IHDR");
2690
         error = 1;
2691
      }
2692
2693
      if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) != 0)
2694
      {
2695
         png_warning(png_ptr, "Invalid filter method in IHDR");
2696
         error = 1;
2697
      }
2698
   }
2699
2700
#else
2701
0
   if (filter_type != PNG_FILTER_TYPE_BASE)
2702
0
   {
2703
0
      png_warning(png_ptr, "Unknown filter method in IHDR");
2704
0
      error = 1;
2705
0
   }
2706
0
#endif
2707
0
2708
0
   if (error == 1)
2709
0
      png_error(png_ptr, "Invalid IHDR data");
2710
0
}
2711
2712
#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
2713
/* ASCII to fp functions */
2714
/* Check an ASCII formatted floating point value, see the more detailed
2715
 * comments in pngpriv.h
2716
 */
2717
/* The following is used internally to preserve the sticky flags */
2718
#define png_fp_add(state, flags) ((state) |= (flags))
2719
#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
2720
2721
int /* PRIVATE */
2722
png_check_fp_number(png_const_charp string, size_t size, int *statep,
2723
    png_size_tp whereami)
2724
{
2725
   int state = *statep;
2726
   size_t i = *whereami;
2727
2728
   while (i < size)
2729
   {
2730
      int type;
2731
      /* First find the type of the next character */
2732
      switch (string[i])
2733
      {
2734
      case 43:  type = PNG_FP_SAW_SIGN;                   break;
2735
      case 45:  type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
2736
      case 46:  type = PNG_FP_SAW_DOT;                    break;
2737
      case 48:  type = PNG_FP_SAW_DIGIT;                  break;
2738
      case 49: case 50: case 51: case 52:
2739
      case 53: case 54: case 55: case 56:
2740
      case 57:  type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
2741
      case 69:
2742
      case 101: type = PNG_FP_SAW_E;                      break;
2743
      default:  goto PNG_FP_End;
2744
      }
2745
2746
      /* Now deal with this type according to the current
2747
       * state, the type is arranged to not overlap the
2748
       * bits of the PNG_FP_STATE.
2749
       */
2750
      switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
2751
      {
2752
      case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
2753
         if ((state & PNG_FP_SAW_ANY) != 0)
2754
            goto PNG_FP_End; /* not a part of the number */
2755
2756
         png_fp_add(state, type);
2757
         break;
2758
2759
      case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
2760
         /* Ok as trailer, ok as lead of fraction. */
2761
         if ((state & PNG_FP_SAW_DOT) != 0) /* two dots */
2762
            goto PNG_FP_End;
2763
2764
         else if ((state & PNG_FP_SAW_DIGIT) != 0) /* trailing dot? */
2765
            png_fp_add(state, type);
2766
2767
         else
2768
            png_fp_set(state, PNG_FP_FRACTION | type);
2769
2770
         break;
2771
2772
      case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
2773
         if ((state & PNG_FP_SAW_DOT) != 0) /* delayed fraction */
2774
            png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
2775
2776
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2777
2778
         break;
2779
2780
      case PNG_FP_INTEGER + PNG_FP_SAW_E:
2781
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2782
            goto PNG_FP_End;
2783
2784
         png_fp_set(state, PNG_FP_EXPONENT);
2785
2786
         break;
2787
2788
   /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
2789
         goto PNG_FP_End; ** no sign in fraction */
2790
2791
   /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
2792
         goto PNG_FP_End; ** Because SAW_DOT is always set */
2793
2794
      case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
2795
         png_fp_add(state, type | PNG_FP_WAS_VALID);
2796
         break;
2797
2798
      case PNG_FP_FRACTION + PNG_FP_SAW_E:
2799
         /* This is correct because the trailing '.' on an
2800
          * integer is handled above - so we can only get here
2801
          * with the sequence ".E" (with no preceding digits).
2802
          */
2803
         if ((state & PNG_FP_SAW_DIGIT) == 0)
2804
            goto PNG_FP_End;
2805
2806
         png_fp_set(state, PNG_FP_EXPONENT);
2807
2808
         break;
2809
2810
      case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
2811
         if ((state & PNG_FP_SAW_ANY) != 0)
2812
            goto PNG_FP_End; /* not a part of the number */
2813
2814
         png_fp_add(state, PNG_FP_SAW_SIGN);
2815
2816
         break;
2817
2818
   /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
2819
         goto PNG_FP_End; */
2820
2821
      case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
2822
         png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
2823
2824
         break;
2825
2826
   /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
2827
         goto PNG_FP_End; */
2828
2829
      default: goto PNG_FP_End; /* I.e. break 2 */
2830
      }
2831
2832
      /* The character seems ok, continue. */
2833
      ++i;
2834
   }
2835
2836
PNG_FP_End:
2837
   /* Here at the end, update the state and return the correct
2838
    * return code.
2839
    */
2840
   *statep = state;
2841
   *whereami = i;
2842
2843
   return (state & PNG_FP_SAW_DIGIT) != 0;
2844
}
2845
2846
2847
/* The same but for a complete string. */
2848
int
2849
png_check_fp_string(png_const_charp string, size_t size)
2850
{
2851
   int        state=0;
2852
   size_t char_index=0;
2853
2854
   if (png_check_fp_number(string, size, &state, &char_index) != 0 &&
2855
      (char_index == size || string[char_index] == 0))
2856
      return state /* must be non-zero - see above */;
2857
2858
   return 0; /* i.e. fail */
2859
}
2860
#endif /* pCAL || sCAL */
2861
2862
#ifdef PNG_sCAL_SUPPORTED
2863
#  ifdef PNG_FLOATING_POINT_SUPPORTED
2864
/* Utility used below - a simple accurate power of ten from an integral
2865
 * exponent.
2866
 */
2867
static double
2868
png_pow10(int power)
2869
{
2870
   int recip = 0;
2871
   double d = 1;
2872
2873
   /* Handle negative exponent with a reciprocal at the end because
2874
    * 10 is exact whereas .1 is inexact in base 2
2875
    */
2876
   if (power < 0)
2877
   {
2878
      if (power < DBL_MIN_10_EXP) return 0;
2879
      recip = 1; power = -power;
2880
   }
2881
2882
   if (power > 0)
2883
   {
2884
      /* Decompose power bitwise. */
2885
      double mult = 10;
2886
      do
2887
      {
2888
         if (power & 1) d *= mult;
2889
         mult *= mult;
2890
         power >>= 1;
2891
      }
2892
      while (power > 0);
2893
2894
      if (recip != 0) d = 1/d;
2895
   }
2896
   /* else power is 0 and d is 1 */
2897
2898
   return d;
2899
}
2900
2901
/* Function to format a floating point value in ASCII with a given
2902
 * precision.
2903
 */
2904
#if GCC_STRICT_OVERFLOW
2905
#pragma GCC diagnostic push
2906
/* The problem arises below with exp_b10, which can never overflow because it
2907
 * comes, originally, from frexp and is therefore limited to a range which is
2908
 * typically +/-710 (log2(DBL_MAX)/log2(DBL_MIN)).
2909
 */
2910
#pragma GCC diagnostic warning "-Wstrict-overflow=2"
2911
#endif /* GCC_STRICT_OVERFLOW */
2912
void /* PRIVATE */
2913
png_ascii_from_fp(png_const_structrp png_ptr, png_charp ascii, size_t size,
2914
    double fp, unsigned int precision)
2915
{
2916
   /* We use standard functions from math.h, but not printf because
2917
    * that would require stdio.  The caller must supply a buffer of
2918
    * sufficient size or we will png_error.  The tests on size and
2919
    * the space in ascii[] consumed are indicated below.
2920
    */
2921
   if (precision < 1)
2922
      precision = DBL_DIG;
2923
2924
   /* Enforce the limit of the implementation precision too. */
2925
   if (precision > DBL_DIG+1)
2926
      precision = DBL_DIG+1;
2927
2928
   /* Basic sanity checks */
2929
   if (size >= precision+5) /* See the requirements below. */
2930
   {
2931
      if (fp < 0)
2932
      {
2933
         fp = -fp;
2934
         *ascii++ = 45; /* '-'  PLUS 1 TOTAL 1 */
2935
         --size;
2936
      }
2937
2938
      if (fp >= DBL_MIN && fp <= DBL_MAX)
2939
      {
2940
         int exp_b10;   /* A base 10 exponent */
2941
         double base;   /* 10^exp_b10 */
2942
2943
         /* First extract a base 10 exponent of the number,
2944
          * the calculation below rounds down when converting
2945
          * from base 2 to base 10 (multiply by log10(2) -
2946
          * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
2947
          * be increased.  Note that the arithmetic shift
2948
          * performs a floor() unlike C arithmetic - using a
2949
          * C multiply would break the following for negative
2950
          * exponents.
2951
          */
2952
         (void)frexp(fp, &exp_b10); /* exponent to base 2 */
2953
2954
         exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
2955
2956
         /* Avoid underflow here. */
2957
         base = png_pow10(exp_b10); /* May underflow */
2958
2959
         while (base < DBL_MIN || base < fp)
2960
         {
2961
            /* And this may overflow. */
2962
            double test = png_pow10(exp_b10+1);
2963
2964
            if (test <= DBL_MAX)
2965
            {
2966
               ++exp_b10; base = test;
2967
            }
2968
2969
            else
2970
               break;
2971
         }
2972
2973
         /* Normalize fp and correct exp_b10, after this fp is in the
2974
          * range [.1,1) and exp_b10 is both the exponent and the digit
2975
          * *before* which the decimal point should be inserted
2976
          * (starting with 0 for the first digit).  Note that this
2977
          * works even if 10^exp_b10 is out of range because of the
2978
          * test on DBL_MAX above.
2979
          */
2980
         fp /= base;
2981
         while (fp >= 1)
2982
         {
2983
            fp /= 10; ++exp_b10;
2984
         }
2985
2986
         /* Because of the code above fp may, at this point, be
2987
          * less than .1, this is ok because the code below can
2988
          * handle the leading zeros this generates, so no attempt
2989
          * is made to correct that here.
2990
          */
2991
2992
         {
2993
            unsigned int czero, clead, cdigits;
2994
            char exponent[10];
2995
2996
            /* Allow up to two leading zeros - this will not lengthen
2997
             * the number compared to using E-n.
2998
             */
2999
            if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
3000
            {
3001
               czero = 0U-exp_b10; /* PLUS 2 digits: TOTAL 3 */
3002
               exp_b10 = 0;      /* Dot added below before first output. */
3003
            }
3004
            else
3005
               czero = 0;    /* No zeros to add */
3006
3007
            /* Generate the digit list, stripping trailing zeros and
3008
             * inserting a '.' before a digit if the exponent is 0.
3009
             */
3010
            clead = czero; /* Count of leading zeros */
3011
            cdigits = 0;   /* Count of digits in list. */
3012
3013
            do
3014
            {
3015
               double d;
3016
3017
               fp *= 10;
3018
               /* Use modf here, not floor and subtract, so that
3019
                * the separation is done in one step.  At the end
3020
                * of the loop don't break the number into parts so
3021
                * that the final digit is rounded.
3022
                */
3023
               if (cdigits+czero+1 < precision+clead)
3024
                  fp = modf(fp, &d);
3025
3026
               else
3027
               {
3028
                  d = floor(fp + .5);
3029
3030
                  if (d > 9)
3031
                  {
3032
                     /* Rounding up to 10, handle that here. */
3033
                     if (czero > 0)
3034
                     {
3035
                        --czero; d = 1;
3036
                        if (cdigits == 0) --clead;
3037
                     }
3038
                     else
3039
                     {
3040
                        while (cdigits > 0 && d > 9)
3041
                        {
3042
                           int ch = *--ascii;
3043
3044
                           if (exp_b10 != (-1))
3045
                              ++exp_b10;
3046
3047
                           else if (ch == 46)
3048
                           {
3049
                              ch = *--ascii; ++size;
3050
                              /* Advance exp_b10 to '1', so that the
3051
                               * decimal point happens after the
3052
                               * previous digit.
3053
                               */
3054
                              exp_b10 = 1;
3055
                           }
3056
3057
                           --cdigits;
3058
                           d = ch - 47;  /* I.e. 1+(ch-48) */
3059
                        }
3060
3061
                        /* Did we reach the beginning? If so adjust the
3062
                         * exponent but take into account the leading
3063
                         * decimal point.
3064
                         */
3065
                        if (d > 9)  /* cdigits == 0 */
3066
                        {
3067
                           if (exp_b10 == (-1))
3068
                           {
3069
                              /* Leading decimal point (plus zeros?), if
3070
                               * we lose the decimal point here it must
3071
                               * be reentered below.
3072
                               */
3073
                              int ch = *--ascii;
3074
3075
                              if (ch == 46)
3076
                              {
3077
                                 ++size; exp_b10 = 1;
3078
                              }
3079
3080
                              /* Else lost a leading zero, so 'exp_b10' is
3081
                               * still ok at (-1)
3082
                               */
3083
                           }
3084
                           else
3085
                              ++exp_b10;
3086
3087
                           /* In all cases we output a '1' */
3088
                           d = 1;
3089
                        }
3090
                     }
3091
                  }
3092
                  fp = 0; /* Guarantees termination below. */
3093
               }
3094
3095
               if (d == 0)
3096
               {
3097
                  ++czero;
3098
                  if (cdigits == 0) ++clead;
3099
               }
3100
               else
3101
               {
3102
                  /* Included embedded zeros in the digit count. */
3103
                  cdigits += czero - clead;
3104
                  clead = 0;
3105
3106
                  while (czero > 0)
3107
                  {
3108
                     /* exp_b10 == (-1) means we just output the decimal
3109
                      * place - after the DP don't adjust 'exp_b10' any
3110
                      * more!
3111
                      */
3112
                     if (exp_b10 != (-1))
3113
                     {
3114
                        if (exp_b10 == 0)
3115
                        {
3116
                           *ascii++ = 46; --size;
3117
                        }
3118
                        /* PLUS 1: TOTAL 4 */
3119
                        --exp_b10;
3120
                     }
3121
                     *ascii++ = 48; --czero;
3122
                  }
3123
3124
                  if (exp_b10 != (-1))
3125
                  {
3126
                     if (exp_b10 == 0)
3127
                     {
3128
                        *ascii++ = 46; --size; /* counted above */
3129
                     }
3130
3131
                     --exp_b10;
3132
                  }
3133
                  *ascii++ = (char)(48 + (int)d); ++cdigits;
3134
               }
3135
            }
3136
            while (cdigits+czero < precision+clead && fp > DBL_MIN);
3137
3138
            /* The total output count (max) is now 4+precision */
3139
3140
            /* Check for an exponent, if we don't need one we are
3141
             * done and just need to terminate the string.  At
3142
             * this point exp_b10==(-1) is effectively a flag - it got
3143
             * to '-1' because of the decrement after outputting
3144
             * the decimal point above (the exponent required is
3145
             * *not* -1!)
3146
             */
3147
            if (exp_b10 >= (-1) && exp_b10 <= 2)
3148
            {
3149
               /* The following only happens if we didn't output the
3150
                * leading zeros above for negative exponent, so this
3151
                * doesn't add to the digit requirement.  Note that the
3152
                * two zeros here can only be output if the two leading
3153
                * zeros were *not* output, so this doesn't increase
3154
                * the output count.
3155
                */
3156
               while (exp_b10-- > 0) *ascii++ = 48;
3157
3158
               *ascii = 0;
3159
3160
               /* Total buffer requirement (including the '\0') is
3161
                * 5+precision - see check at the start.
3162
                */
3163
               return;
3164
            }
3165
3166
            /* Here if an exponent is required, adjust size for
3167
             * the digits we output but did not count.  The total
3168
             * digit output here so far is at most 1+precision - no
3169
             * decimal point and no leading or trailing zeros have
3170
             * been output.
3171
             */
3172
            size -= cdigits;
3173
3174
            *ascii++ = 69; --size;    /* 'E': PLUS 1 TOTAL 2+precision */
3175
3176
            /* The following use of an unsigned temporary avoids ambiguities in
3177
             * the signed arithmetic on exp_b10 and permits GCC at least to do
3178
             * better optimization.
3179
             */
3180
            {
3181
               unsigned int uexp_b10;
3182
3183
               if (exp_b10 < 0)
3184
               {
3185
                  *ascii++ = 45; --size; /* '-': PLUS 1 TOTAL 3+precision */
3186
                  uexp_b10 = 0U-exp_b10;
3187
               }
3188
3189
               else
3190
                  uexp_b10 = 0U+exp_b10;
3191
3192
               cdigits = 0;
3193
3194
               while (uexp_b10 > 0)
3195
               {
3196
                  exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
3197
                  uexp_b10 /= 10;
3198
               }
3199
            }
3200
3201
            /* Need another size check here for the exponent digits, so
3202
             * this need not be considered above.
3203
             */
3204
            if (size > cdigits)
3205
            {
3206
               while (cdigits > 0) *ascii++ = exponent[--cdigits];
3207
3208
               *ascii = 0;
3209
3210
               return;
3211
            }
3212
         }
3213
      }
3214
      else if (!(fp >= DBL_MIN))
3215
      {
3216
         *ascii++ = 48; /* '0' */
3217
         *ascii = 0;
3218
         return;
3219
      }
3220
      else
3221
      {
3222
         *ascii++ = 105; /* 'i' */
3223
         *ascii++ = 110; /* 'n' */
3224
         *ascii++ = 102; /* 'f' */
3225
         *ascii = 0;
3226
         return;
3227
      }
3228
   }
3229
3230
   /* Here on buffer too small. */
3231
   png_error(png_ptr, "ASCII conversion buffer too small");
3232
}
3233
#if GCC_STRICT_OVERFLOW
3234
#pragma GCC diagnostic pop
3235
#endif /* GCC_STRICT_OVERFLOW */
3236
3237
#  endif /* FLOATING_POINT */
3238
3239
#  ifdef PNG_FIXED_POINT_SUPPORTED
3240
/* Function to format a fixed point value in ASCII.
3241
 */
3242
void /* PRIVATE */
3243
png_ascii_from_fixed(png_const_structrp png_ptr, png_charp ascii,
3244
    size_t size, png_fixed_point fp)
3245
{
3246
   /* Require space for 10 decimal digits, a decimal point, a minus sign and a
3247
    * trailing \0, 13 characters:
3248
    */
3249
   if (size > 12)
3250
   {
3251
      png_uint_32 num;
3252
3253
      /* Avoid overflow here on the minimum integer. */
3254
      if (fp < 0)
3255
      {
3256
         *ascii++ = 45; num = (png_uint_32)(-fp);
3257
      }
3258
      else
3259
         num = (png_uint_32)fp;
3260
3261
      if (num <= 0x80000000) /* else overflowed */
3262
      {
3263
         unsigned int ndigits = 0, first = 16 /* flag value */;
3264
         char digits[10];
3265
3266
         while (num)
3267
         {
3268
            /* Split the low digit off num: */
3269
            unsigned int tmp = num/10;
3270
            num -= tmp*10;
3271
            digits[ndigits++] = (char)(48 + num);
3272
            /* Record the first non-zero digit, note that this is a number
3273
             * starting at 1, it's not actually the array index.
3274
             */
3275
            if (first == 16 && num > 0)
3276
               first = ndigits;
3277
            num = tmp;
3278
         }
3279
3280
         if (ndigits > 0)
3281
         {
3282
            while (ndigits > 5) *ascii++ = digits[--ndigits];
3283
            /* The remaining digits are fractional digits, ndigits is '5' or
3284
             * smaller at this point.  It is certainly not zero.  Check for a
3285
             * non-zero fractional digit:
3286
             */
3287
            if (first <= 5)
3288
            {
3289
               unsigned int i;
3290
               *ascii++ = 46; /* decimal point */
3291
               /* ndigits may be <5 for small numbers, output leading zeros
3292
                * then ndigits digits to first:
3293
                */
3294
               i = 5;
3295
               while (ndigits < i)
3296
               {
3297
                  *ascii++ = 48; --i;
3298
               }
3299
               while (ndigits >= first) *ascii++ = digits[--ndigits];
3300
               /* Don't output the trailing zeros! */
3301
            }
3302
         }
3303
         else
3304
            *ascii++ = 48;
3305
3306
         /* And null terminate the string: */
3307
         *ascii = 0;
3308
         return;
3309
      }
3310
   }
3311
3312
   /* Here on buffer too small. */
3313
   png_error(png_ptr, "ASCII conversion buffer too small");
3314
}
3315
#   endif /* FIXED_POINT */
3316
#endif /* SCAL */
3317
3318
#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
3319
   !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \
3320
   (defined(PNG_gAMA_SUPPORTED) || defined(PNG_cHRM_SUPPORTED) || \
3321
   defined(PNG_sCAL_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) || \
3322
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \
3323
   (defined(PNG_sCAL_SUPPORTED) && \
3324
   defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))
3325
png_fixed_point
3326
png_fixed(png_const_structrp png_ptr, double fp, png_const_charp text)
3327
0
{
3328
0
   double r = floor(100000 * fp + .5);
3329
0
3330
0
   if (r > 2147483647. || r < -2147483648.)
3331
0
      png_fixed_error(png_ptr, text);
3332
0
3333
#  ifndef PNG_ERROR_TEXT_SUPPORTED
3334
   PNG_UNUSED(text)
3335
#  endif
3336
3337
0
   return (png_fixed_point)r;
3338
0
}
3339
#endif
3340
3341
#if defined(PNG_GAMMA_SUPPORTED) || defined(PNG_COLORSPACE_SUPPORTED) ||\
3342
    defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG_READ_pHYs_SUPPORTED)
3343
/* muldiv functions */
3344
/* This API takes signed arguments and rounds the result to the nearest
3345
 * integer (or, for a fixed point number - the standard argument - to
3346
 * the nearest .00001).  Overflow and divide by zero are signalled in
3347
 * the result, a boolean - true on success, false on overflow.
3348
 */
3349
#if GCC_STRICT_OVERFLOW /* from above */
3350
/* It is not obvious which comparison below gets optimized in such a way that
3351
 * signed overflow would change the result; looking through the code does not
3352
 * reveal any tests which have the form GCC complains about, so presumably the
3353
 * optimizer is moving an add or subtract into the 'if' somewhere.
3354
 */
3355
#pragma GCC diagnostic push
3356
#pragma GCC diagnostic warning "-Wstrict-overflow=2"
3357
#endif /* GCC_STRICT_OVERFLOW */
3358
int
3359
png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
3360
    png_int_32 divisor)
3361
0
{
3362
0
   /* Return a * times / divisor, rounded. */
3363
0
   if (divisor != 0)
3364
0
   {
3365
0
      if (a == 0 || times == 0)
3366
0
      {
3367
0
         *res = 0;
3368
0
         return 1;
3369
0
      }
3370
0
      else
3371
0
      {
3372
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3373
0
         double r = a;
3374
0
         r *= times;
3375
0
         r /= divisor;
3376
0
         r = floor(r+.5);
3377
0
3378
0
         /* A png_fixed_point is a 32-bit integer. */
3379
0
         if (r <= 2147483647. && r >= -2147483648.)
3380
0
         {
3381
0
            *res = (png_fixed_point)r;
3382
0
            return 1;
3383
0
         }
3384
#else
3385
         int negative = 0;
3386
         png_uint_32 A, T, D;
3387
         png_uint_32 s16, s32, s00;
3388
3389
         if (a < 0)
3390
            negative = 1, A = -a;
3391
         else
3392
            A = a;
3393
3394
         if (times < 0)
3395
            negative = !negative, T = -times;
3396
         else
3397
            T = times;
3398
3399
         if (divisor < 0)
3400
            negative = !negative, D = -divisor;
3401
         else
3402
            D = divisor;
3403
3404
         /* Following can't overflow because the arguments only
3405
          * have 31 bits each, however the result may be 32 bits.
3406
          */
3407
         s16 = (A >> 16) * (T & 0xffff) +
3408
                           (A & 0xffff) * (T >> 16);
3409
         /* Can't overflow because the a*times bit is only 30
3410
          * bits at most.
3411
          */
3412
         s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
3413
         s00 = (A & 0xffff) * (T & 0xffff);
3414
3415
         s16 = (s16 & 0xffff) << 16;
3416
         s00 += s16;
3417
3418
         if (s00 < s16)
3419
            ++s32; /* carry */
3420
3421
         if (s32 < D) /* else overflow */
3422
         {
3423
            /* s32.s00 is now the 64-bit product, do a standard
3424
             * division, we know that s32 < D, so the maximum
3425
             * required shift is 31.
3426
             */
3427
            int bitshift = 32;
3428
            png_fixed_point result = 0; /* NOTE: signed */
3429
3430
            while (--bitshift >= 0)
3431
            {
3432
               png_uint_32 d32, d00;
3433
3434
               if (bitshift > 0)
3435
                  d32 = D >> (32-bitshift), d00 = D << bitshift;
3436
3437
               else
3438
                  d32 = 0, d00 = D;
3439
3440
               if (s32 > d32)
3441
               {
3442
                  if (s00 < d00) --s32; /* carry */
3443
                  s32 -= d32, s00 -= d00, result += 1<<bitshift;
3444
               }
3445
3446
               else
3447
                  if (s32 == d32 && s00 >= d00)
3448
                     s32 = 0, s00 -= d00, result += 1<<bitshift;
3449
            }
3450
3451
            /* Handle the rounding. */
3452
            if (s00 >= (D >> 1))
3453
               ++result;
3454
3455
            if (negative != 0)
3456
               result = -result;
3457
3458
            /* Check for overflow. */
3459
            if ((negative != 0 && result <= 0) ||
3460
                (negative == 0 && result >= 0))
3461
            {
3462
               *res = result;
3463
               return 1;
3464
            }
3465
         }
3466
#endif
3467
      }
3468
0
   }
3469
0
3470
0
   return 0;
3471
0
}
3472
#if GCC_STRICT_OVERFLOW
3473
#pragma GCC diagnostic pop
3474
#endif /* GCC_STRICT_OVERFLOW */
3475
#endif /* READ_GAMMA || INCH_CONVERSIONS */
3476
3477
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
3478
/* The following is for when the caller doesn't much care about the
3479
 * result.
3480
 */
3481
png_fixed_point
3482
png_muldiv_warn(png_const_structrp png_ptr, png_fixed_point a, png_int_32 times,
3483
    png_int_32 divisor)
3484
0
{
3485
0
   png_fixed_point result;
3486
0
3487
0
   if (png_muldiv(&result, a, times, divisor) != 0)
3488
0
      return result;
3489
0
3490
0
   png_warning(png_ptr, "fixed point overflow ignored");
3491
0
   return 0;
3492
0
}
3493
#endif
3494
3495
#ifdef PNG_GAMMA_SUPPORTED /* more fixed point functions for gamma */
3496
/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
3497
png_fixed_point
3498
png_reciprocal(png_fixed_point a)
3499
0
{
3500
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3501
0
   double r = floor(1E10/a+.5);
3502
0
3503
0
   if (r <= 2147483647. && r >= -2147483648.)
3504
0
      return (png_fixed_point)r;
3505
#else
3506
   png_fixed_point res;
3507
3508
   if (png_muldiv(&res, 100000, 100000, a) != 0)
3509
      return res;
3510
#endif
3511
3512
0
   return 0; /* error/overflow */
3513
0
}
3514
3515
/* This is the shared test on whether a gamma value is 'significant' - whether
3516
 * it is worth doing gamma correction.
3517
 */
3518
int /* PRIVATE */
3519
png_gamma_significant(png_fixed_point gamma_val)
3520
0
{
3521
0
   return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
3522
0
       gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
3523
0
}
3524
#endif
3525
3526
#ifdef PNG_READ_GAMMA_SUPPORTED
3527
#ifdef PNG_16BIT_SUPPORTED
3528
/* A local convenience routine. */
3529
static png_fixed_point
3530
png_product2(png_fixed_point a, png_fixed_point b)
3531
0
{
3532
0
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3533
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3534
0
   double r = a * 1E-5;
3535
0
   r *= b;
3536
0
   r = floor(r+.5);
3537
0
3538
0
   if (r <= 2147483647. && r >= -2147483648.)
3539
0
      return (png_fixed_point)r;
3540
#else
3541
   png_fixed_point res;
3542
3543
   if (png_muldiv(&res, a, b, 100000) != 0)
3544
      return res;
3545
#endif
3546
3547
0
   return 0; /* overflow */
3548
0
}
3549
#endif /* 16BIT */
3550
3551
/* The inverse of the above. */
3552
png_fixed_point
3553
png_reciprocal2(png_fixed_point a, png_fixed_point b)
3554
0
{
3555
0
   /* The required result is 1/a * 1/b; the following preserves accuracy. */
3556
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3557
0
   if (a != 0 && b != 0)
3558
0
   {
3559
0
      double r = 1E15/a;
3560
0
      r /= b;
3561
0
      r = floor(r+.5);
3562
0
3563
0
      if (r <= 2147483647. && r >= -2147483648.)
3564
0
         return (png_fixed_point)r;
3565
0
   }
3566
#else
3567
   /* This may overflow because the range of png_fixed_point isn't symmetric,
3568
    * but this API is only used for the product of file and screen gamma so it
3569
    * doesn't matter that the smallest number it can produce is 1/21474, not
3570
    * 1/100000
3571
    */
3572
   png_fixed_point res = png_product2(a, b);
3573
3574
   if (res != 0)
3575
      return png_reciprocal(res);
3576
#endif
3577
3578
0
   return 0; /* overflow */
3579
0
}
3580
#endif /* READ_GAMMA */
3581
3582
#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
3583
#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
3584
/* Fixed point gamma.
3585
 *
3586
 * The code to calculate the tables used below can be found in the shell script
3587
 * contrib/tools/intgamma.sh
3588
 *
3589
 * To calculate gamma this code implements fast log() and exp() calls using only
3590
 * fixed point arithmetic.  This code has sufficient precision for either 8-bit
3591
 * or 16-bit sample values.
3592
 *
3593
 * The tables used here were calculated using simple 'bc' programs, but C double
3594
 * precision floating point arithmetic would work fine.
3595
 *
3596
 * 8-bit log table
3597
 *   This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
3598
 *   255, so it's the base 2 logarithm of a normalized 8-bit floating point
3599
 *   mantissa.  The numbers are 32-bit fractions.
3600
 */
3601
static const png_uint_32
3602
png_8bit_l2[128] =
3603
{
3604
   4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
3605
   3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
3606
   3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
3607
   3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
3608
   3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
3609
   2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
3610
   2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
3611
   2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
3612
   2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
3613
   2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
3614
   1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
3615
   1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
3616
   1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
3617
   1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
3618
   1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
3619
   971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
3620
   803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
3621
   639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
3622
   479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
3623
   324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
3624
   172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
3625
   24347096U, 0U
3626
3627
#if 0
3628
   /* The following are the values for 16-bit tables - these work fine for the
3629
    * 8-bit conversions but produce very slightly larger errors in the 16-bit
3630
    * log (about 1.2 as opposed to 0.7 absolute error in the final value).  To
3631
    * use these all the shifts below must be adjusted appropriately.
3632
    */
3633
   65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
3634
   57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
3635
   50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
3636
   43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
3637
   37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
3638
   31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
3639
   25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
3640
   20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
3641
   15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
3642
   10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
3643
   6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
3644
   1119, 744, 372
3645
#endif
3646
};
3647
3648
static png_int_32
3649
png_log8bit(unsigned int x)
3650
{
3651
   unsigned int lg2 = 0;
3652
   /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
3653
    * because the log is actually negate that means adding 1.  The final
3654
    * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
3655
    * input), return -1 for the overflow (log 0) case, - so the result is
3656
    * always at most 19 bits.
3657
    */
3658
   if ((x &= 0xff) == 0)
3659
      return -1;
3660
3661
   if ((x & 0xf0) == 0)
3662
      lg2  = 4, x <<= 4;
3663
3664
   if ((x & 0xc0) == 0)
3665
      lg2 += 2, x <<= 2;
3666
3667
   if ((x & 0x80) == 0)
3668
      lg2 += 1, x <<= 1;
3669
3670
   /* result is at most 19 bits, so this cast is safe: */
3671
   return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
3672
}
3673
3674
/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
3675
 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
3676
 * get an approximation then multiply the approximation by a correction factor
3677
 * determined by the remaining up to 8 bits.  This requires an additional step
3678
 * in the 16-bit case.
3679
 *
3680
 * We want log2(value/65535), we have log2(v'/255), where:
3681
 *
3682
 *    value = v' * 256 + v''
3683
 *          = v' * f
3684
 *
3685
 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
3686
 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
3687
 * than 258.  The final factor also needs to correct for the fact that our 8-bit
3688
 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
3689
 *
3690
 * This gives a final formula using a calculated value 'x' which is value/v' and
3691
 * scaling by 65536 to match the above table:
3692
 *
3693
 *   log2(x/257) * 65536
3694
 *
3695
 * Since these numbers are so close to '1' we can use simple linear
3696
 * interpolation between the two end values 256/257 (result -368.61) and 258/257
3697
 * (result 367.179).  The values used below are scaled by a further 64 to give
3698
 * 16-bit precision in the interpolation:
3699
 *
3700
 * Start (256): -23591
3701
 * Zero  (257):      0
3702
 * End   (258):  23499
3703
 */
3704
#ifdef PNG_16BIT_SUPPORTED
3705
static png_int_32
3706
png_log16bit(png_uint_32 x)
3707
{
3708
   unsigned int lg2 = 0;
3709
3710
   /* As above, but now the input has 16 bits. */
3711
   if ((x &= 0xffff) == 0)
3712
      return -1;
3713
3714
   if ((x & 0xff00) == 0)
3715
      lg2  = 8, x <<= 8;
3716
3717
   if ((x & 0xf000) == 0)
3718
      lg2 += 4, x <<= 4;
3719
3720
   if ((x & 0xc000) == 0)
3721
      lg2 += 2, x <<= 2;
3722
3723
   if ((x & 0x8000) == 0)
3724
      lg2 += 1, x <<= 1;
3725
3726
   /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
3727
    * value.
3728
    */
3729
   lg2 <<= 28;
3730
   lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
3731
3732
   /* Now we need to interpolate the factor, this requires a division by the top
3733
    * 8 bits.  Do this with maximum precision.
3734
    */
3735
   x = ((x << 16) + (x >> 9)) / (x >> 8);
3736
3737
   /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
3738
    * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
3739
    * 16 bits to interpolate to get the low bits of the result.  Round the
3740
    * answer.  Note that the end point values are scaled by 64 to retain overall
3741
    * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
3742
    * the overall scaling by 6-12.  Round at every step.
3743
    */
3744
   x -= 1U << 24;
3745
3746
   if (x <= 65536U) /* <= '257' */
3747
      lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
3748
3749
   else
3750
      lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
3751
3752
   /* Safe, because the result can't have more than 20 bits: */
3753
   return (png_int_32)((lg2 + 2048) >> 12);
3754
}
3755
#endif /* 16BIT */
3756
3757
/* The 'exp()' case must invert the above, taking a 20-bit fixed point
3758
 * logarithmic value and returning a 16 or 8-bit number as appropriate.  In
3759
 * each case only the low 16 bits are relevant - the fraction - since the
3760
 * integer bits (the top 4) simply determine a shift.
3761
 *
3762
 * The worst case is the 16-bit distinction between 65535 and 65534. This
3763
 * requires perhaps spurious accuracy in the decoding of the logarithm to
3764
 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits.  There is little chance
3765
 * of getting this accuracy in practice.
3766
 *
3767
 * To deal with this the following exp() function works out the exponent of the
3768
 * fractional part of the logarithm by using an accurate 32-bit value from the
3769
 * top four fractional bits then multiplying in the remaining bits.
3770
 */
3771
static const png_uint_32
3772
png_32bit_exp[16] =
3773
{
3774
   /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
3775
   4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
3776
   3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
3777
   2553802834U, 2445529972U, 2341847524U, 2242560872U
3778
};
3779
3780
/* Adjustment table; provided to explain the numbers in the code below. */
3781
#if 0
3782
for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
3783
   11 44937.64284865548751208448
3784
   10 45180.98734845585101160448
3785
    9 45303.31936980687359311872
3786
    8 45364.65110595323018870784
3787
    7 45395.35850361789624614912
3788
    6 45410.72259715102037508096
3789
    5 45418.40724413220722311168
3790
    4 45422.25021786898173001728
3791
    3 45424.17186732298419044352
3792
    2 45425.13273269940811464704
3793
    1 45425.61317555035558641664
3794
    0 45425.85339951654943850496
3795
#endif
3796
3797
static png_uint_32
3798
png_exp(png_fixed_point x)
3799
{
3800
   if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
3801
   {
3802
      /* Obtain a 4-bit approximation */
3803
      png_uint_32 e = png_32bit_exp[(x >> 12) & 0x0f];
3804
3805
      /* Incorporate the low 12 bits - these decrease the returned value by
3806
       * multiplying by a number less than 1 if the bit is set.  The multiplier
3807
       * is determined by the above table and the shift. Notice that the values
3808
       * converge on 45426 and this is used to allow linear interpolation of the
3809
       * low bits.
3810
       */
3811
      if (x & 0x800)
3812
         e -= (((e >> 16) * 44938U) +  16U) >> 5;
3813
3814
      if (x & 0x400)
3815
         e -= (((e >> 16) * 45181U) +  32U) >> 6;
3816
3817
      if (x & 0x200)
3818
         e -= (((e >> 16) * 45303U) +  64U) >> 7;
3819
3820
      if (x & 0x100)
3821
         e -= (((e >> 16) * 45365U) + 128U) >> 8;
3822
3823
      if (x & 0x080)
3824
         e -= (((e >> 16) * 45395U) + 256U) >> 9;
3825
3826
      if (x & 0x040)
3827
         e -= (((e >> 16) * 45410U) + 512U) >> 10;
3828
3829
      /* And handle the low 6 bits in a single block. */
3830
      e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
3831
3832
      /* Handle the upper bits of x. */
3833
      e >>= x >> 16;
3834
      return e;
3835
   }
3836
3837
   /* Check for overflow */
3838
   if (x <= 0)
3839
      return png_32bit_exp[0];
3840
3841
   /* Else underflow */
3842
   return 0;
3843
}
3844
3845
static png_byte
3846
png_exp8bit(png_fixed_point lg2)
3847
{
3848
   /* Get a 32-bit value: */
3849
   png_uint_32 x = png_exp(lg2);
3850
3851
   /* Convert the 32-bit value to 0..255 by multiplying by 256-1. Note that the
3852
    * second, rounding, step can't overflow because of the first, subtraction,
3853
    * step.
3854
    */
3855
   x -= x >> 8;
3856
   return (png_byte)(((x + 0x7fffffU) >> 24) & 0xff);
3857
}
3858
3859
#ifdef PNG_16BIT_SUPPORTED
3860
static png_uint_16
3861
png_exp16bit(png_fixed_point lg2)
3862
{
3863
   /* Get a 32-bit value: */
3864
   png_uint_32 x = png_exp(lg2);
3865
3866
   /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
3867
   x -= x >> 16;
3868
   return (png_uint_16)((x + 32767U) >> 16);
3869
}
3870
#endif /* 16BIT */
3871
#endif /* FLOATING_ARITHMETIC */
3872
3873
png_byte
3874
png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
3875
0
{
3876
0
   if (value > 0 && value < 255)
3877
0
   {
3878
0
#     ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3879
0
         /* 'value' is unsigned, ANSI-C90 requires the compiler to correctly
3880
0
          * convert this to a floating point value.  This includes values that
3881
0
          * would overflow if 'value' were to be converted to 'int'.
3882
0
          *
3883
0
          * Apparently GCC, however, does an intermediate conversion to (int)
3884
0
          * on some (ARM) but not all (x86) platforms, possibly because of
3885
0
          * hardware FP limitations.  (E.g. if the hardware conversion always
3886
0
          * assumes the integer register contains a signed value.)  This results
3887
0
          * in ANSI-C undefined behavior for large values.
3888
0
          *
3889
0
          * Other implementations on the same machine might actually be ANSI-C90
3890
0
          * conformant and therefore compile spurious extra code for the large
3891
0
          * values.
3892
0
          *
3893
0
          * We can be reasonably sure that an unsigned to float conversion
3894
0
          * won't be faster than an int to float one.  Therefore this code
3895
0
          * assumes responsibility for the undefined behavior, which it knows
3896
0
          * can't happen because of the check above.
3897
0
          *
3898
0
          * Note the argument to this routine is an (unsigned int) because, on
3899
0
          * 16-bit platforms, it is assigned a value which might be out of
3900
0
          * range for an (int); that would result in undefined behavior in the
3901
0
          * caller if the *argument* ('value') were to be declared (int).
3902
0
          */
3903
0
         double r = floor(255*pow((int)/*SAFE*/value/255.,gamma_val*.00001)+.5);
3904
0
         return (png_byte)r;
3905
#     else
3906
         png_int_32 lg2 = png_log8bit(value);
3907
         png_fixed_point res;
3908
3909
         if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3910
            return png_exp8bit(res);
3911
3912
         /* Overflow. */
3913
         value = 0;
3914
#     endif
3915
   }
3916
0
3917
0
   return (png_byte)(value & 0xff);
3918
0
}
3919
3920
#ifdef PNG_16BIT_SUPPORTED
3921
png_uint_16
3922
png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
3923
0
{
3924
0
   if (value > 0 && value < 65535)
3925
0
   {
3926
0
# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3927
0
      /* The same (unsigned int)->(double) constraints apply here as above,
3928
0
       * however in this case the (unsigned int) to (int) conversion can
3929
0
       * overflow on an ANSI-C90 compliant system so the cast needs to ensure
3930
0
       * that this is not possible.
3931
0
       */
3932
0
      double r = floor(65535*pow((png_int_32)value/65535.,
3933
0
          gamma_val*.00001)+.5);
3934
0
      return (png_uint_16)r;
3935
# else
3936
      png_int_32 lg2 = png_log16bit(value);
3937
      png_fixed_point res;
3938
3939
      if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1) != 0)
3940
         return png_exp16bit(res);
3941
3942
      /* Overflow. */
3943
      value = 0;
3944
# endif
3945
   }
3946
0
3947
0
   return (png_uint_16)value;
3948
0
}
3949
#endif /* 16BIT */
3950
3951
/* This does the right thing based on the bit_depth field of the
3952
 * png_struct, interpreting values as 8-bit or 16-bit.  While the result
3953
 * is nominally a 16-bit value if bit depth is 8 then the result is
3954
 * 8-bit (as are the arguments.)
3955
 */
3956
png_uint_16 /* PRIVATE */
3957
png_gamma_correct(png_structrp png_ptr, unsigned int value,
3958
    png_fixed_point gamma_val)
3959
0
{
3960
0
   if (png_ptr->bit_depth == 8)
3961
0
      return png_gamma_8bit_correct(value, gamma_val);
3962
0
3963
0
#ifdef PNG_16BIT_SUPPORTED
3964
0
   else
3965
0
      return png_gamma_16bit_correct(value, gamma_val);
3966
#else
3967
      /* should not reach this */
3968
      return 0;
3969
#endif /* 16BIT */
3970
}
3971
3972
#ifdef PNG_16BIT_SUPPORTED
3973
/* Internal function to build a single 16-bit table - the table consists of
3974
 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
3975
 * to shift the input values right (or 16-number_of_signifiant_bits).
3976
 *
3977
 * The caller is responsible for ensuring that the table gets cleaned up on
3978
 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
3979
 * should be somewhere that will be cleaned.
3980
 */
3981
static void
3982
png_build_16bit_table(png_structrp png_ptr, png_uint_16pp *ptable,
3983
    PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
3984
0
{
3985
0
   /* Various values derived from 'shift': */
3986
0
   PNG_CONST unsigned int num = 1U << (8U - shift);
3987
0
#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
3988
0
   /* CSE the division and work round wacky GCC warnings (see the comments
3989
0
    * in png_gamma_8bit_correct for where these come from.)
3990
0
    */
3991
0
   PNG_CONST double fmax = 1./(((png_int_32)1 << (16U - shift))-1);
3992
0
#endif
3993
0
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
3994
0
   PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
3995
0
   unsigned int i;
3996
0
3997
0
   png_uint_16pp table = *ptable =
3998
0
       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
3999
0
4000
0
   for (i = 0; i < num; i++)
4001
0
   {
4002
0
      png_uint_16p sub_table = table[i] =
4003
0
          (png_uint_16p)png_malloc(png_ptr, 256 * (sizeof (png_uint_16)));
4004
0
4005
0
      /* The 'threshold' test is repeated here because it can arise for one of
4006
0
       * the 16-bit tables even if the others don't hit it.
4007
0
       */
4008
0
      if (png_gamma_significant(gamma_val) != 0)
4009
0
      {
4010
0
         /* The old code would overflow at the end and this would cause the
4011
0
          * 'pow' function to return a result >1, resulting in an
4012
0
          * arithmetic error.  This code follows the spec exactly; ig is
4013
0
          * the recovered input sample, it always has 8-16 bits.
4014
0
          *
4015
0
          * We want input * 65535/max, rounded, the arithmetic fits in 32
4016
0
          * bits (unsigned) so long as max <= 32767.
4017
0
          */
4018
0
         unsigned int j;
4019
0
         for (j = 0; j < 256; j++)
4020
0
         {
4021
0
            png_uint_32 ig = (j << (8-shift)) + i;
4022
0
#           ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
4023
0
               /* Inline the 'max' scaling operation: */
4024
0
               /* See png_gamma_8bit_correct for why the cast to (int) is
4025
0
                * required here.
4026
0
                */
4027
0
               double d = floor(65535.*pow(ig*fmax, gamma_val*.00001)+.5);
4028
0
               sub_table[j] = (png_uint_16)d;
4029
#           else
4030
               if (shift != 0)
4031
                  ig = (ig * 65535U + max_by_2)/max;
4032
4033
               sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
4034
#           endif
4035
         }
4036
0
      }
4037
0
      else
4038
0
      {
4039
0
         /* We must still build a table, but do it the fast way. */
4040
0
         unsigned int j;
4041
0
4042
0
         for (j = 0; j < 256; j++)
4043
0
         {
4044
0
            png_uint_32 ig = (j << (8-shift)) + i;
4045
0
4046
0
            if (shift != 0)
4047
0
               ig = (ig * 65535U + max_by_2)/max;
4048
0
4049
0
            sub_table[j] = (png_uint_16)ig;
4050
0
         }
4051
0
      }
4052
0
   }
4053
0
}
4054
4055
/* NOTE: this function expects the *inverse* of the overall gamma transformation
4056
 * required.
4057
 */
4058
static void
4059
png_build_16to8_table(png_structrp png_ptr, png_uint_16pp *ptable,
4060
    PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
4061
0
{
4062
0
   PNG_CONST unsigned int num = 1U << (8U - shift);
4063
0
   PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
4064
0
   unsigned int i;
4065
0
   png_uint_32 last;
4066
0
4067
0
   png_uint_16pp table = *ptable =
4068
0
       (png_uint_16pp)png_calloc(png_ptr, num * (sizeof (png_uint_16p)));
4069
0
4070
0
   /* 'num' is the number of tables and also the number of low bits of low
4071
0
    * bits of the input 16-bit value used to select a table.  Each table is
4072
0
    * itself indexed by the high 8 bits of the value.
4073
0
    */
4074
0
   for (i = 0; i < num; i++)
4075
0
      table[i] = (png_uint_16p)png_malloc(png_ptr,
4076
0
          256 * (sizeof (png_uint_16)));
4077
0
4078
0
   /* 'gamma_val' is set to the reciprocal of the value calculated above, so
4079
0
    * pow(out,g) is an *input* value.  'last' is the last input value set.
4080
0
    *
4081
0
    * In the loop 'i' is used to find output values.  Since the output is
4082
0
    * 8-bit there are only 256 possible values.  The tables are set up to
4083
0
    * select the closest possible output value for each input by finding
4084
0
    * the input value at the boundary between each pair of output values
4085
0
    * and filling the table up to that boundary with the lower output
4086
0
    * value.
4087
0
    *
4088
0
    * The boundary values are 0.5,1.5..253.5,254.5.  Since these are 9-bit
4089
0
    * values the code below uses a 16-bit value in i; the values start at
4090
0
    * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
4091
0
    * entries are filled with 255).  Start i at 128 and fill all 'last'
4092
0
    * table entries <= 'max'
4093
0
    */
4094
0
   last = 0;
4095
0
   for (i = 0; i < 255; ++i) /* 8-bit output value */
4096
0
   {
4097
0
      /* Find the corresponding maximum input value */
4098
0
      png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
4099
0
4100
0
      /* Find the boundary value in 16 bits: */
4101
0
      png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
4102
0
4103
0
      /* Adjust (round) to (16-shift) bits: */
4104
0
      bound = (bound * max + 32768U)/65535U + 1U;
4105
0
4106
0
      while (last < bound)
4107
0
      {
4108
0
         table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
4109
0
         last++;
4110
0
      }
4111
0
   }
4112
0
4113
0
   /* And fill in the final entries. */
4114
0
   while (last < (num << 8))
4115
0
   {
4116
0
      table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
4117
0
      last++;
4118
0
   }
4119
0
}
4120
#endif /* 16BIT */
4121
4122
/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
4123
 * typically much faster).  Note that libpng currently does no sBIT processing
4124
 * (apparently contrary to the spec) so a 256-entry table is always generated.
4125
 */
4126
static void
4127
png_build_8bit_table(png_structrp png_ptr, png_bytepp ptable,
4128
    PNG_CONST png_fixed_point gamma_val)
4129
0
{
4130
0
   unsigned int i;
4131
0
   png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
4132
0
4133
0
   if (png_gamma_significant(gamma_val) != 0)
4134
0
      for (i=0; i<256; i++)
4135
0
         table[i] = png_gamma_8bit_correct(i, gamma_val);
4136
0
4137
0
   else
4138
0
      for (i=0; i<256; ++i)
4139
0
         table[i] = (png_byte)(i & 0xff);
4140
0
}
4141
4142
/* Used from png_read_destroy and below to release the memory used by the gamma
4143
 * tables.
4144
 */
4145
void /* PRIVATE */
4146
png_destroy_gamma_table(png_structrp png_ptr)
4147
0
{
4148
0
   png_free(png_ptr, png_ptr->gamma_table);
4149
0
   png_ptr->gamma_table = NULL;
4150
0
4151
0
#ifdef PNG_16BIT_SUPPORTED
4152
0
   if (png_ptr->gamma_16_table != NULL)
4153
0
   {
4154
0
      int i;
4155
0
      int istop = (1 << (8 - png_ptr->gamma_shift));
4156
0
      for (i = 0; i < istop; i++)
4157
0
      {
4158
0
         png_free(png_ptr, png_ptr->gamma_16_table[i]);
4159
0
      }
4160
0
   png_free(png_ptr, png_ptr->gamma_16_table);
4161
0
   png_ptr->gamma_16_table = NULL;
4162
0
   }
4163
0
#endif /* 16BIT */
4164
0
4165
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4166
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4167
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4168
   png_free(png_ptr, png_ptr->gamma_from_1);
4169
   png_ptr->gamma_from_1 = NULL;
4170
   png_free(png_ptr, png_ptr->gamma_to_1);
4171
   png_ptr->gamma_to_1 = NULL;
4172
4173
#ifdef PNG_16BIT_SUPPORTED
4174
   if (png_ptr->gamma_16_from_1 != NULL)
4175
   {
4176
      int i;
4177
      int istop = (1 << (8 - png_ptr->gamma_shift));
4178
      for (i = 0; i < istop; i++)
4179
      {
4180
         png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
4181
      }
4182
   png_free(png_ptr, png_ptr->gamma_16_from_1);
4183
   png_ptr->gamma_16_from_1 = NULL;
4184
   }
4185
   if (png_ptr->gamma_16_to_1 != NULL)
4186
   {
4187
      int i;
4188
      int istop = (1 << (8 - png_ptr->gamma_shift));
4189
      for (i = 0; i < istop; i++)
4190
      {
4191
         png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
4192
      }
4193
   png_free(png_ptr, png_ptr->gamma_16_to_1);
4194
   png_ptr->gamma_16_to_1 = NULL;
4195
   }
4196
#endif /* 16BIT */
4197
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4198
}
4199
4200
/* We build the 8- or 16-bit gamma tables here.  Note that for 16-bit
4201
 * tables, we don't make a full table if we are reducing to 8-bit in
4202
 * the future.  Note also how the gamma_16 tables are segmented so that
4203
 * we don't need to allocate > 64K chunks for a full 16-bit table.
4204
 */
4205
void /* PRIVATE */
4206
png_build_gamma_table(png_structrp png_ptr, int bit_depth)
4207
0
{
4208
0
   png_debug(1, "in png_build_gamma_table");
4209
0
4210
0
   /* Remove any existing table; this copes with multiple calls to
4211
0
    * png_read_update_info. The warning is because building the gamma tables
4212
0
    * multiple times is a performance hit - it's harmless but the ability to
4213
0
    * call png_read_update_info() multiple times is new in 1.5.6 so it seems
4214
0
    * sensible to warn if the app introduces such a hit.
4215
0
    */
4216
0
   if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
4217
0
   {
4218
0
      png_warning(png_ptr, "gamma table being rebuilt");
4219
0
      png_destroy_gamma_table(png_ptr);
4220
0
   }
4221
0
4222
0
   if (bit_depth <= 8)
4223
0
   {
4224
0
      png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
4225
0
          png_ptr->screen_gamma > 0 ?
4226
0
          png_reciprocal2(png_ptr->colorspace.gamma,
4227
0
          png_ptr->screen_gamma) : PNG_FP_1);
4228
0
4229
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4230
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4231
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4232
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
4233
      {
4234
         png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
4235
             png_reciprocal(png_ptr->colorspace.gamma));
4236
4237
         png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
4238
             png_ptr->screen_gamma > 0 ?
4239
             png_reciprocal(png_ptr->screen_gamma) :
4240
             png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4241
      }
4242
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4243
   }
4244
0
#ifdef PNG_16BIT_SUPPORTED
4245
0
   else
4246
0
   {
4247
0
      png_byte shift, sig_bit;
4248
0
4249
0
      if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) != 0)
4250
0
      {
4251
0
         sig_bit = png_ptr->sig_bit.red;
4252
0
4253
0
         if (png_ptr->sig_bit.green > sig_bit)
4254
0
            sig_bit = png_ptr->sig_bit.green;
4255
0
4256
0
         if (png_ptr->sig_bit.blue > sig_bit)
4257
0
            sig_bit = png_ptr->sig_bit.blue;
4258
0
      }
4259
0
      else
4260
0
         sig_bit = png_ptr->sig_bit.gray;
4261
0
4262
0
      /* 16-bit gamma code uses this equation:
4263
0
       *
4264
0
       *   ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
4265
0
       *
4266
0
       * Where 'iv' is the input color value and 'ov' is the output value -
4267
0
       * pow(iv, gamma).
4268
0
       *
4269
0
       * Thus the gamma table consists of up to 256 256-entry tables.  The table
4270
0
       * is selected by the (8-gamma_shift) most significant of the low 8 bits
4271
0
       * of the color value then indexed by the upper 8 bits:
4272
0
       *
4273
0
       *   table[low bits][high 8 bits]
4274
0
       *
4275
0
       * So the table 'n' corresponds to all those 'iv' of:
4276
0
       *
4277
0
       *   <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
4278
0
       *
4279
0
       */
4280
0
      if (sig_bit > 0 && sig_bit < 16U)
4281
0
         /* shift == insignificant bits */
4282
0
         shift = (png_byte)((16U - sig_bit) & 0xff);
4283
0
4284
0
      else
4285
0
         shift = 0; /* keep all 16 bits */
4286
0
4287
0
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
4288
0
      {
4289
0
         /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
4290
0
          * the significant bits in the *input* when the output will
4291
0
          * eventually be 8 bits.  By default it is 11.
4292
0
          */
4293
0
         if (shift < (16U - PNG_MAX_GAMMA_8))
4294
0
            shift = (16U - PNG_MAX_GAMMA_8);
4295
0
      }
4296
0
4297
0
      if (shift > 8U)
4298
0
         shift = 8U; /* Guarantees at least one table! */
4299
0
4300
0
      png_ptr->gamma_shift = shift;
4301
0
4302
0
      /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
4303
0
       * PNG_COMPOSE).  This effectively smashed the background calculation for
4304
0
       * 16-bit output because the 8-bit table assumes the result will be
4305
0
       * reduced to 8 bits.
4306
0
       */
4307
0
      if ((png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) != 0)
4308
0
          png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
4309
0
          png_ptr->screen_gamma > 0 ? png_product2(png_ptr->colorspace.gamma,
4310
0
          png_ptr->screen_gamma) : PNG_FP_1);
4311
0
4312
0
      else
4313
0
          png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
4314
0
          png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->colorspace.gamma,
4315
0
          png_ptr->screen_gamma) : PNG_FP_1);
4316
0
4317
#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
4318
   defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
4319
   defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
4320
      if ((png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) != 0)
4321
      {
4322
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
4323
             png_reciprocal(png_ptr->colorspace.gamma));
4324
4325
         /* Notice that the '16 from 1' table should be full precision, however
4326
          * the lookup on this table still uses gamma_shift, so it can't be.
4327
          * TODO: fix this.
4328
          */
4329
         png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
4330
             png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
4331
             png_ptr->colorspace.gamma/* Probably doing rgb_to_gray */);
4332
      }
4333
#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
4334
   }
4335
0
#endif /* 16BIT */
4336
0
}
4337
#endif /* READ_GAMMA */
4338
4339
/* HARDWARE OR SOFTWARE OPTION SUPPORT */
4340
#ifdef PNG_SET_OPTION_SUPPORTED
4341
int PNGAPI
4342
png_set_option(png_structrp png_ptr, int option, int onoff)
4343
0
{
4344
0
   if (png_ptr != NULL && option >= 0 && option < PNG_OPTION_NEXT &&
4345
0
      (option & 1) == 0)
4346
0
   {
4347
0
      png_uint_32 mask = 3U << option;
4348
0
      png_uint_32 setting = (2U + (onoff != 0)) << option;
4349
0
      png_uint_32 current = png_ptr->options;
4350
0
4351
0
      png_ptr->options = (png_uint_32)((current & ~mask) | setting);
4352
0
4353
0
      return (int)(current & mask) >> option;
4354
0
   }
4355
0
4356
0
   return PNG_OPTION_INVALID;
4357
0
}
4358
#endif
4359
4360
/* sRGB support */
4361
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4362
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4363
/* sRGB conversion tables; these are machine generated with the code in
4364
 * contrib/tools/makesRGB.c.  The actual sRGB transfer curve defined in the
4365
 * specification (see the article at https://en.wikipedia.org/wiki/SRGB)
4366
 * is used, not the gamma=1/2.2 approximation use elsewhere in libpng.
4367
 * The sRGB to linear table is exact (to the nearest 16-bit linear fraction).
4368
 * The inverse (linear to sRGB) table has accuracies as follows:
4369
 *
4370
 * For all possible (255*65535+1) input values:
4371
 *
4372
 *    error: -0.515566 - 0.625971, 79441 (0.475369%) of readings inexact
4373
 *
4374
 * For the input values corresponding to the 65536 16-bit values:
4375
 *
4376
 *    error: -0.513727 - 0.607759, 308 (0.469978%) of readings inexact
4377
 *
4378
 * In all cases the inexact readings are only off by one.
4379
 */
4380
4381
#ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4382
/* The convert-to-sRGB table is only currently required for read. */
4383
const png_uint_16 png_sRGB_table[256] =
4384
{
4385
   0,20,40,60,80,99,119,139,
4386
   159,179,199,219,241,264,288,313,
4387
   340,367,396,427,458,491,526,562,
4388
   599,637,677,718,761,805,851,898,
4389
   947,997,1048,1101,1156,1212,1270,1330,
4390
   1391,1453,1517,1583,1651,1720,1790,1863,
4391
   1937,2013,2090,2170,2250,2333,2418,2504,
4392
   2592,2681,2773,2866,2961,3058,3157,3258,
4393
   3360,3464,3570,3678,3788,3900,4014,4129,
4394
   4247,4366,4488,4611,4736,4864,4993,5124,
4395
   5257,5392,5530,5669,5810,5953,6099,6246,
4396
   6395,6547,6700,6856,7014,7174,7335,7500,
4397
   7666,7834,8004,8177,8352,8528,8708,8889,
4398
   9072,9258,9445,9635,9828,10022,10219,10417,
4399
   10619,10822,11028,11235,11446,11658,11873,12090,
4400
   12309,12530,12754,12980,13209,13440,13673,13909,
4401
   14146,14387,14629,14874,15122,15371,15623,15878,
4402
   16135,16394,16656,16920,17187,17456,17727,18001,
4403
   18277,18556,18837,19121,19407,19696,19987,20281,
4404
   20577,20876,21177,21481,21787,22096,22407,22721,
4405
   23038,23357,23678,24002,24329,24658,24990,25325,
4406
   25662,26001,26344,26688,27036,27386,27739,28094,
4407
   28452,28813,29176,29542,29911,30282,30656,31033,
4408
   31412,31794,32179,32567,32957,33350,33745,34143,
4409
   34544,34948,35355,35764,36176,36591,37008,37429,
4410
   37852,38278,38706,39138,39572,40009,40449,40891,
4411
   41337,41785,42236,42690,43147,43606,44069,44534,
4412
   45002,45473,45947,46423,46903,47385,47871,48359,
4413
   48850,49344,49841,50341,50844,51349,51858,52369,
4414
   52884,53401,53921,54445,54971,55500,56032,56567,
4415
   57105,57646,58190,58737,59287,59840,60396,60955,
4416
   61517,62082,62650,63221,63795,64372,64952,65535
4417
};
4418
#endif /* SIMPLIFIED_READ */
4419
4420
/* The base/delta tables are required for both read and write (but currently
4421
 * only the simplified versions.)
4422
 */
4423
const png_uint_16 png_sRGB_base[512] =
4424
{
4425
   128,1782,3383,4644,5675,6564,7357,8074,
4426
   8732,9346,9921,10463,10977,11466,11935,12384,
4427
   12816,13233,13634,14024,14402,14769,15125,15473,
4428
   15812,16142,16466,16781,17090,17393,17690,17981,
4429
   18266,18546,18822,19093,19359,19621,19879,20133,
4430
   20383,20630,20873,21113,21349,21583,21813,22041,
4431
   22265,22487,22707,22923,23138,23350,23559,23767,
4432
   23972,24175,24376,24575,24772,24967,25160,25352,
4433
   25542,25730,25916,26101,26284,26465,26645,26823,
4434
   27000,27176,27350,27523,27695,27865,28034,28201,
4435
   28368,28533,28697,28860,29021,29182,29341,29500,
4436
   29657,29813,29969,30123,30276,30429,30580,30730,
4437
   30880,31028,31176,31323,31469,31614,31758,31902,
4438
   32045,32186,32327,32468,32607,32746,32884,33021,
4439
   33158,33294,33429,33564,33697,33831,33963,34095,
4440
   34226,34357,34486,34616,34744,34873,35000,35127,
4441
   35253,35379,35504,35629,35753,35876,35999,36122,
4442
   36244,36365,36486,36606,36726,36845,36964,37083,
4443
   37201,37318,37435,37551,37668,37783,37898,38013,
4444
   38127,38241,38354,38467,38580,38692,38803,38915,
4445
   39026,39136,39246,39356,39465,39574,39682,39790,
4446
   39898,40005,40112,40219,40325,40431,40537,40642,
4447
   40747,40851,40955,41059,41163,41266,41369,41471,
4448
   41573,41675,41777,41878,41979,42079,42179,42279,
4449
   42379,42478,42577,42676,42775,42873,42971,43068,
4450
   43165,43262,43359,43456,43552,43648,43743,43839,
4451
   43934,44028,44123,44217,44311,44405,44499,44592,
4452
   44685,44778,44870,44962,45054,45146,45238,45329,
4453
   45420,45511,45601,45692,45782,45872,45961,46051,
4454
   46140,46229,46318,46406,46494,46583,46670,46758,
4455
   46846,46933,47020,47107,47193,47280,47366,47452,
4456
   47538,47623,47709,47794,47879,47964,48048,48133,
4457
   48217,48301,48385,48468,48552,48635,48718,48801,
4458
   48884,48966,49048,49131,49213,49294,49376,49458,
4459
   49539,49620,49701,49782,49862,49943,50023,50103,
4460
   50183,50263,50342,50422,50501,50580,50659,50738,
4461
   50816,50895,50973,51051,51129,51207,51285,51362,
4462
   51439,51517,51594,51671,51747,51824,51900,51977,
4463
   52053,52129,52205,52280,52356,52432,52507,52582,
4464
   52657,52732,52807,52881,52956,53030,53104,53178,
4465
   53252,53326,53400,53473,53546,53620,53693,53766,
4466
   53839,53911,53984,54056,54129,54201,54273,54345,
4467
   54417,54489,54560,54632,54703,54774,54845,54916,
4468
   54987,55058,55129,55199,55269,55340,55410,55480,
4469
   55550,55620,55689,55759,55828,55898,55967,56036,
4470
   56105,56174,56243,56311,56380,56448,56517,56585,
4471
   56653,56721,56789,56857,56924,56992,57059,57127,
4472
   57194,57261,57328,57395,57462,57529,57595,57662,
4473
   57728,57795,57861,57927,57993,58059,58125,58191,
4474
   58256,58322,58387,58453,58518,58583,58648,58713,
4475
   58778,58843,58908,58972,59037,59101,59165,59230,
4476
   59294,59358,59422,59486,59549,59613,59677,59740,
4477
   59804,59867,59930,59993,60056,60119,60182,60245,
4478
   60308,60370,60433,60495,60558,60620,60682,60744,
4479
   60806,60868,60930,60992,61054,61115,61177,61238,
4480
   61300,61361,61422,61483,61544,61605,61666,61727,
4481
   61788,61848,61909,61969,62030,62090,62150,62211,
4482
   62271,62331,62391,62450,62510,62570,62630,62689,
4483
   62749,62808,62867,62927,62986,63045,63104,63163,
4484
   63222,63281,63340,63398,63457,63515,63574,63632,
4485
   63691,63749,63807,63865,63923,63981,64039,64097,
4486
   64155,64212,64270,64328,64385,64443,64500,64557,
4487
   64614,64672,64729,64786,64843,64900,64956,65013,
4488
   65070,65126,65183,65239,65296,65352,65409,65465
4489
};
4490
4491
const png_byte png_sRGB_delta[512] =
4492
{
4493
   207,201,158,129,113,100,90,82,77,72,68,64,61,59,56,54,
4494
   52,50,49,47,46,45,43,42,41,40,39,39,38,37,36,36,
4495
   35,34,34,33,33,32,32,31,31,30,30,30,29,29,28,28,
4496
   28,27,27,27,27,26,26,26,25,25,25,25,24,24,24,24,
4497
   23,23,23,23,23,22,22,22,22,22,22,21,21,21,21,21,
4498
   21,20,20,20,20,20,20,20,20,19,19,19,19,19,19,19,
4499
   19,18,18,18,18,18,18,18,18,18,18,17,17,17,17,17,
4500
   17,17,17,17,17,17,16,16,16,16,16,16,16,16,16,16,
4501
   16,16,16,16,15,15,15,15,15,15,15,15,15,15,15,15,
4502
   15,15,15,15,14,14,14,14,14,14,14,14,14,14,14,14,
4503
   14,14,14,14,14,14,14,13,13,13,13,13,13,13,13,13,
4504
   13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,12,
4505
   12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
4506
   12,12,12,12,12,12,12,12,12,12,12,12,11,11,11,11,
4507
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4508
   11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,
4509
   11,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4510
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4511
   10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
4512
   10,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4513
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4514
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4515
   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
4516
   9,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4517
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4518
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4519
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4520
   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
4521
   8,8,8,8,8,8,8,8,8,7,7,7,7,7,7,7,
4522
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4523
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
4524
   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
4525
};
4526
#endif /* SIMPLIFIED READ/WRITE sRGB support */
4527
4528
/* SIMPLIFIED READ/WRITE SUPPORT */
4529
#if defined(PNG_SIMPLIFIED_READ_SUPPORTED) ||\
4530
   defined(PNG_SIMPLIFIED_WRITE_SUPPORTED)
4531
static int
4532
png_image_free_function(png_voidp argument)
4533
{
4534
   png_imagep image = png_voidcast(png_imagep, argument);
4535
   png_controlp cp = image->opaque;
4536
   png_control c;
4537
4538
   /* Double check that we have a png_ptr - it should be impossible to get here
4539
    * without one.
4540
    */
4541
   if (cp->png_ptr == NULL)
4542
      return 0;
4543
4544
   /* First free any data held in the control structure. */
4545
#  ifdef PNG_STDIO_SUPPORTED
4546
      if (cp->owned_file != 0)
4547
      {
4548
         FILE *fp = png_voidcast(FILE*, cp->png_ptr->io_ptr);
4549
         cp->owned_file = 0;
4550
4551
         /* Ignore errors here. */
4552
         if (fp != NULL)
4553
         {
4554
            cp->png_ptr->io_ptr = NULL;
4555
            (void)fclose(fp);
4556
         }
4557
      }
4558
#  endif
4559
4560
   /* Copy the control structure so that the original, allocated, version can be
4561
    * safely freed.  Notice that a png_error here stops the remainder of the
4562
    * cleanup, but this is probably fine because that would indicate bad memory
4563
    * problems anyway.
4564
    */
4565
   c = *cp;
4566
   image->opaque = &c;
4567
   png_free(c.png_ptr, cp);
4568
4569
   /* Then the structures, calling the correct API. */
4570
   if (c.for_write != 0)
4571
   {
4572
#     ifdef PNG_SIMPLIFIED_WRITE_SUPPORTED
4573
         png_destroy_write_struct(&c.png_ptr, &c.info_ptr);
4574
#     else
4575
         png_error(c.png_ptr, "simplified write not supported");
4576
#     endif
4577
   }
4578
   else
4579
   {
4580
#     ifdef PNG_SIMPLIFIED_READ_SUPPORTED
4581
         png_destroy_read_struct(&c.png_ptr, &c.info_ptr, NULL);
4582
#     else
4583
         png_error(c.png_ptr, "simplified read not supported");
4584
#     endif
4585
   }
4586
4587
   /* Success. */
4588
   return 1;
4589
}
4590
4591
void PNGAPI
4592
png_image_free(png_imagep image)
4593
{
4594
   /* Safely call the real function, but only if doing so is safe at this point
4595
    * (if not inside an error handling context).  Otherwise assume
4596
    * png_safe_execute will call this API after the return.
4597
    */
4598
   if (image != NULL && image->opaque != NULL &&
4599
      image->opaque->error_buf == NULL)
4600
   {
4601
      /* Ignore errors here: */
4602
      (void)png_safe_execute(image, png_image_free_function, image);
4603
      image->opaque = NULL;
4604
   }
4605
}
4606
4607
int /* PRIVATE */
4608
png_image_error(png_imagep image, png_const_charp error_message)
4609
{
4610
   /* Utility to log an error. */
4611
   png_safecat(image->message, (sizeof image->message), 0, error_message);
4612
   image->warning_or_error |= PNG_IMAGE_ERROR;
4613
   png_image_free(image);
4614
   return 0;
4615
}
4616
4617
#endif /* SIMPLIFIED READ/WRITE */
4618
#endif /* READ || WRITE */