Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/media/libtheora/lib/state.c
Line
Count
Source (jump to first uncovered line)
1
/********************************************************************
2
 *                                                                  *
3
 * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
4
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
5
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
7
 *                                                                  *
8
 * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009                *
9
 * by the Xiph.Org Foundation and contributors http://www.xiph.org/ *
10
 *                                                                  *
11
 ********************************************************************
12
13
  function:
14
    last mod: $Id: state.c 17576 2010-10-29 01:07:51Z tterribe $
15
16
 ********************************************************************/
17
18
#include <stdlib.h>
19
#include <string.h>
20
#include "state.h"
21
#if defined(OC_DUMP_IMAGES)
22
# include <stdio.h>
23
# include "png.h"
24
#endif
25
26
/*The function used to fill in the chroma plane motion vectors for a macro
27
   block when 4 different motion vectors are specified in the luma plane.
28
  This version is for use with chroma decimated in the X and Y directions
29
   (4:2:0).
30
  _cbmvs: The chroma block-level motion vectors to fill in.
31
  _lbmvs: The luma block-level motion vectors.*/
32
0
static void oc_set_chroma_mvs00(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
33
0
  int dx;
34
0
  int dy;
35
0
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1])
36
0
   +OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
37
0
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1])
38
0
   +OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
39
0
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,2,2),OC_DIV_ROUND_POW2(dy,2,2));
40
0
}
41
42
/*The function used to fill in the chroma plane motion vectors for a macro
43
   block when 4 different motion vectors are specified in the luma plane.
44
  This version is for use with chroma decimated in the Y direction.
45
  _cbmvs: The chroma block-level motion vectors to fill in.
46
  _lbmvs: The luma block-level motion vectors.*/
47
0
static void oc_set_chroma_mvs01(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
48
0
  int dx;
49
0
  int dy;
50
0
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[2]);
51
0
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[2]);
52
0
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
53
0
  dx=OC_MV_X(_lbmvs[1])+OC_MV_X(_lbmvs[3]);
54
0
  dy=OC_MV_Y(_lbmvs[1])+OC_MV_Y(_lbmvs[3]);
55
0
  _cbmvs[1]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
56
0
}
57
58
/*The function used to fill in the chroma plane motion vectors for a macro
59
   block when 4 different motion vectors are specified in the luma plane.
60
  This version is for use with chroma decimated in the X direction (4:2:2).
61
  _cbmvs: The chroma block-level motion vectors to fill in.
62
  _lbmvs: The luma block-level motion vectors.*/
63
0
static void oc_set_chroma_mvs10(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
64
0
  int dx;
65
0
  int dy;
66
0
  dx=OC_MV_X(_lbmvs[0])+OC_MV_X(_lbmvs[1]);
67
0
  dy=OC_MV_Y(_lbmvs[0])+OC_MV_Y(_lbmvs[1]);
68
0
  _cbmvs[0]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
69
0
  dx=OC_MV_X(_lbmvs[2])+OC_MV_X(_lbmvs[3]);
70
0
  dy=OC_MV_Y(_lbmvs[2])+OC_MV_Y(_lbmvs[3]);
71
0
  _cbmvs[2]=OC_MV(OC_DIV_ROUND_POW2(dx,1,1),OC_DIV_ROUND_POW2(dy,1,1));
72
0
}
73
74
/*The function used to fill in the chroma plane motion vectors for a macro
75
   block when 4 different motion vectors are specified in the luma plane.
76
  This version is for use with no chroma decimation (4:4:4).
77
  _cbmvs: The chroma block-level motion vectors to fill in.
78
  _lmbmv: The luma macro-block level motion vector to fill in for use in
79
           prediction.
80
  _lbmvs: The luma block-level motion vectors.*/
81
0
static void oc_set_chroma_mvs11(oc_mv _cbmvs[4],const oc_mv _lbmvs[4]){
82
0
  _cbmvs[0]=_lbmvs[0];
83
0
  _cbmvs[1]=_lbmvs[1];
84
0
  _cbmvs[2]=_lbmvs[2];
85
0
  _cbmvs[3]=_lbmvs[3];
86
0
}
87
88
/*A table of functions used to fill in the chroma plane motion vectors for a
89
   macro block when 4 different motion vectors are specified in the luma
90
   plane.*/
91
const oc_set_chroma_mvs_func OC_SET_CHROMA_MVS_TABLE[TH_PF_NFORMATS]={
92
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs00,
93
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs01,
94
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs10,
95
  (oc_set_chroma_mvs_func)oc_set_chroma_mvs11
96
};
97
98
99
100
/*Returns the fragment index of the top-left block in a macro block.
101
  This can be used to test whether or not the whole macro block is valid.
102
  _sb_map: The super block map.
103
  _quadi:  The quadrant number.
104
  Return: The index of the fragment of the upper left block in the macro
105
   block, or -1 if the block lies outside the coded frame.*/
106
0
static ptrdiff_t oc_sb_quad_top_left_frag(oc_sb_map_quad _sb_map[4],int _quadi){
107
0
  /*It so happens that under the Hilbert curve ordering described below, the
108
0
     upper-left block in each macro block is at index 0, except in macro block
109
0
     3, where it is at index 2.*/
110
0
  return _sb_map[_quadi][_quadi&_quadi<<1];
111
0
}
112
113
/*Fills in the mapping from block positions to fragment numbers for a single
114
   color plane.
115
  This function also fills in the "valid" flag of each quadrant in the super
116
   block flags.
117
  _sb_maps:  The array of super block maps for the color plane.
118
  _sb_flags: The array of super block flags for the color plane.
119
  _frag0:    The index of the first fragment in the plane.
120
  _hfrags:   The number of horizontal fragments in a coded frame.
121
  _vfrags:   The number of vertical fragments in a coded frame.*/
122
static void oc_sb_create_plane_mapping(oc_sb_map _sb_maps[],
123
0
 oc_sb_flags _sb_flags[],ptrdiff_t _frag0,int _hfrags,int _vfrags){
124
0
  /*Contains the (macro_block,block) indices for a 4x4 grid of
125
0
     fragments.
126
0
    The pattern is a 4x4 Hilbert space-filling curve.
127
0
    A Hilbert curve has the nice property that as the curve grows larger, its
128
0
     fractal dimension approaches 2.
129
0
    The intuition is that nearby blocks in the curve are also close spatially,
130
0
     with the previous element always an immediate neighbor, so that runs of
131
0
     blocks should be well correlated.*/
132
0
  static const int SB_MAP[4][4][2]={
133
0
    {{0,0},{0,1},{3,2},{3,3}},
134
0
    {{0,3},{0,2},{3,1},{3,0}},
135
0
    {{1,0},{1,3},{2,0},{2,3}},
136
0
    {{1,1},{1,2},{2,1},{2,2}}
137
0
  };
138
0
  ptrdiff_t  yfrag;
139
0
  unsigned   sbi;
140
0
  int        y;
141
0
  sbi=0;
142
0
  yfrag=_frag0;
143
0
  for(y=0;;y+=4){
144
0
    int imax;
145
0
    int x;
146
0
    /*Figure out how many columns of blocks in this super block lie within the
147
0
       image.*/
148
0
    imax=_vfrags-y;
149
0
    if(imax>4)imax=4;
150
0
    else if(imax<=0)break;
151
0
    for(x=0;;x+=4,sbi++){
152
0
      ptrdiff_t xfrag;
153
0
      int       jmax;
154
0
      int       quadi;
155
0
      int       i;
156
0
      /*Figure out how many rows of blocks in this super block lie within the
157
0
         image.*/
158
0
      jmax=_hfrags-x;
159
0
      if(jmax>4)jmax=4;
160
0
      else if(jmax<=0)break;
161
0
      /*By default, set all fragment indices to -1.*/
162
0
      memset(_sb_maps[sbi],0xFF,sizeof(_sb_maps[sbi]));
163
0
      /*Fill in the fragment map for this super block.*/
164
0
      xfrag=yfrag+x;
165
0
      for(i=0;i<imax;i++){
166
0
        int j;
167
0
        for(j=0;j<jmax;j++){
168
0
          _sb_maps[sbi][SB_MAP[i][j][0]][SB_MAP[i][j][1]]=xfrag+j;
169
0
        }
170
0
        xfrag+=_hfrags;
171
0
      }
172
0
      /*Mark which quadrants of this super block lie within the image.*/
173
0
      for(quadi=0;quadi<4;quadi++){
174
0
        _sb_flags[sbi].quad_valid|=
175
0
         (oc_sb_quad_top_left_frag(_sb_maps[sbi],quadi)>=0)<<quadi;
176
0
      }
177
0
    }
178
0
    yfrag+=_hfrags<<2;
179
0
  }
180
0
}
181
182
/*Fills in the Y plane fragment map for a macro block given the fragment
183
   coordinates of its upper-left hand corner.
184
  _mb_map:    The macro block map to fill.
185
  _fplane: The description of the Y plane.
186
  _xfrag0: The X location of the upper-left hand fragment in the luma plane.
187
  _yfrag0: The Y location of the upper-left hand fragment in the luma plane.*/
188
static void oc_mb_fill_ymapping(oc_mb_map_plane _mb_map[3],
189
0
 const oc_fragment_plane *_fplane,int _xfrag0,int _yfrag0){
190
0
  int i;
191
0
  int j;
192
0
  for(i=0;i<2;i++)for(j=0;j<2;j++){
193
0
    _mb_map[0][i<<1|j]=(_yfrag0+i)*(ptrdiff_t)_fplane->nhfrags+_xfrag0+j;
194
0
  }
195
0
}
196
197
/*Fills in the chroma plane fragment maps for a macro block.
198
  This version is for use with chroma decimated in the X and Y directions
199
   (4:2:0).
200
  _mb_map:  The macro block map to fill.
201
  _fplanes: The descriptions of the fragment planes.
202
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
203
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
204
static void oc_mb_fill_cmapping00(oc_mb_map_plane _mb_map[3],
205
0
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
206
0
  ptrdiff_t fragi;
207
0
  _xfrag0>>=1;
208
0
  _yfrag0>>=1;
209
0
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
210
0
  _mb_map[1][0]=fragi+_fplanes[1].froffset;
211
0
  _mb_map[2][0]=fragi+_fplanes[2].froffset;
212
0
}
213
214
/*Fills in the chroma plane fragment maps for a macro block.
215
  This version is for use with chroma decimated in the Y direction.
216
  _mb_map:  The macro block map to fill.
217
  _fplanes: The descriptions of the fragment planes.
218
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
219
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
220
static void oc_mb_fill_cmapping01(oc_mb_map_plane _mb_map[3],
221
0
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
222
0
  ptrdiff_t fragi;
223
0
  int       j;
224
0
  _yfrag0>>=1;
225
0
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
226
0
  for(j=0;j<2;j++){
227
0
    _mb_map[1][j]=fragi+_fplanes[1].froffset;
228
0
    _mb_map[2][j]=fragi+_fplanes[2].froffset;
229
0
    fragi++;
230
0
  }
231
0
}
232
233
/*Fills in the chroma plane fragment maps for a macro block.
234
  This version is for use with chroma decimated in the X direction (4:2:2).
235
  _mb_map:  The macro block map to fill.
236
  _fplanes: The descriptions of the fragment planes.
237
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
238
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
239
static void oc_mb_fill_cmapping10(oc_mb_map_plane _mb_map[3],
240
0
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0){
241
0
  ptrdiff_t fragi;
242
0
  int       i;
243
0
  _xfrag0>>=1;
244
0
  fragi=_yfrag0*(ptrdiff_t)_fplanes[1].nhfrags+_xfrag0;
245
0
  for(i=0;i<2;i++){
246
0
    _mb_map[1][i<<1]=fragi+_fplanes[1].froffset;
247
0
    _mb_map[2][i<<1]=fragi+_fplanes[2].froffset;
248
0
    fragi+=_fplanes[1].nhfrags;
249
0
  }
250
0
}
251
252
/*Fills in the chroma plane fragment maps for a macro block.
253
  This version is for use with no chroma decimation (4:4:4).
254
  This uses the already filled-in luma plane values.
255
  _mb_map:  The macro block map to fill.
256
  _fplanes: The descriptions of the fragment planes.*/
257
static void oc_mb_fill_cmapping11(oc_mb_map_plane _mb_map[3],
258
0
 const oc_fragment_plane _fplanes[3]){
259
0
  int k;
260
0
  for(k=0;k<4;k++){
261
0
    _mb_map[1][k]=_mb_map[0][k]+_fplanes[1].froffset;
262
0
    _mb_map[2][k]=_mb_map[0][k]+_fplanes[2].froffset;
263
0
  }
264
0
}
265
266
/*The function type used to fill in the chroma plane fragment maps for a
267
   macro block.
268
  _mb_map:  The macro block map to fill.
269
  _fplanes: The descriptions of the fragment planes.
270
  _xfrag0:  The X location of the upper-left hand fragment in the luma plane.
271
  _yfrag0:  The Y location of the upper-left hand fragment in the luma plane.*/
272
typedef void (*oc_mb_fill_cmapping_func)(oc_mb_map_plane _mb_map[3],
273
 const oc_fragment_plane _fplanes[3],int _xfrag0,int _yfrag0);
274
275
/*A table of functions used to fill in the chroma plane fragment maps for a
276
   macro block for each type of chrominance decimation.*/
277
static const oc_mb_fill_cmapping_func OC_MB_FILL_CMAPPING_TABLE[4]={
278
  oc_mb_fill_cmapping00,
279
  oc_mb_fill_cmapping01,
280
  oc_mb_fill_cmapping10,
281
  (oc_mb_fill_cmapping_func)oc_mb_fill_cmapping11
282
};
283
284
/*Fills in the mapping from macro blocks to their corresponding fragment
285
   numbers in each plane.
286
  _mb_maps:   The list of macro block maps.
287
  _mb_modes:  The list of macro block modes; macro blocks completely outside
288
               the coded region are marked invalid.
289
  _fplanes:   The descriptions of the fragment planes.
290
  _pixel_fmt: The chroma decimation type.*/
291
static void oc_mb_create_mapping(oc_mb_map _mb_maps[],
292
0
 signed char _mb_modes[],const oc_fragment_plane _fplanes[3],int _pixel_fmt){
293
0
  oc_mb_fill_cmapping_func  mb_fill_cmapping;
294
0
  unsigned                  sbi;
295
0
  int                       y;
296
0
  mb_fill_cmapping=OC_MB_FILL_CMAPPING_TABLE[_pixel_fmt];
297
0
  /*Loop through the luma plane super blocks.*/
298
0
  for(sbi=y=0;y<_fplanes[0].nvfrags;y+=4){
299
0
    int x;
300
0
    for(x=0;x<_fplanes[0].nhfrags;x+=4,sbi++){
301
0
      int ymb;
302
0
      /*Loop through the macro blocks in each super block in display order.*/
303
0
      for(ymb=0;ymb<2;ymb++){
304
0
        int xmb;
305
0
        for(xmb=0;xmb<2;xmb++){
306
0
          unsigned mbi;
307
0
          int      mbx;
308
0
          int      mby;
309
0
          mbi=sbi<<2|OC_MB_MAP[ymb][xmb];
310
0
          mbx=x|xmb<<1;
311
0
          mby=y|ymb<<1;
312
0
          /*Initialize fragment indices to -1.*/
313
0
          memset(_mb_maps[mbi],0xFF,sizeof(_mb_maps[mbi]));
314
0
          /*Make sure this macro block is within the encoded region.*/
315
0
          if(mbx>=_fplanes[0].nhfrags||mby>=_fplanes[0].nvfrags){
316
0
            _mb_modes[mbi]=OC_MODE_INVALID;
317
0
            continue;
318
0
          }
319
0
          /*Fill in the fragment indices for the luma plane.*/
320
0
          oc_mb_fill_ymapping(_mb_maps[mbi],_fplanes,mbx,mby);
321
0
          /*Fill in the fragment indices for the chroma planes.*/
322
0
          (*mb_fill_cmapping)(_mb_maps[mbi],_fplanes,mbx,mby);
323
0
        }
324
0
      }
325
0
    }
326
0
  }
327
0
}
328
329
/*Marks the fragments which fall all or partially outside the displayable
330
   region of the frame.
331
  _state: The Theora state containing the fragments to be marked.*/
332
0
static void oc_state_border_init(oc_theora_state *_state){
333
0
  oc_fragment       *frag;
334
0
  oc_fragment       *yfrag_end;
335
0
  oc_fragment       *xfrag_end;
336
0
  oc_fragment_plane *fplane;
337
0
  int                crop_x0;
338
0
  int                crop_y0;
339
0
  int                crop_xf;
340
0
  int                crop_yf;
341
0
  int                pli;
342
0
  int                y;
343
0
  int                x;
344
0
  /*The method we use here is slow, but the code is dead simple and handles
345
0
     all the special cases easily.
346
0
    We only ever need to do it once.*/
347
0
  /*Loop through the fragments, marking those completely outside the
348
0
     displayable region and constructing a border mask for those that straddle
349
0
     the border.*/
350
0
  _state->nborders=0;
351
0
  yfrag_end=frag=_state->frags;
352
0
  for(pli=0;pli<3;pli++){
353
0
    fplane=_state->fplanes+pli;
354
0
    /*Set up the cropping rectangle for this plane.*/
355
0
    crop_x0=_state->info.pic_x;
356
0
    crop_xf=_state->info.pic_x+_state->info.pic_width;
357
0
    crop_y0=_state->info.pic_y;
358
0
    crop_yf=_state->info.pic_y+_state->info.pic_height;
359
0
    if(pli>0){
360
0
      if(!(_state->info.pixel_fmt&1)){
361
0
        crop_x0=crop_x0>>1;
362
0
        crop_xf=crop_xf+1>>1;
363
0
      }
364
0
      if(!(_state->info.pixel_fmt&2)){
365
0
        crop_y0=crop_y0>>1;
366
0
        crop_yf=crop_yf+1>>1;
367
0
      }
368
0
    }
369
0
    y=0;
370
0
    for(yfrag_end+=fplane->nfrags;frag<yfrag_end;y+=8){
371
0
      x=0;
372
0
      for(xfrag_end=frag+fplane->nhfrags;frag<xfrag_end;frag++,x+=8){
373
0
        /*First check to see if this fragment is completely outside the
374
0
           displayable region.*/
375
0
        /*Note the special checks for an empty cropping rectangle.
376
0
          This guarantees that if we count a fragment as straddling the
377
0
           border below, at least one pixel in the fragment will be inside
378
0
           the displayable region.*/
379
0
        if(x+8<=crop_x0||crop_xf<=x||y+8<=crop_y0||crop_yf<=y||
380
0
         crop_x0>=crop_xf||crop_y0>=crop_yf){
381
0
          frag->invalid=1;
382
0
        }
383
0
        /*Otherwise, check to see if it straddles the border.*/
384
0
        else if(x<crop_x0&&crop_x0<x+8||x<crop_xf&&crop_xf<x+8||
385
0
         y<crop_y0&&crop_y0<y+8||y<crop_yf&&crop_yf<y+8){
386
0
          ogg_int64_t mask;
387
0
          int         npixels;
388
0
          int         i;
389
0
          mask=npixels=0;
390
0
          for(i=0;i<8;i++){
391
0
            int j;
392
0
            for(j=0;j<8;j++){
393
0
              if(x+j>=crop_x0&&x+j<crop_xf&&y+i>=crop_y0&&y+i<crop_yf){
394
0
                mask|=(ogg_int64_t)1<<(i<<3|j);
395
0
                npixels++;
396
0
              }
397
0
            }
398
0
          }
399
0
          /*Search the fragment array for border info with the same pattern.
400
0
            In general, there will be at most 8 different patterns (per
401
0
             plane).*/
402
0
          for(i=0;;i++){
403
0
            if(i>=_state->nborders){
404
0
              _state->nborders++;
405
0
              _state->borders[i].mask=mask;
406
0
              _state->borders[i].npixels=npixels;
407
0
            }
408
0
            else if(_state->borders[i].mask!=mask)continue;
409
0
            frag->borderi=i;
410
0
            break;
411
0
          }
412
0
        }
413
0
        else frag->borderi=-1;
414
0
      }
415
0
    }
416
0
  }
417
0
}
418
419
0
static int oc_state_frarray_init(oc_theora_state *_state){
420
0
  int       yhfrags;
421
0
  int       yvfrags;
422
0
  int       chfrags;
423
0
  int       cvfrags;
424
0
  ptrdiff_t yfrags;
425
0
  ptrdiff_t cfrags;
426
0
  ptrdiff_t nfrags;
427
0
  unsigned  yhsbs;
428
0
  unsigned  yvsbs;
429
0
  unsigned  chsbs;
430
0
  unsigned  cvsbs;
431
0
  unsigned  ysbs;
432
0
  unsigned  csbs;
433
0
  unsigned  nsbs;
434
0
  size_t    nmbs;
435
0
  int       hdec;
436
0
  int       vdec;
437
0
  int       pli;
438
0
  /*Figure out the number of fragments in each plane.*/
439
0
  /*These parameters have already been validated to be multiples of 16.*/
440
0
  yhfrags=_state->info.frame_width>>3;
441
0
  yvfrags=_state->info.frame_height>>3;
442
0
  hdec=!(_state->info.pixel_fmt&1);
443
0
  vdec=!(_state->info.pixel_fmt&2);
444
0
  chfrags=yhfrags+hdec>>hdec;
445
0
  cvfrags=yvfrags+vdec>>vdec;
446
0
  yfrags=yhfrags*(ptrdiff_t)yvfrags;
447
0
  cfrags=chfrags*(ptrdiff_t)cvfrags;
448
0
  nfrags=yfrags+2*cfrags;
449
0
  /*Figure out the number of super blocks in each plane.*/
450
0
  yhsbs=yhfrags+3>>2;
451
0
  yvsbs=yvfrags+3>>2;
452
0
  chsbs=chfrags+3>>2;
453
0
  cvsbs=cvfrags+3>>2;
454
0
  ysbs=yhsbs*yvsbs;
455
0
  csbs=chsbs*cvsbs;
456
0
  nsbs=ysbs+2*csbs;
457
0
  nmbs=(size_t)ysbs<<2;
458
0
  /*Check for overflow.
459
0
    We support the ridiculous upper limits of the specification (1048560 by
460
0
     1048560, or 3 TB frames) if the target architecture has 64-bit pointers,
461
0
     but for those with 32-bit pointers (or smaller!) we have to check.
462
0
    If the caller wants to prevent denial-of-service by imposing a more
463
0
     reasonable upper limit on the size of attempted allocations, they must do
464
0
     so themselves; we have no platform independent way to determine how much
465
0
     system memory there is nor an application-independent way to decide what a
466
0
     "reasonable" allocation is.*/
467
0
  if(yfrags/yhfrags!=yvfrags||2*cfrags<cfrags||nfrags<yfrags||
468
0
   ysbs/yhsbs!=yvsbs||2*csbs<csbs||nsbs<ysbs||nmbs>>2!=ysbs){
469
0
    return TH_EIMPL;
470
0
  }
471
0
  /*Initialize the fragment array.*/
472
0
  _state->fplanes[0].nhfrags=yhfrags;
473
0
  _state->fplanes[0].nvfrags=yvfrags;
474
0
  _state->fplanes[0].froffset=0;
475
0
  _state->fplanes[0].nfrags=yfrags;
476
0
  _state->fplanes[0].nhsbs=yhsbs;
477
0
  _state->fplanes[0].nvsbs=yvsbs;
478
0
  _state->fplanes[0].sboffset=0;
479
0
  _state->fplanes[0].nsbs=ysbs;
480
0
  _state->fplanes[1].nhfrags=_state->fplanes[2].nhfrags=chfrags;
481
0
  _state->fplanes[1].nvfrags=_state->fplanes[2].nvfrags=cvfrags;
482
0
  _state->fplanes[1].froffset=yfrags;
483
0
  _state->fplanes[2].froffset=yfrags+cfrags;
484
0
  _state->fplanes[1].nfrags=_state->fplanes[2].nfrags=cfrags;
485
0
  _state->fplanes[1].nhsbs=_state->fplanes[2].nhsbs=chsbs;
486
0
  _state->fplanes[1].nvsbs=_state->fplanes[2].nvsbs=cvsbs;
487
0
  _state->fplanes[1].sboffset=ysbs;
488
0
  _state->fplanes[2].sboffset=ysbs+csbs;
489
0
  _state->fplanes[1].nsbs=_state->fplanes[2].nsbs=csbs;
490
0
  _state->nfrags=nfrags;
491
0
  _state->frags=_ogg_calloc(nfrags,sizeof(*_state->frags));
492
0
  _state->frag_mvs=_ogg_malloc(nfrags*sizeof(*_state->frag_mvs));
493
0
  _state->nsbs=nsbs;
494
0
  _state->sb_maps=_ogg_malloc(nsbs*sizeof(*_state->sb_maps));
495
0
  _state->sb_flags=_ogg_calloc(nsbs,sizeof(*_state->sb_flags));
496
0
  _state->nhmbs=yhsbs<<1;
497
0
  _state->nvmbs=yvsbs<<1;
498
0
  _state->nmbs=nmbs;
499
0
  _state->mb_maps=_ogg_calloc(nmbs,sizeof(*_state->mb_maps));
500
0
  _state->mb_modes=_ogg_calloc(nmbs,sizeof(*_state->mb_modes));
501
0
  _state->coded_fragis=_ogg_malloc(nfrags*sizeof(*_state->coded_fragis));
502
0
  if(_state->frags==NULL||_state->frag_mvs==NULL||_state->sb_maps==NULL||
503
0
   _state->sb_flags==NULL||_state->mb_maps==NULL||_state->mb_modes==NULL||
504
0
   _state->coded_fragis==NULL){
505
0
    return TH_EFAULT;
506
0
  }
507
0
  /*Create the mapping from super blocks to fragments.*/
508
0
  for(pli=0;pli<3;pli++){
509
0
    oc_fragment_plane *fplane;
510
0
    fplane=_state->fplanes+pli;
511
0
    oc_sb_create_plane_mapping(_state->sb_maps+fplane->sboffset,
512
0
     _state->sb_flags+fplane->sboffset,fplane->froffset,
513
0
     fplane->nhfrags,fplane->nvfrags);
514
0
  }
515
0
  /*Create the mapping from macro blocks to fragments.*/
516
0
  oc_mb_create_mapping(_state->mb_maps,_state->mb_modes,
517
0
   _state->fplanes,_state->info.pixel_fmt);
518
0
  /*Initialize the invalid and borderi fields of each fragment.*/
519
0
  oc_state_border_init(_state);
520
0
  return 0;
521
0
}
522
523
0
static void oc_state_frarray_clear(oc_theora_state *_state){
524
0
  _ogg_free(_state->coded_fragis);
525
0
  _ogg_free(_state->mb_modes);
526
0
  _ogg_free(_state->mb_maps);
527
0
  _ogg_free(_state->sb_flags);
528
0
  _ogg_free(_state->sb_maps);
529
0
  _ogg_free(_state->frag_mvs);
530
0
  _ogg_free(_state->frags);
531
0
}
532
533
534
/*Initializes the buffers used for reconstructed frames.
535
  These buffers are padded with 16 extra pixels on each side, to allow
536
   unrestricted motion vectors without special casing the boundary.
537
  If chroma is decimated in either direction, the padding is reduced by a
538
   factor of 2 on the appropriate sides.
539
  _nrefs: The number of reference buffers to init; must be in the range 3...6.*/
540
0
static int oc_state_ref_bufs_init(oc_theora_state *_state,int _nrefs){
541
0
  th_info       *info;
542
0
  unsigned char *ref_frame_data;
543
0
  size_t         ref_frame_data_sz;
544
0
  size_t         ref_frame_sz;
545
0
  size_t         yplane_sz;
546
0
  size_t         cplane_sz;
547
0
  int            yhstride;
548
0
  int            yheight;
549
0
  int            chstride;
550
0
  int            cheight;
551
0
  ptrdiff_t      align;
552
0
  ptrdiff_t      yoffset;
553
0
  ptrdiff_t      coffset;
554
0
  ptrdiff_t     *frag_buf_offs;
555
0
  ptrdiff_t      fragi;
556
0
  int            hdec;
557
0
  int            vdec;
558
0
  int            rfi;
559
0
  int            pli;
560
0
  if(_nrefs<3||_nrefs>6)return TH_EINVAL;
561
0
  info=&_state->info;
562
0
  /*Compute the image buffer parameters for each plane.*/
563
0
  hdec=!(info->pixel_fmt&1);
564
0
  vdec=!(info->pixel_fmt&2);
565
0
  yhstride=info->frame_width+2*OC_UMV_PADDING;
566
0
  yheight=info->frame_height+2*OC_UMV_PADDING;
567
0
  /*Require 16-byte aligned rows in the chroma planes.*/
568
0
  chstride=(yhstride>>hdec)+15&~15;
569
0
  cheight=yheight>>vdec;
570
0
  yplane_sz=yhstride*(size_t)yheight;
571
0
  cplane_sz=chstride*(size_t)cheight;
572
0
  yoffset=OC_UMV_PADDING+OC_UMV_PADDING*(ptrdiff_t)yhstride;
573
0
  coffset=(OC_UMV_PADDING>>hdec)+(OC_UMV_PADDING>>vdec)*(ptrdiff_t)chstride;
574
0
  /*Although we guarantee the rows of the chroma planes are a multiple of 16
575
0
     bytes, the initial padding on the first row may only be 8 bytes.
576
0
    Compute the offset needed to the actual image data to a multiple of 16.*/
577
0
  align=-coffset&15;
578
0
  ref_frame_sz=yplane_sz+2*cplane_sz+16;
579
0
  ref_frame_data_sz=_nrefs*ref_frame_sz;
580
0
  /*Check for overflow.
581
0
    The same caveats apply as for oc_state_frarray_init().*/
582
0
  if(yplane_sz/yhstride!=(size_t)yheight||2*cplane_sz+16<cplane_sz||
583
0
   ref_frame_sz<yplane_sz||ref_frame_data_sz/_nrefs!=ref_frame_sz){
584
0
    return TH_EIMPL;
585
0
  }
586
0
  ref_frame_data=oc_aligned_malloc(ref_frame_data_sz,16);
587
0
  frag_buf_offs=_state->frag_buf_offs=
588
0
   _ogg_malloc(_state->nfrags*sizeof(*frag_buf_offs));
589
0
  if(ref_frame_data==NULL||frag_buf_offs==NULL){
590
0
    _ogg_free(frag_buf_offs);
591
0
    oc_aligned_free(ref_frame_data);
592
0
    return TH_EFAULT;
593
0
  }
594
0
  /*Set up the width, height and stride for the image buffers.*/
595
0
  _state->ref_frame_bufs[0][0].width=info->frame_width;
596
0
  _state->ref_frame_bufs[0][0].height=info->frame_height;
597
0
  _state->ref_frame_bufs[0][0].stride=yhstride;
598
0
  _state->ref_frame_bufs[0][1].width=_state->ref_frame_bufs[0][2].width=
599
0
   info->frame_width>>hdec;
600
0
  _state->ref_frame_bufs[0][1].height=_state->ref_frame_bufs[0][2].height=
601
0
   info->frame_height>>vdec;
602
0
  _state->ref_frame_bufs[0][1].stride=_state->ref_frame_bufs[0][2].stride=
603
0
   chstride;
604
0
  for(rfi=1;rfi<_nrefs;rfi++){
605
0
    memcpy(_state->ref_frame_bufs[rfi],_state->ref_frame_bufs[0],
606
0
     sizeof(_state->ref_frame_bufs[0]));
607
0
  }
608
0
  _state->ref_frame_handle=ref_frame_data;
609
0
  /*Set up the data pointers for the image buffers.*/
610
0
  for(rfi=0;rfi<_nrefs;rfi++){
611
0
    _state->ref_frame_bufs[rfi][0].data=ref_frame_data+yoffset;
612
0
    ref_frame_data+=yplane_sz+align;
613
0
    _state->ref_frame_bufs[rfi][1].data=ref_frame_data+coffset;
614
0
    ref_frame_data+=cplane_sz;
615
0
    _state->ref_frame_bufs[rfi][2].data=ref_frame_data+coffset;
616
0
    ref_frame_data+=cplane_sz+(16-align);
617
0
    /*Flip the buffer upside down.
618
0
      This allows us to decode Theora's bottom-up frames in their natural
619
0
       order, yet return a top-down buffer with a positive stride to the user.*/
620
0
    oc_ycbcr_buffer_flip(_state->ref_frame_bufs[rfi],
621
0
     _state->ref_frame_bufs[rfi]);
622
0
  }
623
0
  _state->ref_ystride[0]=-yhstride;
624
0
  _state->ref_ystride[1]=_state->ref_ystride[2]=-chstride;
625
0
  /*Initialize the fragment buffer offsets.*/
626
0
  ref_frame_data=_state->ref_frame_bufs[0][0].data;
627
0
  fragi=0;
628
0
  for(pli=0;pli<3;pli++){
629
0
    th_img_plane      *iplane;
630
0
    oc_fragment_plane *fplane;
631
0
    unsigned char     *vpix;
632
0
    ptrdiff_t          stride;
633
0
    ptrdiff_t          vfragi_end;
634
0
    int                nhfrags;
635
0
    iplane=_state->ref_frame_bufs[0]+pli;
636
0
    fplane=_state->fplanes+pli;
637
0
    vpix=iplane->data;
638
0
    vfragi_end=fplane->froffset+fplane->nfrags;
639
0
    nhfrags=fplane->nhfrags;
640
0
    stride=iplane->stride;
641
0
    while(fragi<vfragi_end){
642
0
      ptrdiff_t      hfragi_end;
643
0
      unsigned char *hpix;
644
0
      hpix=vpix;
645
0
      for(hfragi_end=fragi+nhfrags;fragi<hfragi_end;fragi++){
646
0
        frag_buf_offs[fragi]=hpix-ref_frame_data;
647
0
        hpix+=8;
648
0
      }
649
0
      vpix+=stride<<3;
650
0
    }
651
0
  }
652
0
  /*Initialize the reference frame pointers and indices.*/
653
0
  _state->ref_frame_idx[OC_FRAME_GOLD]=
654
0
   _state->ref_frame_idx[OC_FRAME_PREV]=
655
0
   _state->ref_frame_idx[OC_FRAME_GOLD_ORIG]=
656
0
   _state->ref_frame_idx[OC_FRAME_PREV_ORIG]=
657
0
   _state->ref_frame_idx[OC_FRAME_SELF]=
658
0
   _state->ref_frame_idx[OC_FRAME_IO]=-1;
659
0
  _state->ref_frame_data[OC_FRAME_GOLD]=
660
0
   _state->ref_frame_data[OC_FRAME_PREV]=
661
0
   _state->ref_frame_data[OC_FRAME_GOLD_ORIG]=
662
0
   _state->ref_frame_data[OC_FRAME_PREV_ORIG]=
663
0
   _state->ref_frame_data[OC_FRAME_SELF]=
664
0
   _state->ref_frame_data[OC_FRAME_IO]=NULL;
665
0
  return 0;
666
0
}
667
668
0
static void oc_state_ref_bufs_clear(oc_theora_state *_state){
669
0
  _ogg_free(_state->frag_buf_offs);
670
0
  oc_aligned_free(_state->ref_frame_handle);
671
0
}
672
673
674
0
void oc_state_accel_init_c(oc_theora_state *_state){
675
0
  _state->cpu_flags=0;
676
#if defined(OC_STATE_USE_VTABLE)
677
  _state->opt_vtable.frag_copy=oc_frag_copy_c;
678
  _state->opt_vtable.frag_copy_list=oc_frag_copy_list_c;
679
  _state->opt_vtable.frag_recon_intra=oc_frag_recon_intra_c;
680
  _state->opt_vtable.frag_recon_inter=oc_frag_recon_inter_c;
681
  _state->opt_vtable.frag_recon_inter2=oc_frag_recon_inter2_c;
682
  _state->opt_vtable.idct8x8=oc_idct8x8_c;
683
  _state->opt_vtable.state_frag_recon=oc_state_frag_recon_c;
684
  _state->opt_vtable.loop_filter_init=oc_loop_filter_init_c;
685
  _state->opt_vtable.state_loop_filter_frag_rows=
686
   oc_state_loop_filter_frag_rows_c;
687
  _state->opt_vtable.restore_fpu=oc_restore_fpu_c;
688
#endif
689
  _state->opt_data.dct_fzig_zag=OC_FZIG_ZAG;
690
0
}
691
692
693
0
int oc_state_init(oc_theora_state *_state,const th_info *_info,int _nrefs){
694
0
  int ret;
695
0
  /*First validate the parameters.*/
696
0
  if(_info==NULL)return TH_EFAULT;
697
0
  /*The width and height of the encoded frame must be multiples of 16.
698
0
    They must also, when divided by 16, fit into a 16-bit unsigned integer.
699
0
    The displayable frame offset coordinates must fit into an 8-bit unsigned
700
0
     integer.
701
0
    Note that the offset Y in the API is specified on the opposite side from
702
0
     how it is specified in the bitstream, because the Y axis is flipped in
703
0
     the bitstream.
704
0
    The displayable frame must fit inside the encoded frame.
705
0
    The color space must be one known by the encoder.*/
706
0
  if((_info->frame_width&0xF)||(_info->frame_height&0xF)||
707
0
   _info->frame_width<=0||_info->frame_width>=0x100000||
708
0
   _info->frame_height<=0||_info->frame_height>=0x100000||
709
0
   _info->pic_x+_info->pic_width>_info->frame_width||
710
0
   _info->pic_y+_info->pic_height>_info->frame_height||
711
0
   _info->pic_x>255||_info->frame_height-_info->pic_height-_info->pic_y>255||
712
0
   /*Note: the following <0 comparisons may generate spurious warnings on
713
0
      platforms where enums are unsigned.
714
0
     We could cast them to unsigned and just use the following >= comparison,
715
0
      but there are a number of compilers which will mis-optimize this.
716
0
     It's better to live with the spurious warnings.*/
717
0
   _info->colorspace<0||_info->colorspace>=TH_CS_NSPACES||
718
0
   _info->pixel_fmt<0||_info->pixel_fmt>=TH_PF_NFORMATS){
719
0
    return TH_EINVAL;
720
0
  }
721
0
  memset(_state,0,sizeof(*_state));
722
0
  memcpy(&_state->info,_info,sizeof(*_info));
723
0
  /*Invert the sense of pic_y to match Theora's right-handed coordinate
724
0
     system.*/
725
0
  _state->info.pic_y=_info->frame_height-_info->pic_height-_info->pic_y;
726
0
  _state->frame_type=OC_UNKWN_FRAME;
727
0
  oc_state_accel_init(_state);
728
0
  ret=oc_state_frarray_init(_state);
729
0
  if(ret>=0)ret=oc_state_ref_bufs_init(_state,_nrefs);
730
0
  if(ret<0){
731
0
    oc_state_frarray_clear(_state);
732
0
    return ret;
733
0
  }
734
0
  /*If the keyframe_granule_shift is out of range, use the maximum allowable
735
0
     value.*/
736
0
  if(_info->keyframe_granule_shift<0||_info->keyframe_granule_shift>31){
737
0
    _state->info.keyframe_granule_shift=31;
738
0
  }
739
0
  _state->keyframe_num=0;
740
0
  _state->curframe_num=-1;
741
0
  /*3.2.0 streams mark the frame index instead of the frame count.
742
0
    This was changed with stream version 3.2.1 to conform to other Ogg
743
0
     codecs.
744
0
    We add an extra bias when computing granule positions for new streams.*/
745
0
  _state->granpos_bias=TH_VERSION_CHECK(_info,3,2,1);
746
0
  return 0;
747
0
}
748
749
0
void oc_state_clear(oc_theora_state *_state){
750
0
  oc_state_ref_bufs_clear(_state);
751
0
  oc_state_frarray_clear(_state);
752
0
}
753
754
755
/*Duplicates the pixels on the border of the image plane out into the
756
   surrounding padding for use by unrestricted motion vectors.
757
  This function only adds the left and right borders, and only for the fragment
758
   rows specified.
759
  _refi: The index of the reference buffer to pad.
760
  _pli:  The color plane.
761
  _y0:   The Y coordinate of the first row to pad.
762
  _yend: The Y coordinate of the row to stop padding at.*/
763
void oc_state_borders_fill_rows(oc_theora_state *_state,int _refi,int _pli,
764
0
 int _y0,int _yend){
765
0
  th_img_plane  *iplane;
766
0
  unsigned char *apix;
767
0
  unsigned char *bpix;
768
0
  unsigned char *epix;
769
0
  int            stride;
770
0
  int            hpadding;
771
0
  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
772
0
  iplane=_state->ref_frame_bufs[_refi]+_pli;
773
0
  stride=iplane->stride;
774
0
  apix=iplane->data+_y0*(ptrdiff_t)stride;
775
0
  bpix=apix+iplane->width-1;
776
0
  epix=iplane->data+_yend*(ptrdiff_t)stride;
777
0
  /*Note the use of != instead of <, which allows the stride to be negative.*/
778
0
  while(apix!=epix){
779
0
    memset(apix-hpadding,apix[0],hpadding);
780
0
    memset(bpix+1,bpix[0],hpadding);
781
0
    apix+=stride;
782
0
    bpix+=stride;
783
0
  }
784
0
}
785
786
/*Duplicates the pixels on the border of the image plane out into the
787
   surrounding padding for use by unrestricted motion vectors.
788
  This function only adds the top and bottom borders, and must be called after
789
   the left and right borders are added.
790
  _refi:      The index of the reference buffer to pad.
791
  _pli:       The color plane.*/
792
0
void oc_state_borders_fill_caps(oc_theora_state *_state,int _refi,int _pli){
793
0
  th_img_plane  *iplane;
794
0
  unsigned char *apix;
795
0
  unsigned char *bpix;
796
0
  unsigned char *epix;
797
0
  int            stride;
798
0
  int            hpadding;
799
0
  int            vpadding;
800
0
  int            fullw;
801
0
  hpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&1));
802
0
  vpadding=OC_UMV_PADDING>>(_pli!=0&&!(_state->info.pixel_fmt&2));
803
0
  iplane=_state->ref_frame_bufs[_refi]+_pli;
804
0
  stride=iplane->stride;
805
0
  fullw=iplane->width+(hpadding<<1);
806
0
  apix=iplane->data-hpadding;
807
0
  bpix=iplane->data+(iplane->height-1)*(ptrdiff_t)stride-hpadding;
808
0
  epix=apix-stride*(ptrdiff_t)vpadding;
809
0
  while(apix!=epix){
810
0
    memcpy(apix-stride,apix,fullw);
811
0
    memcpy(bpix+stride,bpix,fullw);
812
0
    apix-=stride;
813
0
    bpix+=stride;
814
0
  }
815
0
}
816
817
/*Duplicates the pixels on the border of the given reference image out into
818
   the surrounding padding for use by unrestricted motion vectors.
819
  _state: The context containing the reference buffers.
820
  _refi:  The index of the reference buffer to pad.*/
821
0
void oc_state_borders_fill(oc_theora_state *_state,int _refi){
822
0
  int pli;
823
0
  for(pli=0;pli<3;pli++){
824
0
    oc_state_borders_fill_rows(_state,_refi,pli,0,
825
0
     _state->ref_frame_bufs[_refi][pli].height);
826
0
    oc_state_borders_fill_caps(_state,_refi,pli);
827
0
  }
828
0
}
829
830
/*Determines the offsets in an image buffer to use for motion compensation.
831
  _state:   The Theora state the offsets are to be computed with.
832
  _offsets: Returns the offset for the buffer(s).
833
            _offsets[0] is always set.
834
            _offsets[1] is set if the motion vector has non-zero fractional
835
             components.
836
  _pli:     The color plane index.
837
  _mv:      The motion vector.
838
  Return: The number of offsets returned: 1 or 2.*/
839
int oc_state_get_mv_offsets(const oc_theora_state *_state,int _offsets[2],
840
0
 int _pli,oc_mv _mv){
841
0
  /*Here is a brief description of how Theora handles motion vectors:
842
0
    Motion vector components are specified to half-pixel accuracy in
843
0
     undecimated directions of each plane, and quarter-pixel accuracy in
844
0
     decimated directions.
845
0
    Integer parts are extracted by dividing (not shifting) by the
846
0
     appropriate amount, with truncation towards zero.
847
0
    These integer values are used to calculate the first offset.
848
0
849
0
    If either of the fractional parts are non-zero, then a second offset is
850
0
     computed.
851
0
    No third or fourth offsets are computed, even if both components have
852
0
     non-zero fractional parts.
853
0
    The second offset is computed by dividing (not shifting) by the
854
0
     appropriate amount, always truncating _away_ from zero.*/
855
#if 0
856
  /*This version of the code doesn't use any tables, but is slower.*/
857
  int ystride;
858
  int xprec;
859
  int yprec;
860
  int xfrac;
861
  int yfrac;
862
  int offs;
863
  int dx;
864
  int dy;
865
  ystride=_state->ref_ystride[_pli];
866
  /*These two variables decide whether we are in half- or quarter-pixel
867
     precision in each component.*/
868
  xprec=1+(_pli!=0&&!(_state->info.pixel_fmt&1));
869
  yprec=1+(_pli!=0&&!(_state->info.pixel_fmt&2));
870
  dx=OC_MV_X(_mv);
871
  dy=OC_MV_Y(_mv);
872
  /*These two variables are either 0 if all the fractional bits are zero or -1
873
     if any of them are non-zero.*/
874
  xfrac=OC_SIGNMASK(-(dx&(xprec|1)));
875
  yfrac=OC_SIGNMASK(-(dy&(yprec|1)));
876
  offs=(dx>>xprec)+(dy>>yprec)*ystride;
877
  if(xfrac||yfrac){
878
    int xmask;
879
    int ymask;
880
    xmask=OC_SIGNMASK(dx);
881
    ymask=OC_SIGNMASK(dy);
882
    yfrac&=ystride;
883
    _offsets[0]=offs-(xfrac&xmask)+(yfrac&ymask);
884
    _offsets[1]=offs-(xfrac&~xmask)+(yfrac&~ymask);
885
    return 2;
886
  }
887
  else{
888
    _offsets[0]=offs;
889
    return 1;
890
  }
891
#else
892
  /*Using tables simplifies the code, and there's enough arithmetic to hide the
893
0
     latencies of the memory references.*/
894
0
  static const signed char OC_MVMAP[2][64]={
895
0
    {
896
0
          -15,-15,-14,-14,-13,-13,-12,-12,-11,-11,-10,-10, -9, -9, -8,
897
0
       -8, -7, -7, -6, -6, -5, -5, -4, -4, -3, -3, -2, -2, -1, -1,  0,
898
0
        0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,  7,  7,
899
0
        8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15
900
0
    },
901
0
    {
902
0
           -7, -7, -7, -7, -6, -6, -6, -6, -5, -5, -5, -5, -4, -4, -4,
903
0
       -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1,  0,  0,  0,
904
0
        0,  0,  0,  0,  1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,
905
0
        4,  4,  4,  4,  5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7
906
0
    }
907
0
  };
908
0
  static const signed char OC_MVMAP2[2][64]={
909
0
    {
910
0
        -1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
911
0
      0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,  0,-1, 0,-1,
912
0
      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,
913
0
      0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1,  0, 1, 0, 1
914
0
    },
915
0
    {
916
0
        -1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
917
0
      0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,  0,-1,-1,-1,
918
0
      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,
919
0
      0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1,  0, 1, 1, 1
920
0
    }
921
0
  };
922
0
  int ystride;
923
0
  int qpx;
924
0
  int qpy;
925
0
  int mx;
926
0
  int my;
927
0
  int mx2;
928
0
  int my2;
929
0
  int offs;
930
0
  int dx;
931
0
  int dy;
932
0
  ystride=_state->ref_ystride[_pli];
933
0
  qpy=_pli!=0&&!(_state->info.pixel_fmt&2);
934
0
  dx=OC_MV_X(_mv);
935
0
  dy=OC_MV_Y(_mv);
936
0
  my=OC_MVMAP[qpy][dy+31];
937
0
  my2=OC_MVMAP2[qpy][dy+31];
938
0
  qpx=_pli!=0&&!(_state->info.pixel_fmt&1);
939
0
  mx=OC_MVMAP[qpx][dx+31];
940
0
  mx2=OC_MVMAP2[qpx][dx+31];
941
0
  offs=my*ystride+mx;
942
0
  if(mx2||my2){
943
0
    _offsets[1]=offs+my2*ystride+mx2;
944
0
    _offsets[0]=offs;
945
0
    return 2;
946
0
  }
947
0
  _offsets[0]=offs;
948
0
  return 1;
949
0
#endif
950
0
}
951
952
void oc_state_frag_recon_c(const oc_theora_state *_state,ptrdiff_t _fragi,
953
0
 int _pli,ogg_int16_t _dct_coeffs[128],int _last_zzi,ogg_uint16_t _dc_quant){
954
0
  unsigned char *dst;
955
0
  ptrdiff_t      frag_buf_off;
956
0
  int            ystride;
957
0
  int            refi;
958
0
  /*Apply the inverse transform.*/
959
0
  /*Special case only having a DC component.*/
960
0
  if(_last_zzi<2){
961
0
    ogg_int16_t p;
962
0
    int         ci;
963
0
    /*We round this dequant product (and not any of the others) because there's
964
0
       no iDCT rounding.*/
965
0
    p=(ogg_int16_t)(_dct_coeffs[0]*(ogg_int32_t)_dc_quant+15>>5);
966
0
    /*LOOP VECTORIZES.*/
967
0
    for(ci=0;ci<64;ci++)_dct_coeffs[64+ci]=p;
968
0
  }
969
0
  else{
970
0
    /*First, dequantize the DC coefficient.*/
971
0
    _dct_coeffs[0]=(ogg_int16_t)(_dct_coeffs[0]*(int)_dc_quant);
972
0
    oc_idct8x8(_state,_dct_coeffs+64,_dct_coeffs,_last_zzi);
973
0
  }
974
0
  /*Fill in the target buffer.*/
975
0
  frag_buf_off=_state->frag_buf_offs[_fragi];
976
0
  refi=_state->frags[_fragi].refi;
977
0
  ystride=_state->ref_ystride[_pli];
978
0
  dst=_state->ref_frame_data[OC_FRAME_SELF]+frag_buf_off;
979
0
  if(refi==OC_FRAME_SELF)oc_frag_recon_intra(_state,dst,ystride,_dct_coeffs+64);
980
0
  else{
981
0
    const unsigned char *ref;
982
0
    int                  mvoffsets[2];
983
0
    ref=_state->ref_frame_data[refi]+frag_buf_off;
984
0
    if(oc_state_get_mv_offsets(_state,mvoffsets,_pli,
985
0
     _state->frag_mvs[_fragi])>1){
986
0
      oc_frag_recon_inter2(_state,
987
0
       dst,ref+mvoffsets[0],ref+mvoffsets[1],ystride,_dct_coeffs+64);
988
0
    }
989
0
    else{
990
0
      oc_frag_recon_inter(_state,dst,ref+mvoffsets[0],ystride,_dct_coeffs+64);
991
0
    }
992
0
  }
993
0
}
994
995
0
static void loop_filter_h(unsigned char *_pix,int _ystride,signed char *_bv){
996
0
  int y;
997
0
  _pix-=2;
998
0
  for(y=0;y<8;y++){
999
0
    int f;
1000
0
    f=_pix[0]-_pix[3]+3*(_pix[2]-_pix[1]);
1001
0
    /*The _bv array is used to compute the function
1002
0
      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
1003
0
      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
1004
0
    f=*(_bv+(f+4>>3));
1005
0
    _pix[1]=OC_CLAMP255(_pix[1]+f);
1006
0
    _pix[2]=OC_CLAMP255(_pix[2]-f);
1007
0
    _pix+=_ystride;
1008
0
  }
1009
0
}
1010
1011
0
static void loop_filter_v(unsigned char *_pix,int _ystride,signed char *_bv){
1012
0
  int x;
1013
0
  _pix-=_ystride*2;
1014
0
  for(x=0;x<8;x++){
1015
0
    int f;
1016
0
    f=_pix[x]-_pix[_ystride*3+x]+3*(_pix[_ystride*2+x]-_pix[_ystride+x]);
1017
0
    /*The _bv array is used to compute the function
1018
0
      f=OC_CLAMPI(OC_MINI(-_2flimit-f,0),f,OC_MAXI(_2flimit-f,0));
1019
0
      where _2flimit=_state->loop_filter_limits[_state->qis[0]]<<1;*/
1020
0
    f=*(_bv+(f+4>>3));
1021
0
    _pix[_ystride+x]=OC_CLAMP255(_pix[_ystride+x]+f);
1022
0
    _pix[_ystride*2+x]=OC_CLAMP255(_pix[_ystride*2+x]-f);
1023
0
  }
1024
0
}
1025
1026
/*Initialize the bounding values array used by the loop filter.
1027
  _bv: Storage for the array.
1028
  _flimit: The filter limit as defined in Section 7.10 of the spec.*/
1029
0
void oc_loop_filter_init_c(signed char _bv[256],int _flimit){
1030
0
  int i;
1031
0
  memset(_bv,0,sizeof(_bv[0])*256);
1032
0
  for(i=0;i<_flimit;i++){
1033
0
    if(127-i-_flimit>=0)_bv[127-i-_flimit]=(signed char)(i-_flimit);
1034
0
    _bv[127-i]=(signed char)(-i);
1035
0
    _bv[127+i]=(signed char)(i);
1036
0
    if(127+i+_flimit<256)_bv[127+i+_flimit]=(signed char)(_flimit-i);
1037
0
  }
1038
0
}
1039
1040
/*Apply the loop filter to a given set of fragment rows in the given plane.
1041
  The filter may be run on the bottom edge, affecting pixels in the next row of
1042
   fragments, so this row also needs to be available.
1043
  _bv:        The bounding values array.
1044
  _refi:      The index of the frame buffer to filter.
1045
  _pli:       The color plane to filter.
1046
  _fragy0:    The Y coordinate of the first fragment row to filter.
1047
  _fragy_end: The Y coordinate of the fragment row to stop filtering at.*/
1048
void oc_state_loop_filter_frag_rows_c(const oc_theora_state *_state,
1049
0
 signed char *_bv,int _refi,int _pli,int _fragy0,int _fragy_end){
1050
0
  const oc_fragment_plane *fplane;
1051
0
  const oc_fragment       *frags;
1052
0
  const ptrdiff_t         *frag_buf_offs;
1053
0
  unsigned char           *ref_frame_data;
1054
0
  ptrdiff_t                fragi_top;
1055
0
  ptrdiff_t                fragi_bot;
1056
0
  ptrdiff_t                fragi0;
1057
0
  ptrdiff_t                fragi0_end;
1058
0
  int                      ystride;
1059
0
  int                      nhfrags;
1060
0
  _bv+=127;
1061
0
  fplane=_state->fplanes+_pli;
1062
0
  nhfrags=fplane->nhfrags;
1063
0
  fragi_top=fplane->froffset;
1064
0
  fragi_bot=fragi_top+fplane->nfrags;
1065
0
  fragi0=fragi_top+_fragy0*(ptrdiff_t)nhfrags;
1066
0
  fragi0_end=fragi_top+_fragy_end*(ptrdiff_t)nhfrags;
1067
0
  ystride=_state->ref_ystride[_pli];
1068
0
  frags=_state->frags;
1069
0
  frag_buf_offs=_state->frag_buf_offs;
1070
0
  ref_frame_data=_state->ref_frame_data[_refi];
1071
0
  /*The following loops are constructed somewhat non-intuitively on purpose.
1072
0
    The main idea is: if a block boundary has at least one coded fragment on
1073
0
     it, the filter is applied to it.
1074
0
    However, the order that the filters are applied in matters, and VP3 chose
1075
0
     the somewhat strange ordering used below.*/
1076
0
  while(fragi0<fragi0_end){
1077
0
    ptrdiff_t fragi;
1078
0
    ptrdiff_t fragi_end;
1079
0
    fragi=fragi0;
1080
0
    fragi_end=fragi+nhfrags;
1081
0
    while(fragi<fragi_end){
1082
0
      if(frags[fragi].coded){
1083
0
        unsigned char *ref;
1084
0
        ref=ref_frame_data+frag_buf_offs[fragi];
1085
0
        if(fragi>fragi0)loop_filter_h(ref,ystride,_bv);
1086
0
        if(fragi0>fragi_top)loop_filter_v(ref,ystride,_bv);
1087
0
        if(fragi+1<fragi_end&&!frags[fragi+1].coded){
1088
0
          loop_filter_h(ref+8,ystride,_bv);
1089
0
        }
1090
0
        if(fragi+nhfrags<fragi_bot&&!frags[fragi+nhfrags].coded){
1091
0
          loop_filter_v(ref+(ystride<<3),ystride,_bv);
1092
0
        }
1093
0
      }
1094
0
      fragi++;
1095
0
    }
1096
0
    fragi0+=nhfrags;
1097
0
  }
1098
0
}
1099
1100
#if defined(OC_DUMP_IMAGES)
1101
int oc_state_dump_frame(const oc_theora_state *_state,int _frame,
1102
 const char *_suf){
1103
  /*Dump a PNG of the reconstructed image.*/
1104
  png_structp    png;
1105
  png_infop      info;
1106
  png_bytep     *image;
1107
  FILE          *fp;
1108
  char           fname[16];
1109
  unsigned char *y_row;
1110
  unsigned char *u_row;
1111
  unsigned char *v_row;
1112
  unsigned char *y;
1113
  unsigned char *u;
1114
  unsigned char *v;
1115
  ogg_int64_t    iframe;
1116
  ogg_int64_t    pframe;
1117
  int            y_stride;
1118
  int            u_stride;
1119
  int            v_stride;
1120
  int            framei;
1121
  int            width;
1122
  int            height;
1123
  int            imgi;
1124
  int            imgj;
1125
  width=_state->info.frame_width;
1126
  height=_state->info.frame_height;
1127
  iframe=_state->granpos>>_state->info.keyframe_granule_shift;
1128
  pframe=_state->granpos-(iframe<<_state->info.keyframe_granule_shift);
1129
  sprintf(fname,"%08i%s.png",(int)(iframe+pframe),_suf);
1130
  fp=fopen(fname,"wb");
1131
  if(fp==NULL)return TH_EFAULT;
1132
  image=(png_bytep *)oc_malloc_2d(height,6*width,sizeof(**image));
1133
  if(image==NULL){
1134
    fclose(fp);
1135
    return TH_EFAULT;
1136
  }
1137
  png=png_create_write_struct(PNG_LIBPNG_VER_STRING,NULL,NULL,NULL);
1138
  if(png==NULL){
1139
    oc_free_2d(image);
1140
    fclose(fp);
1141
    return TH_EFAULT;
1142
  }
1143
  info=png_create_info_struct(png);
1144
  if(info==NULL){
1145
    png_destroy_write_struct(&png,NULL);
1146
    oc_free_2d(image);
1147
    fclose(fp);
1148
    return TH_EFAULT;
1149
  }
1150
  if(setjmp(png_jmpbuf(png))){
1151
    png_destroy_write_struct(&png,&info);
1152
    oc_free_2d(image);
1153
    fclose(fp);
1154
    return TH_EFAULT;
1155
  }
1156
  framei=_state->ref_frame_idx[_frame];
1157
  y_row=_state->ref_frame_bufs[framei][0].data;
1158
  u_row=_state->ref_frame_bufs[framei][1].data;
1159
  v_row=_state->ref_frame_bufs[framei][2].data;
1160
  y_stride=_state->ref_frame_bufs[framei][0].stride;
1161
  u_stride=_state->ref_frame_bufs[framei][1].stride;
1162
  v_stride=_state->ref_frame_bufs[framei][2].stride;
1163
  /*Chroma up-sampling is just done with a box filter.
1164
    This is very likely what will actually be used in practice on a real
1165
     display, and also removes one more layer to search in for the source of
1166
     artifacts.
1167
    As an added bonus, it's dead simple.*/
1168
  for(imgi=height;imgi-->0;){
1169
    int dc;
1170
    y=y_row;
1171
    u=u_row;
1172
    v=v_row;
1173
    for(imgj=0;imgj<6*width;){
1174
      float    yval;
1175
      float    uval;
1176
      float    vval;
1177
      unsigned rval;
1178
      unsigned gval;
1179
      unsigned bval;
1180
      /*This is intentionally slow and very accurate.*/
1181
      yval=(*y-16)*(1.0F/219);
1182
      uval=(*u-128)*(2*(1-0.114F)/224);
1183
      vval=(*v-128)*(2*(1-0.299F)/224);
1184
      rval=OC_CLAMPI(0,(int)(65535*(yval+vval)+0.5F),65535);
1185
      gval=OC_CLAMPI(0,(int)(65535*(
1186
       yval-uval*(0.114F/0.587F)-vval*(0.299F/0.587F))+0.5F),65535);
1187
      bval=OC_CLAMPI(0,(int)(65535*(yval+uval)+0.5F),65535);
1188
      image[imgi][imgj++]=(unsigned char)(rval>>8);
1189
      image[imgi][imgj++]=(unsigned char)(rval&0xFF);
1190
      image[imgi][imgj++]=(unsigned char)(gval>>8);
1191
      image[imgi][imgj++]=(unsigned char)(gval&0xFF);
1192
      image[imgi][imgj++]=(unsigned char)(bval>>8);
1193
      image[imgi][imgj++]=(unsigned char)(bval&0xFF);
1194
      dc=(y-y_row&1)|(_state->info.pixel_fmt&1);
1195
      y++;
1196
      u+=dc;
1197
      v+=dc;
1198
    }
1199
    dc=-((height-1-imgi&1)|_state->info.pixel_fmt>>1);
1200
    y_row+=y_stride;
1201
    u_row+=dc&u_stride;
1202
    v_row+=dc&v_stride;
1203
  }
1204
  png_init_io(png,fp);
1205
  png_set_compression_level(png,Z_BEST_COMPRESSION);
1206
  png_set_IHDR(png,info,width,height,16,PNG_COLOR_TYPE_RGB,
1207
   PNG_INTERLACE_NONE,PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
1208
  switch(_state->info.colorspace){
1209
    case TH_CS_ITU_REC_470M:{
1210
      png_set_gAMA(png,info,2.2);
1211
      png_set_cHRM_fixed(png,info,31006,31616,
1212
       67000,32000,21000,71000,14000,8000);
1213
    }break;
1214
    case TH_CS_ITU_REC_470BG:{
1215
      png_set_gAMA(png,info,2.67);
1216
      png_set_cHRM_fixed(png,info,31271,32902,
1217
       64000,33000,29000,60000,15000,6000);
1218
    }break;
1219
    default:break;
1220
  }
1221
  png_set_pHYs(png,info,_state->info.aspect_numerator,
1222
   _state->info.aspect_denominator,0);
1223
  png_set_rows(png,info,image);
1224
  png_write_png(png,info,PNG_TRANSFORM_IDENTITY,NULL);
1225
  png_write_end(png,info);
1226
  png_destroy_write_struct(&png,&info);
1227
  oc_free_2d(image);
1228
  fclose(fp);
1229
  return 0;
1230
}
1231
#endif
1232
1233
1234
1235
0
ogg_int64_t th_granule_frame(void *_encdec,ogg_int64_t _granpos){
1236
0
  oc_theora_state *state;
1237
0
  state=(oc_theora_state *)_encdec;
1238
0
  if(_granpos>=0){
1239
0
    ogg_int64_t iframe;
1240
0
    ogg_int64_t pframe;
1241
0
    iframe=_granpos>>state->info.keyframe_granule_shift;
1242
0
    pframe=_granpos-(iframe<<state->info.keyframe_granule_shift);
1243
0
    /*3.2.0 streams store the frame index in the granule position.
1244
0
      3.2.1 and later store the frame count.
1245
0
      We return the index, so adjust the value if we have a 3.2.1 or later
1246
0
       stream.*/
1247
0
    return iframe+pframe-TH_VERSION_CHECK(&state->info,3,2,1);
1248
0
  }
1249
0
  return -1;
1250
0
}
1251
1252
0
double th_granule_time(void *_encdec,ogg_int64_t _granpos){
1253
0
  oc_theora_state *state;
1254
0
  state=(oc_theora_state *)_encdec;
1255
0
  if(_granpos>=0){
1256
0
    return (th_granule_frame(_encdec, _granpos)+1)*(
1257
0
     (double)state->info.fps_denominator/state->info.fps_numerator);
1258
0
  }
1259
0
  return -1;
1260
0
}