/src/mozilla-central/media/libvpx/libvpx/vp8/encoder/firstpass.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
3 | | * |
4 | | * Use of this source code is governed by a BSD-style license |
5 | | * that can be found in the LICENSE file in the root of the source |
6 | | * tree. An additional intellectual property rights grant can be found |
7 | | * in the file PATENTS. All contributing project authors may |
8 | | * be found in the AUTHORS file in the root of the source tree. |
9 | | */ |
10 | | |
11 | | #include <math.h> |
12 | | #include <limits.h> |
13 | | #include <stdio.h> |
14 | | |
15 | | #include "./vpx_dsp_rtcd.h" |
16 | | #include "./vpx_scale_rtcd.h" |
17 | | #include "block.h" |
18 | | #include "onyx_int.h" |
19 | | #include "vpx_dsp/variance.h" |
20 | | #include "encodeintra.h" |
21 | | #include "vp8/common/common.h" |
22 | | #include "vp8/common/setupintrarecon.h" |
23 | | #include "vp8/common/systemdependent.h" |
24 | | #include "mcomp.h" |
25 | | #include "firstpass.h" |
26 | | #include "vpx_scale/vpx_scale.h" |
27 | | #include "encodemb.h" |
28 | | #include "vp8/common/extend.h" |
29 | | #include "vpx_ports/system_state.h" |
30 | | #include "vpx_mem/vpx_mem.h" |
31 | | #include "vp8/common/swapyv12buffer.h" |
32 | | #include "rdopt.h" |
33 | | #include "vp8/common/quant_common.h" |
34 | | #include "encodemv.h" |
35 | | #include "encodeframe.h" |
36 | | |
37 | | #define OUTPUT_FPF 0 |
38 | | |
39 | | extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); |
40 | | |
41 | 0 | #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] |
42 | | extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; |
43 | | |
44 | | extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; |
45 | | |
46 | 0 | #define IIFACTOR 1.5 |
47 | 0 | #define IIKFACTOR1 1.40 |
48 | 0 | #define IIKFACTOR2 1.5 |
49 | 0 | #define RMAX 14.0 |
50 | 0 | #define GF_RMAX 48.0 |
51 | | |
52 | 0 | #define KF_MB_INTRA_MIN 300 |
53 | 0 | #define GF_MB_INTRA_MIN 200 |
54 | | |
55 | 0 | #define DOUBLE_DIVIDE_CHECK(X) ((X) < 0 ? (X)-.000001 : (X) + .000001) |
56 | | |
57 | 0 | #define POW1 (double)cpi->oxcf.two_pass_vbrbias / 100.0 |
58 | 0 | #define POW2 (double)cpi->oxcf.two_pass_vbrbias / 100.0 |
59 | | |
60 | | #define NEW_BOOST 1 |
61 | | |
62 | | static int vscale_lookup[7] = { 0, 1, 1, 2, 2, 3, 3 }; |
63 | | static int hscale_lookup[7] = { 0, 0, 1, 1, 2, 2, 3 }; |
64 | | |
65 | | static const int cq_level[QINDEX_RANGE] = { |
66 | | 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, |
67 | | 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24, |
68 | | 24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38, |
69 | | 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53, |
70 | | 54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, |
71 | | 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, |
72 | | 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 |
73 | | }; |
74 | | |
75 | | static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); |
76 | | |
77 | | /* Resets the first pass file to the given position using a relative seek |
78 | | * from the current position |
79 | | */ |
80 | 0 | static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) { |
81 | 0 | cpi->twopass.stats_in = Position; |
82 | 0 | } |
83 | | |
84 | 0 | static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { |
85 | 0 | if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; |
86 | 0 | |
87 | 0 | *next_frame = *cpi->twopass.stats_in; |
88 | 0 | return 1; |
89 | 0 | } |
90 | | |
91 | | /* Read frame stats at an offset from the current position */ |
92 | | static int read_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats, |
93 | 0 | int offset) { |
94 | 0 | FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; |
95 | 0 |
|
96 | 0 | /* Check legality of offset */ |
97 | 0 | if (offset >= 0) { |
98 | 0 | if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF; |
99 | 0 | } else if (offset < 0) { |
100 | 0 | if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF; |
101 | 0 | } |
102 | 0 | |
103 | 0 | *frame_stats = fps_ptr[offset]; |
104 | 0 | return 1; |
105 | 0 | } |
106 | | |
107 | 0 | static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) { |
108 | 0 | if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; |
109 | 0 | |
110 | 0 | *fps = *cpi->twopass.stats_in; |
111 | 0 | cpi->twopass.stats_in = |
112 | 0 | (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); |
113 | 0 | return 1; |
114 | 0 | } |
115 | | |
116 | | static void output_stats(const VP8_COMP *cpi, |
117 | | struct vpx_codec_pkt_list *pktlist, |
118 | 0 | FIRSTPASS_STATS *stats) { |
119 | 0 | struct vpx_codec_cx_pkt pkt; |
120 | 0 | (void)cpi; |
121 | 0 | pkt.kind = VPX_CODEC_STATS_PKT; |
122 | 0 | pkt.data.twopass_stats.buf = stats; |
123 | 0 | pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
124 | 0 | vpx_codec_pkt_list_add(pktlist, &pkt); |
125 | 0 |
|
126 | 0 | /* TEMP debug code */ |
127 | | #if OUTPUT_FPF |
128 | | |
129 | | { |
130 | | FILE *fpfile; |
131 | | fpfile = fopen("firstpass.stt", "a"); |
132 | | |
133 | | fprintf(fpfile, |
134 | | "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" |
135 | | " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
136 | | " %12.0f %12.0f %12.4f\n", |
137 | | stats->frame, stats->intra_error, stats->coded_error, |
138 | | stats->ssim_weighted_pred_err, stats->pcnt_inter, |
139 | | stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, |
140 | | stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, |
141 | | stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, |
142 | | stats->count, stats->duration); |
143 | | fclose(fpfile); |
144 | | } |
145 | | #endif |
146 | | } |
147 | | |
148 | 0 | static void zero_stats(FIRSTPASS_STATS *section) { |
149 | 0 | section->frame = 0.0; |
150 | 0 | section->intra_error = 0.0; |
151 | 0 | section->coded_error = 0.0; |
152 | 0 | section->ssim_weighted_pred_err = 0.0; |
153 | 0 | section->pcnt_inter = 0.0; |
154 | 0 | section->pcnt_motion = 0.0; |
155 | 0 | section->pcnt_second_ref = 0.0; |
156 | 0 | section->pcnt_neutral = 0.0; |
157 | 0 | section->MVr = 0.0; |
158 | 0 | section->mvr_abs = 0.0; |
159 | 0 | section->MVc = 0.0; |
160 | 0 | section->mvc_abs = 0.0; |
161 | 0 | section->MVrv = 0.0; |
162 | 0 | section->MVcv = 0.0; |
163 | 0 | section->mv_in_out_count = 0.0; |
164 | 0 | section->new_mv_count = 0.0; |
165 | 0 | section->count = 0.0; |
166 | 0 | section->duration = 1.0; |
167 | 0 | } |
168 | | |
169 | 0 | static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
170 | 0 | section->frame += frame->frame; |
171 | 0 | section->intra_error += frame->intra_error; |
172 | 0 | section->coded_error += frame->coded_error; |
173 | 0 | section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
174 | 0 | section->pcnt_inter += frame->pcnt_inter; |
175 | 0 | section->pcnt_motion += frame->pcnt_motion; |
176 | 0 | section->pcnt_second_ref += frame->pcnt_second_ref; |
177 | 0 | section->pcnt_neutral += frame->pcnt_neutral; |
178 | 0 | section->MVr += frame->MVr; |
179 | 0 | section->mvr_abs += frame->mvr_abs; |
180 | 0 | section->MVc += frame->MVc; |
181 | 0 | section->mvc_abs += frame->mvc_abs; |
182 | 0 | section->MVrv += frame->MVrv; |
183 | 0 | section->MVcv += frame->MVcv; |
184 | 0 | section->mv_in_out_count += frame->mv_in_out_count; |
185 | 0 | section->new_mv_count += frame->new_mv_count; |
186 | 0 | section->count += frame->count; |
187 | 0 | section->duration += frame->duration; |
188 | 0 | } |
189 | | |
190 | 0 | static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
191 | 0 | section->frame -= frame->frame; |
192 | 0 | section->intra_error -= frame->intra_error; |
193 | 0 | section->coded_error -= frame->coded_error; |
194 | 0 | section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; |
195 | 0 | section->pcnt_inter -= frame->pcnt_inter; |
196 | 0 | section->pcnt_motion -= frame->pcnt_motion; |
197 | 0 | section->pcnt_second_ref -= frame->pcnt_second_ref; |
198 | 0 | section->pcnt_neutral -= frame->pcnt_neutral; |
199 | 0 | section->MVr -= frame->MVr; |
200 | 0 | section->mvr_abs -= frame->mvr_abs; |
201 | 0 | section->MVc -= frame->MVc; |
202 | 0 | section->mvc_abs -= frame->mvc_abs; |
203 | 0 | section->MVrv -= frame->MVrv; |
204 | 0 | section->MVcv -= frame->MVcv; |
205 | 0 | section->mv_in_out_count -= frame->mv_in_out_count; |
206 | 0 | section->new_mv_count -= frame->new_mv_count; |
207 | 0 | section->count -= frame->count; |
208 | 0 | section->duration -= frame->duration; |
209 | 0 | } |
210 | | |
211 | 0 | static void avg_stats(FIRSTPASS_STATS *section) { |
212 | 0 | if (section->count < 1.0) return; |
213 | 0 | |
214 | 0 | section->intra_error /= section->count; |
215 | 0 | section->coded_error /= section->count; |
216 | 0 | section->ssim_weighted_pred_err /= section->count; |
217 | 0 | section->pcnt_inter /= section->count; |
218 | 0 | section->pcnt_second_ref /= section->count; |
219 | 0 | section->pcnt_neutral /= section->count; |
220 | 0 | section->pcnt_motion /= section->count; |
221 | 0 | section->MVr /= section->count; |
222 | 0 | section->mvr_abs /= section->count; |
223 | 0 | section->MVc /= section->count; |
224 | 0 | section->mvc_abs /= section->count; |
225 | 0 | section->MVrv /= section->count; |
226 | 0 | section->MVcv /= section->count; |
227 | 0 | section->mv_in_out_count /= section->count; |
228 | 0 | section->duration /= section->count; |
229 | 0 | } |
230 | | |
231 | | /* Calculate a modified Error used in distributing bits between easier |
232 | | * and harder frames |
233 | | */ |
234 | | static double calculate_modified_err(VP8_COMP *cpi, |
235 | 0 | FIRSTPASS_STATS *this_frame) { |
236 | 0 | double av_err = (cpi->twopass.total_stats.ssim_weighted_pred_err / |
237 | 0 | cpi->twopass.total_stats.count); |
238 | 0 | double this_err = this_frame->ssim_weighted_pred_err; |
239 | 0 | double modified_err; |
240 | 0 |
|
241 | 0 | if (this_err > av_err) { |
242 | 0 | modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); |
243 | 0 | } else { |
244 | 0 | modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); |
245 | 0 | } |
246 | 0 |
|
247 | 0 | return modified_err; |
248 | 0 | } |
249 | | |
250 | | static const double weight_table[256] = { |
251 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
252 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
253 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
254 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
255 | | 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, |
256 | | 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, |
257 | | 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, |
258 | | 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, |
259 | | 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, |
260 | | 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
261 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
262 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
263 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
264 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
265 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
266 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
267 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
268 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
269 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
270 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
271 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
272 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
273 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
274 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
275 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
276 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
277 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
278 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
279 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
280 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
281 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
282 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
283 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
284 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
285 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
286 | | 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
287 | | 1.000000, 1.000000, 1.000000, 1.000000 |
288 | | }; |
289 | | |
290 | 0 | static double simple_weight(YV12_BUFFER_CONFIG *source) { |
291 | 0 | int i, j; |
292 | 0 |
|
293 | 0 | unsigned char *src = source->y_buffer; |
294 | 0 | double sum_weights = 0.0; |
295 | 0 |
|
296 | 0 | /* Loop throught the Y plane raw examining levels and creating a weight |
297 | 0 | * for the image |
298 | 0 | */ |
299 | 0 | i = source->y_height; |
300 | 0 | do { |
301 | 0 | j = source->y_width; |
302 | 0 | do { |
303 | 0 | sum_weights += weight_table[*src]; |
304 | 0 | src++; |
305 | 0 | } while (--j); |
306 | 0 | src -= source->y_width; |
307 | 0 | src += source->y_stride; |
308 | 0 | } while (--i); |
309 | 0 |
|
310 | 0 | sum_weights /= (source->y_height * source->y_width); |
311 | 0 |
|
312 | 0 | return sum_weights; |
313 | 0 | } |
314 | | |
315 | | /* This function returns the current per frame maximum bitrate target */ |
316 | 0 | static int frame_max_bits(VP8_COMP *cpi) { |
317 | 0 | /* Max allocation for a single frame based on the max section guidelines |
318 | 0 | * passed in and how many bits are left |
319 | 0 | */ |
320 | 0 | int max_bits; |
321 | 0 |
|
322 | 0 | /* For CBR we need to also consider buffer fullness. |
323 | 0 | * If we are running below the optimal level then we need to gradually |
324 | 0 | * tighten up on max_bits. |
325 | 0 | */ |
326 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
327 | 0 | double buffer_fullness_ratio = |
328 | 0 | (double)cpi->buffer_level / |
329 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); |
330 | 0 |
|
331 | 0 | /* For CBR base this on the target average bits per frame plus the |
332 | 0 | * maximum sedction rate passed in by the user |
333 | 0 | */ |
334 | 0 | max_bits = (int)(cpi->av_per_frame_bandwidth * |
335 | 0 | ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
336 | 0 |
|
337 | 0 | /* If our buffer is below the optimum level */ |
338 | 0 | if (buffer_fullness_ratio < 1.0) { |
339 | 0 | /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ |
340 | 0 | int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) |
341 | 0 | ? cpi->av_per_frame_bandwidth >> 2 |
342 | 0 | : max_bits >> 2; |
343 | 0 |
|
344 | 0 | max_bits = (int)(max_bits * buffer_fullness_ratio); |
345 | 0 |
|
346 | 0 | /* Lowest value we will set ... which should allow the buffer to |
347 | 0 | * refill. |
348 | 0 | */ |
349 | 0 | if (max_bits < min_max_bits) max_bits = min_max_bits; |
350 | 0 | } |
351 | 0 | } |
352 | 0 | /* VBR */ |
353 | 0 | else { |
354 | 0 | /* For VBR base this on the bits and frames left plus the |
355 | 0 | * two_pass_vbrmax_section rate passed in by the user |
356 | 0 | */ |
357 | 0 | max_bits = (int)(((double)cpi->twopass.bits_left / |
358 | 0 | (cpi->twopass.total_stats.count - |
359 | 0 | (double)cpi->common.current_video_frame)) * |
360 | 0 | ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
361 | 0 | } |
362 | 0 |
|
363 | 0 | /* Trap case where we are out of bits */ |
364 | 0 | if (max_bits < 0) max_bits = 0; |
365 | 0 |
|
366 | 0 | return max_bits; |
367 | 0 | } |
368 | | |
369 | 0 | void vp8_init_first_pass(VP8_COMP *cpi) { |
370 | 0 | zero_stats(&cpi->twopass.total_stats); |
371 | 0 | } |
372 | | |
373 | 0 | void vp8_end_first_pass(VP8_COMP *cpi) { |
374 | 0 | output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); |
375 | 0 | } |
376 | | |
377 | | static void zz_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
378 | | YV12_BUFFER_CONFIG *raw_buffer, |
379 | | int *raw_motion_err, |
380 | | YV12_BUFFER_CONFIG *recon_buffer, |
381 | 0 | int *best_motion_err, int recon_yoffset) { |
382 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
383 | 0 | BLOCK *b = &x->block[0]; |
384 | 0 | BLOCKD *d = &x->e_mbd.block[0]; |
385 | 0 |
|
386 | 0 | unsigned char *src_ptr = (*(b->base_src) + b->src); |
387 | 0 | int src_stride = b->src_stride; |
388 | 0 | unsigned char *raw_ptr; |
389 | 0 | int raw_stride = raw_buffer->y_stride; |
390 | 0 | unsigned char *ref_ptr; |
391 | 0 | int ref_stride = x->e_mbd.pre.y_stride; |
392 | 0 | (void)cpi; |
393 | 0 |
|
394 | 0 | /* Set up pointers for this macro block raw buffer */ |
395 | 0 | raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset); |
396 | 0 | vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride, |
397 | 0 | (unsigned int *)(raw_motion_err)); |
398 | 0 |
|
399 | 0 | /* Set up pointers for this macro block recon buffer */ |
400 | 0 | xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
401 | 0 | ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset); |
402 | 0 | vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, |
403 | 0 | (unsigned int *)(best_motion_err)); |
404 | 0 | } |
405 | | |
406 | | static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
407 | | int_mv *ref_mv, MV *best_mv, |
408 | | YV12_BUFFER_CONFIG *recon_buffer, |
409 | 0 | int *best_motion_err, int recon_yoffset) { |
410 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
411 | 0 | BLOCK *b = &x->block[0]; |
412 | 0 | BLOCKD *d = &x->e_mbd.block[0]; |
413 | 0 | int num00; |
414 | 0 |
|
415 | 0 | int_mv tmp_mv; |
416 | 0 | int_mv ref_mv_full; |
417 | 0 |
|
418 | 0 | int tmp_err; |
419 | 0 | int step_param = 3; /* Dont search over full range for first pass */ |
420 | 0 | int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
421 | 0 | int n; |
422 | 0 | vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; |
423 | 0 | int new_mv_mode_penalty = 256; |
424 | 0 |
|
425 | 0 | /* override the default variance function to use MSE */ |
426 | 0 | v_fn_ptr.vf = vpx_mse16x16; |
427 | 0 |
|
428 | 0 | /* Set up pointers for this macro block recon buffer */ |
429 | 0 | xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
430 | 0 |
|
431 | 0 | /* Initial step/diamond search centred on best mv */ |
432 | 0 | tmp_mv.as_int = 0; |
433 | 0 | ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; |
434 | 0 | ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; |
435 | 0 | tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, |
436 | 0 | x->sadperbit16, &num00, &v_fn_ptr, |
437 | 0 | x->mvcost, ref_mv); |
438 | 0 | if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; |
439 | 0 |
|
440 | 0 | if (tmp_err < *best_motion_err) { |
441 | 0 | *best_motion_err = tmp_err; |
442 | 0 | best_mv->row = tmp_mv.as_mv.row; |
443 | 0 | best_mv->col = tmp_mv.as_mv.col; |
444 | 0 | } |
445 | 0 |
|
446 | 0 | /* Further step/diamond searches as necessary */ |
447 | 0 | n = num00; |
448 | 0 | num00 = 0; |
449 | 0 |
|
450 | 0 | while (n < further_steps) { |
451 | 0 | n++; |
452 | 0 |
|
453 | 0 | if (num00) { |
454 | 0 | num00--; |
455 | 0 | } else { |
456 | 0 | tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, |
457 | 0 | step_param + n, x->sadperbit16, &num00, |
458 | 0 | &v_fn_ptr, x->mvcost, ref_mv); |
459 | 0 | if (tmp_err < INT_MAX - new_mv_mode_penalty) { |
460 | 0 | tmp_err += new_mv_mode_penalty; |
461 | 0 | } |
462 | 0 |
|
463 | 0 | if (tmp_err < *best_motion_err) { |
464 | 0 | *best_motion_err = tmp_err; |
465 | 0 | best_mv->row = tmp_mv.as_mv.row; |
466 | 0 | best_mv->col = tmp_mv.as_mv.col; |
467 | 0 | } |
468 | 0 | } |
469 | 0 | } |
470 | 0 | } |
471 | | |
472 | 0 | void vp8_first_pass(VP8_COMP *cpi) { |
473 | 0 | int mb_row, mb_col; |
474 | 0 | MACROBLOCK *const x = &cpi->mb; |
475 | 0 | VP8_COMMON *const cm = &cpi->common; |
476 | 0 | MACROBLOCKD *const xd = &x->e_mbd; |
477 | 0 |
|
478 | 0 | int recon_yoffset, recon_uvoffset; |
479 | 0 | YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
480 | 0 | YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
481 | 0 | YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
482 | 0 | int recon_y_stride = lst_yv12->y_stride; |
483 | 0 | int recon_uv_stride = lst_yv12->uv_stride; |
484 | 0 | int64_t intra_error = 0; |
485 | 0 | int64_t coded_error = 0; |
486 | 0 |
|
487 | 0 | int sum_mvr = 0, sum_mvc = 0; |
488 | 0 | int sum_mvr_abs = 0, sum_mvc_abs = 0; |
489 | 0 | int sum_mvrs = 0, sum_mvcs = 0; |
490 | 0 | int mvcount = 0; |
491 | 0 | int intercount = 0; |
492 | 0 | int second_ref_count = 0; |
493 | 0 | int intrapenalty = 256; |
494 | 0 | int neutral_count = 0; |
495 | 0 | int new_mv_count = 0; |
496 | 0 | int sum_in_vectors = 0; |
497 | 0 | uint32_t lastmv_as_int = 0; |
498 | 0 |
|
499 | 0 | int_mv zero_ref_mv; |
500 | 0 |
|
501 | 0 | zero_ref_mv.as_int = 0; |
502 | 0 |
|
503 | 0 | vpx_clear_system_state(); |
504 | 0 |
|
505 | 0 | x->src = *cpi->Source; |
506 | 0 | xd->pre = *lst_yv12; |
507 | 0 | xd->dst = *new_yv12; |
508 | 0 |
|
509 | 0 | x->partition_info = x->pi; |
510 | 0 |
|
511 | 0 | xd->mode_info_context = cm->mi; |
512 | 0 |
|
513 | 0 | if (!cm->use_bilinear_mc_filter) { |
514 | 0 | xd->subpixel_predict = vp8_sixtap_predict4x4; |
515 | 0 | xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; |
516 | 0 | xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; |
517 | 0 | xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; |
518 | 0 | } else { |
519 | 0 | xd->subpixel_predict = vp8_bilinear_predict4x4; |
520 | 0 | xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; |
521 | 0 | xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; |
522 | 0 | xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; |
523 | 0 | } |
524 | 0 |
|
525 | 0 | vp8_build_block_offsets(x); |
526 | 0 |
|
527 | 0 | /* set up frame new frame for intra coded blocks */ |
528 | 0 | vp8_setup_intra_recon(new_yv12); |
529 | 0 | vp8cx_frame_init_quantizer(cpi); |
530 | 0 |
|
531 | 0 | /* Initialise the MV cost table to the defaults */ |
532 | 0 | { |
533 | 0 | int flag[2] = { 1, 1 }; |
534 | 0 | vp8_initialize_rd_consts(cpi, x, |
535 | 0 | vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
536 | 0 | memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); |
537 | 0 | vp8_build_component_cost_table(cpi->mb.mvcost, |
538 | 0 | (const MV_CONTEXT *)cm->fc.mvc, flag); |
539 | 0 | } |
540 | 0 |
|
541 | 0 | /* for each macroblock row in image */ |
542 | 0 | for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
543 | 0 | int_mv best_ref_mv; |
544 | 0 |
|
545 | 0 | best_ref_mv.as_int = 0; |
546 | 0 |
|
547 | 0 | /* reset above block coeffs */ |
548 | 0 | xd->up_available = (mb_row != 0); |
549 | 0 | recon_yoffset = (mb_row * recon_y_stride * 16); |
550 | 0 | recon_uvoffset = (mb_row * recon_uv_stride * 8); |
551 | 0 |
|
552 | 0 | /* Set up limit values for motion vectors to prevent them extending |
553 | 0 | * outside the UMV borders |
554 | 0 | */ |
555 | 0 | x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); |
556 | 0 | x->mv_row_max = |
557 | 0 | ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); |
558 | 0 |
|
559 | 0 | /* for each macroblock col in image */ |
560 | 0 | for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { |
561 | 0 | int this_error; |
562 | 0 | int gf_motion_error = INT_MAX; |
563 | 0 | int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
564 | 0 |
|
565 | 0 | xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; |
566 | 0 | xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; |
567 | 0 | xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; |
568 | 0 | xd->left_available = (mb_col != 0); |
569 | 0 |
|
570 | 0 | /* Copy current mb to a buffer */ |
571 | 0 | vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
572 | 0 |
|
573 | 0 | /* do intra 16x16 prediction */ |
574 | 0 | this_error = vp8_encode_intra(cpi, x, use_dc_pred); |
575 | 0 |
|
576 | 0 | /* "intrapenalty" below deals with situations where the intra |
577 | 0 | * and inter error scores are very low (eg a plain black frame) |
578 | 0 | * We do not have special cases in first pass for 0,0 and |
579 | 0 | * nearest etc so all inter modes carry an overhead cost |
580 | 0 | * estimate fot the mv. When the error score is very low this |
581 | 0 | * causes us to pick all or lots of INTRA modes and throw lots |
582 | 0 | * of key frames. This penalty adds a cost matching that of a |
583 | 0 | * 0,0 mv to the intra case. |
584 | 0 | */ |
585 | 0 | this_error += intrapenalty; |
586 | 0 |
|
587 | 0 | /* Cumulative intra error total */ |
588 | 0 | intra_error += (int64_t)this_error; |
589 | 0 |
|
590 | 0 | /* Set up limit values for motion vectors to prevent them |
591 | 0 | * extending outside the UMV borders |
592 | 0 | */ |
593 | 0 | x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
594 | 0 | x->mv_col_max = |
595 | 0 | ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); |
596 | 0 |
|
597 | 0 | /* Other than for the first frame do a motion search */ |
598 | 0 | if (cm->current_video_frame > 0) { |
599 | 0 | BLOCKD *d = &x->e_mbd.block[0]; |
600 | 0 | MV tmp_mv = { 0, 0 }; |
601 | 0 | int tmp_err; |
602 | 0 | int motion_error = INT_MAX; |
603 | 0 | int raw_motion_error = INT_MAX; |
604 | 0 |
|
605 | 0 | /* Simple 0,0 motion with no mv overhead */ |
606 | 0 | zz_motion_search(cpi, x, cpi->last_frame_unscaled_source, |
607 | 0 | &raw_motion_error, lst_yv12, &motion_error, |
608 | 0 | recon_yoffset); |
609 | 0 | d->bmi.mv.as_mv.row = 0; |
610 | 0 | d->bmi.mv.as_mv.col = 0; |
611 | 0 |
|
612 | 0 | if (raw_motion_error < cpi->oxcf.encode_breakout) { |
613 | 0 | goto skip_motion_search; |
614 | 0 | } |
615 | 0 | |
616 | 0 | /* Test last reference frame using the previous best mv as the |
617 | 0 | * starting point (best reference) for the search |
618 | 0 | */ |
619 | 0 | first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv, |
620 | 0 | lst_yv12, &motion_error, recon_yoffset); |
621 | 0 |
|
622 | 0 | /* If the current best reference mv is not centred on 0,0 |
623 | 0 | * then do a 0,0 based search as well |
624 | 0 | */ |
625 | 0 | if (best_ref_mv.as_int) { |
626 | 0 | tmp_err = INT_MAX; |
627 | 0 | first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12, |
628 | 0 | &tmp_err, recon_yoffset); |
629 | 0 |
|
630 | 0 | if (tmp_err < motion_error) { |
631 | 0 | motion_error = tmp_err; |
632 | 0 | d->bmi.mv.as_mv.row = tmp_mv.row; |
633 | 0 | d->bmi.mv.as_mv.col = tmp_mv.col; |
634 | 0 | } |
635 | 0 | } |
636 | 0 |
|
637 | 0 | /* Experimental search in a second reference frame ((0,0) |
638 | 0 | * based only) |
639 | 0 | */ |
640 | 0 | if (cm->current_video_frame > 1) { |
641 | 0 | first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, |
642 | 0 | &gf_motion_error, recon_yoffset); |
643 | 0 |
|
644 | 0 | if ((gf_motion_error < motion_error) && |
645 | 0 | (gf_motion_error < this_error)) { |
646 | 0 | second_ref_count++; |
647 | 0 | } |
648 | 0 |
|
649 | 0 | /* Reset to last frame as reference buffer */ |
650 | 0 | xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; |
651 | 0 | xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; |
652 | 0 | xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; |
653 | 0 | } |
654 | 0 |
|
655 | 0 | skip_motion_search: |
656 | 0 | /* Intra assumed best */ |
657 | 0 | best_ref_mv.as_int = 0; |
658 | 0 |
|
659 | 0 | if (motion_error <= this_error) { |
660 | 0 | /* Keep a count of cases where the inter and intra were |
661 | 0 | * very close and very low. This helps with scene cut |
662 | 0 | * detection for example in cropped clips with black bars |
663 | 0 | * at the sides or top and bottom. |
664 | 0 | */ |
665 | 0 | if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) && |
666 | 0 | (this_error < (2 * intrapenalty))) { |
667 | 0 | neutral_count++; |
668 | 0 | } |
669 | 0 |
|
670 | 0 | d->bmi.mv.as_mv.row *= 8; |
671 | 0 | d->bmi.mv.as_mv.col *= 8; |
672 | 0 | this_error = motion_error; |
673 | 0 | vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); |
674 | 0 | vp8_encode_inter16x16y(x); |
675 | 0 | sum_mvr += d->bmi.mv.as_mv.row; |
676 | 0 | sum_mvr_abs += abs(d->bmi.mv.as_mv.row); |
677 | 0 | sum_mvc += d->bmi.mv.as_mv.col; |
678 | 0 | sum_mvc_abs += abs(d->bmi.mv.as_mv.col); |
679 | 0 | sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; |
680 | 0 | sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; |
681 | 0 | intercount++; |
682 | 0 |
|
683 | 0 | best_ref_mv.as_int = d->bmi.mv.as_int; |
684 | 0 |
|
685 | 0 | /* Was the vector non-zero */ |
686 | 0 | if (d->bmi.mv.as_int) { |
687 | 0 | mvcount++; |
688 | 0 |
|
689 | 0 | /* Was it different from the last non zero vector */ |
690 | 0 | if (d->bmi.mv.as_int != lastmv_as_int) new_mv_count++; |
691 | 0 | lastmv_as_int = d->bmi.mv.as_int; |
692 | 0 |
|
693 | 0 | /* Does the Row vector point inwards or outwards */ |
694 | 0 | if (mb_row < cm->mb_rows / 2) { |
695 | 0 | if (d->bmi.mv.as_mv.row > 0) { |
696 | 0 | sum_in_vectors--; |
697 | 0 | } else if (d->bmi.mv.as_mv.row < 0) { |
698 | 0 | sum_in_vectors++; |
699 | 0 | } |
700 | 0 | } else if (mb_row > cm->mb_rows / 2) { |
701 | 0 | if (d->bmi.mv.as_mv.row > 0) { |
702 | 0 | sum_in_vectors++; |
703 | 0 | } else if (d->bmi.mv.as_mv.row < 0) { |
704 | 0 | sum_in_vectors--; |
705 | 0 | } |
706 | 0 | } |
707 | 0 |
|
708 | 0 | /* Does the Row vector point inwards or outwards */ |
709 | 0 | if (mb_col < cm->mb_cols / 2) { |
710 | 0 | if (d->bmi.mv.as_mv.col > 0) { |
711 | 0 | sum_in_vectors--; |
712 | 0 | } else if (d->bmi.mv.as_mv.col < 0) { |
713 | 0 | sum_in_vectors++; |
714 | 0 | } |
715 | 0 | } else if (mb_col > cm->mb_cols / 2) { |
716 | 0 | if (d->bmi.mv.as_mv.col > 0) { |
717 | 0 | sum_in_vectors++; |
718 | 0 | } else if (d->bmi.mv.as_mv.col < 0) { |
719 | 0 | sum_in_vectors--; |
720 | 0 | } |
721 | 0 | } |
722 | 0 | } |
723 | 0 | } |
724 | 0 | } |
725 | 0 |
|
726 | 0 | coded_error += (int64_t)this_error; |
727 | 0 |
|
728 | 0 | /* adjust to the next column of macroblocks */ |
729 | 0 | x->src.y_buffer += 16; |
730 | 0 | x->src.u_buffer += 8; |
731 | 0 | x->src.v_buffer += 8; |
732 | 0 |
|
733 | 0 | recon_yoffset += 16; |
734 | 0 | recon_uvoffset += 8; |
735 | 0 | } |
736 | 0 |
|
737 | 0 | /* adjust to the next row of mbs */ |
738 | 0 | x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
739 | 0 | x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
740 | 0 | x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
741 | 0 |
|
742 | 0 | /* extend the recon for intra prediction */ |
743 | 0 | vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, |
744 | 0 | xd->dst.v_buffer + 8); |
745 | 0 | vpx_clear_system_state(); |
746 | 0 | } |
747 | 0 |
|
748 | 0 | vpx_clear_system_state(); |
749 | 0 | { |
750 | 0 | double weight = 0.0; |
751 | 0 |
|
752 | 0 | FIRSTPASS_STATS fps; |
753 | 0 |
|
754 | 0 | fps.frame = cm->current_video_frame; |
755 | 0 | fps.intra_error = (double)(intra_error >> 8); |
756 | 0 | fps.coded_error = (double)(coded_error >> 8); |
757 | 0 | weight = simple_weight(cpi->Source); |
758 | 0 |
|
759 | 0 | if (weight < 0.1) weight = 0.1; |
760 | 0 |
|
761 | 0 | fps.ssim_weighted_pred_err = fps.coded_error * weight; |
762 | 0 |
|
763 | 0 | fps.pcnt_inter = 0.0; |
764 | 0 | fps.pcnt_motion = 0.0; |
765 | 0 | fps.MVr = 0.0; |
766 | 0 | fps.mvr_abs = 0.0; |
767 | 0 | fps.MVc = 0.0; |
768 | 0 | fps.mvc_abs = 0.0; |
769 | 0 | fps.MVrv = 0.0; |
770 | 0 | fps.MVcv = 0.0; |
771 | 0 | fps.mv_in_out_count = 0.0; |
772 | 0 | fps.new_mv_count = 0.0; |
773 | 0 | fps.count = 1.0; |
774 | 0 |
|
775 | 0 | fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; |
776 | 0 | fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; |
777 | 0 | fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; |
778 | 0 |
|
779 | 0 | if (mvcount > 0) { |
780 | 0 | fps.MVr = (double)sum_mvr / (double)mvcount; |
781 | 0 | fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; |
782 | 0 | fps.MVc = (double)sum_mvc / (double)mvcount; |
783 | 0 | fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; |
784 | 0 | fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / |
785 | 0 | (double)mvcount; |
786 | 0 | fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / |
787 | 0 | (double)mvcount; |
788 | 0 | fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); |
789 | 0 | fps.new_mv_count = new_mv_count; |
790 | 0 |
|
791 | 0 | fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; |
792 | 0 | } |
793 | 0 |
|
794 | 0 | /* TODO: handle the case when duration is set to 0, or something less |
795 | 0 | * than the full time between subsequent cpi->source_time_stamps |
796 | 0 | */ |
797 | 0 | fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); |
798 | 0 |
|
799 | 0 | /* don't want to do output stats with a stack variable! */ |
800 | 0 | memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); |
801 | 0 | output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); |
802 | 0 | accumulate_stats(&cpi->twopass.total_stats, &fps); |
803 | 0 | } |
804 | 0 |
|
805 | 0 | /* Copy the previous Last Frame into the GF buffer if specific |
806 | 0 | * conditions for doing so are met |
807 | 0 | */ |
808 | 0 | if ((cm->current_video_frame > 0) && |
809 | 0 | (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && |
810 | 0 | ((cpi->twopass.this_frame_stats.intra_error / |
811 | 0 | DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > |
812 | 0 | 2.0)) { |
813 | 0 | vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
814 | 0 | } |
815 | 0 |
|
816 | 0 | /* swap frame pointers so last frame refers to the frame we just |
817 | 0 | * compressed |
818 | 0 | */ |
819 | 0 | vp8_swap_yv12_buffer(lst_yv12, new_yv12); |
820 | 0 | vp8_yv12_extend_frame_borders(lst_yv12); |
821 | 0 |
|
822 | 0 | /* Special case for the first frame. Copy into the GF buffer as a |
823 | 0 | * second reference. |
824 | 0 | */ |
825 | 0 | if (cm->current_video_frame == 0) { |
826 | 0 | vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
827 | 0 | } |
828 | 0 |
|
829 | 0 | /* use this to see what the first pass reconstruction looks like */ |
830 | 0 | if (0) { |
831 | 0 | char filename[512]; |
832 | 0 | FILE *recon_file; |
833 | 0 | sprintf(filename, "enc%04d.yuv", (int)cm->current_video_frame); |
834 | 0 |
|
835 | 0 | if (cm->current_video_frame == 0) { |
836 | 0 | recon_file = fopen(filename, "wb"); |
837 | 0 | } else { |
838 | 0 | recon_file = fopen(filename, "ab"); |
839 | 0 | } |
840 | 0 |
|
841 | 0 | (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
842 | 0 | fclose(recon_file); |
843 | 0 | } |
844 | 0 |
|
845 | 0 | cm->current_video_frame++; |
846 | 0 | } |
847 | | extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; |
848 | | |
849 | | /* Estimate a cost per mb attributable to overheads such as the coding of |
850 | | * modes and motion vectors. |
851 | | * Currently simplistic in its assumptions for testing. |
852 | | */ |
853 | | |
854 | 0 | static double bitcost(double prob) { |
855 | 0 | if (prob > 0.000122) { |
856 | 0 | return -log(prob) / log(2.0); |
857 | 0 | } else { |
858 | 0 | return 13.0; |
859 | 0 | } |
860 | 0 | } |
861 | 0 | static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats) { |
862 | 0 | int mv_cost; |
863 | 0 | int64_t mode_cost; |
864 | 0 |
|
865 | 0 | double av_pct_inter = fpstats->pcnt_inter / fpstats->count; |
866 | 0 | double av_pct_motion = fpstats->pcnt_motion / fpstats->count; |
867 | 0 | double av_intra = (1.0 - av_pct_inter); |
868 | 0 |
|
869 | 0 | double zz_cost; |
870 | 0 | double motion_cost; |
871 | 0 | double intra_cost; |
872 | 0 |
|
873 | 0 | zz_cost = bitcost(av_pct_inter - av_pct_motion); |
874 | 0 | motion_cost = bitcost(av_pct_motion); |
875 | 0 | intra_cost = bitcost(av_intra); |
876 | 0 |
|
877 | 0 | /* Estimate of extra bits per mv overhead for mbs |
878 | 0 | * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb |
879 | 0 | */ |
880 | 0 | mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; |
881 | 0 |
|
882 | 0 | /* Crude estimate of overhead cost from modes |
883 | 0 | * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb |
884 | 0 | */ |
885 | 0 | mode_cost = |
886 | 0 | (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) + |
887 | 0 | (av_pct_motion * motion_cost) + (av_intra * intra_cost)) * |
888 | 0 | cpi->common.MBs) * |
889 | 0 | 512; |
890 | 0 |
|
891 | 0 | return mv_cost + mode_cost; |
892 | 0 | } |
893 | | |
894 | | static double calc_correction_factor(double err_per_mb, double err_devisor, |
895 | 0 | double pt_low, double pt_high, int Q) { |
896 | 0 | double power_term; |
897 | 0 | double error_term = err_per_mb / err_devisor; |
898 | 0 | double correction_factor; |
899 | 0 |
|
900 | 0 | /* Adjustment based on Q to power term. */ |
901 | 0 | power_term = pt_low + (Q * 0.01); |
902 | 0 | power_term = (power_term > pt_high) ? pt_high : power_term; |
903 | 0 |
|
904 | 0 | /* Adjustments to error term */ |
905 | 0 | /* TBD */ |
906 | 0 |
|
907 | 0 | /* Calculate correction factor */ |
908 | 0 | correction_factor = pow(error_term, power_term); |
909 | 0 |
|
910 | 0 | /* Clip range */ |
911 | 0 | correction_factor = (correction_factor < 0.05) |
912 | 0 | ? 0.05 |
913 | 0 | : (correction_factor > 5.0) ? 5.0 : correction_factor; |
914 | 0 |
|
915 | 0 | return correction_factor; |
916 | 0 | } |
917 | | |
918 | | static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, |
919 | 0 | int section_target_bandwitdh, int overhead_bits) { |
920 | 0 | int Q; |
921 | 0 | int num_mbs = cpi->common.MBs; |
922 | 0 | int target_norm_bits_per_mb; |
923 | 0 |
|
924 | 0 | double section_err = (fpstats->coded_error / fpstats->count); |
925 | 0 | double err_per_mb = section_err / num_mbs; |
926 | 0 | double err_correction_factor; |
927 | 0 | double speed_correction = 1.0; |
928 | 0 | int overhead_bits_per_mb; |
929 | 0 |
|
930 | 0 | if (section_target_bandwitdh <= 0) { |
931 | 0 | return cpi->twopass.maxq_max_limit; /* Highest value allowed */ |
932 | 0 | } |
933 | 0 | |
934 | 0 | target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
935 | 0 | ? (512 * section_target_bandwitdh) / num_mbs |
936 | 0 | : 512 * (section_target_bandwitdh / num_mbs); |
937 | 0 |
|
938 | 0 | /* Calculate a corrective factor based on a rolling ratio of bits spent |
939 | 0 | * vs target bits |
940 | 0 | */ |
941 | 0 | if ((cpi->rolling_target_bits > 0) && |
942 | 0 | (cpi->active_worst_quality < cpi->worst_quality)) { |
943 | 0 | double rolling_ratio; |
944 | 0 |
|
945 | 0 | rolling_ratio = |
946 | 0 | (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; |
947 | 0 |
|
948 | 0 | if (rolling_ratio < 0.95) { |
949 | 0 | cpi->twopass.est_max_qcorrection_factor -= 0.005; |
950 | 0 | } else if (rolling_ratio > 1.05) { |
951 | 0 | cpi->twopass.est_max_qcorrection_factor += 0.005; |
952 | 0 | } |
953 | 0 |
|
954 | 0 | cpi->twopass.est_max_qcorrection_factor = |
955 | 0 | (cpi->twopass.est_max_qcorrection_factor < 0.1) |
956 | 0 | ? 0.1 |
957 | 0 | : (cpi->twopass.est_max_qcorrection_factor > 10.0) |
958 | 0 | ? 10.0 |
959 | 0 | : cpi->twopass.est_max_qcorrection_factor; |
960 | 0 | } |
961 | 0 |
|
962 | 0 | /* Corrections for higher compression speed settings |
963 | 0 | * (reduced compression expected) |
964 | 0 | */ |
965 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
966 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
967 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
968 | 0 | } else { |
969 | 0 | speed_correction = 1.25; |
970 | 0 | } |
971 | 0 | } |
972 | 0 |
|
973 | 0 | /* Estimate of overhead bits per mb */ |
974 | 0 | /* Correction to overhead bits for min allowed Q. */ |
975 | 0 | overhead_bits_per_mb = overhead_bits / num_mbs; |
976 | 0 | overhead_bits_per_mb = (int)(overhead_bits_per_mb * |
977 | 0 | pow(0.98, (double)cpi->twopass.maxq_min_limit)); |
978 | 0 |
|
979 | 0 | /* Try and pick a max Q that will be high enough to encode the |
980 | 0 | * content at the given rate. |
981 | 0 | */ |
982 | 0 | for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; ++Q) { |
983 | 0 | int bits_per_mb_at_this_q; |
984 | 0 |
|
985 | 0 | /* Error per MB based correction factor */ |
986 | 0 | err_correction_factor = |
987 | 0 | calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); |
988 | 0 |
|
989 | 0 | bits_per_mb_at_this_q = |
990 | 0 | vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; |
991 | 0 |
|
992 | 0 | bits_per_mb_at_this_q = (int)(.5 + |
993 | 0 | err_correction_factor * speed_correction * |
994 | 0 | cpi->twopass.est_max_qcorrection_factor * |
995 | 0 | cpi->twopass.section_max_qfactor * |
996 | 0 | (double)bits_per_mb_at_this_q); |
997 | 0 |
|
998 | 0 | /* Mode and motion overhead */ |
999 | 0 | /* As Q rises in real encode loop rd code will force overhead down |
1000 | 0 | * We make a crude adjustment for this here as *.98 per Q step. |
1001 | 0 | */ |
1002 | 0 | overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
1003 | 0 |
|
1004 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1005 | 0 | } |
1006 | 0 |
|
1007 | 0 | /* Restriction on active max q for constrained quality mode. */ |
1008 | 0 | if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
1009 | 0 | (Q < cpi->cq_target_quality)) { |
1010 | 0 | Q = cpi->cq_target_quality; |
1011 | 0 | } |
1012 | 0 |
|
1013 | 0 | /* Adjust maxq_min_limit and maxq_max_limit limits based on |
1014 | 0 | * average q observed in clip for non kf/gf.arf frames |
1015 | 0 | * Give average a chance to settle though. |
1016 | 0 | */ |
1017 | 0 | if ((cpi->ni_frames > ((int)cpi->twopass.total_stats.count >> 8)) && |
1018 | 0 | (cpi->ni_frames > 150)) { |
1019 | 0 | cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) |
1020 | 0 | ? (cpi->ni_av_qi + 32) |
1021 | 0 | : cpi->worst_quality; |
1022 | 0 | cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) |
1023 | 0 | ? (cpi->ni_av_qi - 32) |
1024 | 0 | : cpi->best_quality; |
1025 | 0 | } |
1026 | 0 |
|
1027 | 0 | return Q; |
1028 | 0 | } |
1029 | | |
1030 | | /* For cq mode estimate a cq level that matches the observed |
1031 | | * complexity and data rate. |
1032 | | */ |
1033 | | static int estimate_cq(VP8_COMP *cpi, FIRSTPASS_STATS *fpstats, |
1034 | 0 | int section_target_bandwitdh, int overhead_bits) { |
1035 | 0 | int Q; |
1036 | 0 | int num_mbs = cpi->common.MBs; |
1037 | 0 | int target_norm_bits_per_mb; |
1038 | 0 |
|
1039 | 0 | double section_err = (fpstats->coded_error / fpstats->count); |
1040 | 0 | double err_per_mb = section_err / num_mbs; |
1041 | 0 | double err_correction_factor; |
1042 | 0 | double speed_correction = 1.0; |
1043 | 0 | double clip_iiratio; |
1044 | 0 | double clip_iifactor; |
1045 | 0 | int overhead_bits_per_mb; |
1046 | 0 |
|
1047 | 0 | if (0) { |
1048 | 0 | FILE *f = fopen("epmp.stt", "a"); |
1049 | 0 | fprintf(f, "%10.2f\n", err_per_mb); |
1050 | 0 | fclose(f); |
1051 | 0 | } |
1052 | 0 |
|
1053 | 0 | target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
1054 | 0 | ? (512 * section_target_bandwitdh) / num_mbs |
1055 | 0 | : 512 * (section_target_bandwitdh / num_mbs); |
1056 | 0 |
|
1057 | 0 | /* Estimate of overhead bits per mb */ |
1058 | 0 | overhead_bits_per_mb = overhead_bits / num_mbs; |
1059 | 0 |
|
1060 | 0 | /* Corrections for higher compression speed settings |
1061 | 0 | * (reduced compression expected) |
1062 | 0 | */ |
1063 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
1064 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
1065 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
1066 | 0 | } else { |
1067 | 0 | speed_correction = 1.25; |
1068 | 0 | } |
1069 | 0 | } |
1070 | 0 |
|
1071 | 0 | /* II ratio correction factor for clip as a whole */ |
1072 | 0 | clip_iiratio = cpi->twopass.total_stats.intra_error / |
1073 | 0 | DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); |
1074 | 0 | clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); |
1075 | 0 | if (clip_iifactor < 0.80) clip_iifactor = 0.80; |
1076 | 0 |
|
1077 | 0 | /* Try and pick a Q that can encode the content at the given rate. */ |
1078 | 0 | for (Q = 0; Q < MAXQ; ++Q) { |
1079 | 0 | int bits_per_mb_at_this_q; |
1080 | 0 |
|
1081 | 0 | /* Error per MB based correction factor */ |
1082 | 0 | err_correction_factor = |
1083 | 0 | calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); |
1084 | 0 |
|
1085 | 0 | bits_per_mb_at_this_q = |
1086 | 0 | vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; |
1087 | 0 |
|
1088 | 0 | bits_per_mb_at_this_q = |
1089 | 0 | (int)(.5 + |
1090 | 0 | err_correction_factor * speed_correction * clip_iifactor * |
1091 | 0 | (double)bits_per_mb_at_this_q); |
1092 | 0 |
|
1093 | 0 | /* Mode and motion overhead */ |
1094 | 0 | /* As Q rises in real encode loop rd code will force overhead down |
1095 | 0 | * We make a crude adjustment for this here as *.98 per Q step. |
1096 | 0 | */ |
1097 | 0 | overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
1098 | 0 |
|
1099 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1100 | 0 | } |
1101 | 0 |
|
1102 | 0 | /* Clip value to range "best allowed to (worst allowed - 1)" */ |
1103 | 0 | Q = cq_level[Q]; |
1104 | 0 | if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1; |
1105 | 0 | if (Q < cpi->best_quality) Q = cpi->best_quality; |
1106 | 0 |
|
1107 | 0 | return Q; |
1108 | 0 | } |
1109 | | |
1110 | | static int estimate_q(VP8_COMP *cpi, double section_err, |
1111 | 0 | int section_target_bandwitdh) { |
1112 | 0 | int Q; |
1113 | 0 | int num_mbs = cpi->common.MBs; |
1114 | 0 | int target_norm_bits_per_mb; |
1115 | 0 |
|
1116 | 0 | double err_per_mb = section_err / num_mbs; |
1117 | 0 | double err_correction_factor; |
1118 | 0 | double speed_correction = 1.0; |
1119 | 0 |
|
1120 | 0 | target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
1121 | 0 | ? (512 * section_target_bandwitdh) / num_mbs |
1122 | 0 | : 512 * (section_target_bandwitdh / num_mbs); |
1123 | 0 |
|
1124 | 0 | /* Corrections for higher compression speed settings |
1125 | 0 | * (reduced compression expected) |
1126 | 0 | */ |
1127 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
1128 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
1129 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
1130 | 0 | } else { |
1131 | 0 | speed_correction = 1.25; |
1132 | 0 | } |
1133 | 0 | } |
1134 | 0 |
|
1135 | 0 | /* Try and pick a Q that can encode the content at the given rate. */ |
1136 | 0 | for (Q = 0; Q < MAXQ; ++Q) { |
1137 | 0 | int bits_per_mb_at_this_q; |
1138 | 0 |
|
1139 | 0 | /* Error per MB based correction factor */ |
1140 | 0 | err_correction_factor = |
1141 | 0 | calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); |
1142 | 0 |
|
1143 | 0 | bits_per_mb_at_this_q = |
1144 | 0 | (int)(.5 + (err_correction_factor * speed_correction * |
1145 | 0 | cpi->twopass.est_max_qcorrection_factor * |
1146 | 0 | (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0)); |
1147 | 0 |
|
1148 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1149 | 0 | } |
1150 | 0 |
|
1151 | 0 | return Q; |
1152 | 0 | } |
1153 | | |
1154 | | /* Estimate a worst case Q for a KF group */ |
1155 | | static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, |
1156 | | int section_target_bandwitdh, |
1157 | 0 | double group_iiratio) { |
1158 | 0 | int Q; |
1159 | 0 | int num_mbs = cpi->common.MBs; |
1160 | 0 | int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; |
1161 | 0 | int bits_per_mb_at_this_q; |
1162 | 0 |
|
1163 | 0 | double err_per_mb = section_err / num_mbs; |
1164 | 0 | double err_correction_factor; |
1165 | 0 | double speed_correction = 1.0; |
1166 | 0 | double current_spend_ratio = 1.0; |
1167 | 0 |
|
1168 | 0 | double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; |
1169 | 0 | double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; |
1170 | 0 |
|
1171 | 0 | double iiratio_correction_factor = 1.0; |
1172 | 0 |
|
1173 | 0 | double combined_correction_factor; |
1174 | 0 |
|
1175 | 0 | /* Trap special case where the target is <= 0 */ |
1176 | 0 | if (target_norm_bits_per_mb <= 0) return MAXQ * 2; |
1177 | 0 |
|
1178 | 0 | /* Calculate a corrective factor based on a rolling ratio of bits spent |
1179 | 0 | * vs target bits |
1180 | 0 | * This is clamped to the range 0.1 to 10.0 |
1181 | 0 | */ |
1182 | 0 | if (cpi->long_rolling_target_bits <= 0) { |
1183 | 0 | current_spend_ratio = 10.0; |
1184 | 0 | } else { |
1185 | 0 | current_spend_ratio = (double)cpi->long_rolling_actual_bits / |
1186 | 0 | (double)cpi->long_rolling_target_bits; |
1187 | 0 | current_spend_ratio = |
1188 | 0 | (current_spend_ratio > 10.0) |
1189 | 0 | ? 10.0 |
1190 | 0 | : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; |
1191 | 0 | } |
1192 | 0 |
|
1193 | 0 | /* Calculate a correction factor based on the quality of prediction in |
1194 | 0 | * the sequence as indicated by intra_inter error score ratio (IIRatio) |
1195 | 0 | * The idea here is to favour subsampling in the hardest sections vs |
1196 | 0 | * the easyest. |
1197 | 0 | */ |
1198 | 0 | iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); |
1199 | 0 |
|
1200 | 0 | if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5; |
1201 | 0 |
|
1202 | 0 | /* Corrections for higher compression speed settings |
1203 | 0 | * (reduced compression expected) |
1204 | 0 | */ |
1205 | 0 | if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { |
1206 | 0 | if (cpi->oxcf.cpu_used <= 5) { |
1207 | 0 | speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
1208 | 0 | } else { |
1209 | 0 | speed_correction = 1.25; |
1210 | 0 | } |
1211 | 0 | } |
1212 | 0 |
|
1213 | 0 | /* Combine the various factors calculated above */ |
1214 | 0 | combined_correction_factor = |
1215 | 0 | speed_correction * iiratio_correction_factor * current_spend_ratio; |
1216 | 0 |
|
1217 | 0 | /* Try and pick a Q that should be high enough to encode the content at |
1218 | 0 | * the given rate. |
1219 | 0 | */ |
1220 | 0 | for (Q = 0; Q < MAXQ; ++Q) { |
1221 | 0 | /* Error per MB based correction factor */ |
1222 | 0 | err_correction_factor = |
1223 | 0 | calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); |
1224 | 0 |
|
1225 | 0 | bits_per_mb_at_this_q = |
1226 | 0 | (int)(.5 + (err_correction_factor * combined_correction_factor * |
1227 | 0 | (double)vp8_bits_per_mb[INTER_FRAME][Q])); |
1228 | 0 |
|
1229 | 0 | if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; |
1230 | 0 | } |
1231 | 0 |
|
1232 | 0 | /* If we could not hit the target even at Max Q then estimate what Q |
1233 | 0 | * would have been required |
1234 | 0 | */ |
1235 | 0 | while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && |
1236 | 0 | (Q < (MAXQ * 2))) { |
1237 | 0 | bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); |
1238 | 0 | Q++; |
1239 | 0 | } |
1240 | 0 |
|
1241 | 0 | if (0) { |
1242 | 0 | FILE *f = fopen("estkf_q.stt", "a"); |
1243 | 0 | fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", |
1244 | 0 | cpi->common.current_video_frame, bits_per_mb_at_this_q, |
1245 | 0 | target_norm_bits_per_mb, err_per_mb, err_correction_factor, |
1246 | 0 | current_spend_ratio, group_iiratio, iiratio_correction_factor, |
1247 | 0 | (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, |
1248 | 0 | Q); |
1249 | 0 | fclose(f); |
1250 | 0 | } |
1251 | 0 |
|
1252 | 0 | return Q; |
1253 | 0 | } |
1254 | | |
1255 | 0 | void vp8_init_second_pass(VP8_COMP *cpi) { |
1256 | 0 | FIRSTPASS_STATS this_frame; |
1257 | 0 | FIRSTPASS_STATS *start_pos; |
1258 | 0 |
|
1259 | 0 | double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * |
1260 | 0 | cpi->oxcf.two_pass_vbrmin_section / 100); |
1261 | 0 |
|
1262 | 0 | zero_stats(&cpi->twopass.total_stats); |
1263 | 0 | zero_stats(&cpi->twopass.total_left_stats); |
1264 | 0 |
|
1265 | 0 | if (!cpi->twopass.stats_in_end) return; |
1266 | 0 | |
1267 | 0 | cpi->twopass.total_stats = *cpi->twopass.stats_in_end; |
1268 | 0 | cpi->twopass.total_left_stats = cpi->twopass.total_stats; |
1269 | 0 |
|
1270 | 0 | /* each frame can have a different duration, as the frame rate in the |
1271 | 0 | * source isn't guaranteed to be constant. The frame rate prior to |
1272 | 0 | * the first frame encoded in the second pass is a guess. However the |
1273 | 0 | * sum duration is not. Its calculated based on the actual durations of |
1274 | 0 | * all frames from the first pass. |
1275 | 0 | */ |
1276 | 0 | vp8_new_framerate(cpi, |
1277 | 0 | 10000000.0 * cpi->twopass.total_stats.count / |
1278 | 0 | cpi->twopass.total_stats.duration); |
1279 | 0 |
|
1280 | 0 | cpi->output_framerate = cpi->framerate; |
1281 | 0 | cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * |
1282 | 0 | cpi->oxcf.target_bandwidth / 10000000.0); |
1283 | 0 | cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * |
1284 | 0 | two_pass_min_rate / 10000000.0); |
1285 | 0 |
|
1286 | 0 | /* Calculate a minimum intra value to be used in determining the IIratio |
1287 | 0 | * scores used in the second pass. We have this minimum to make sure |
1288 | 0 | * that clips that are static but "low complexity" in the intra domain |
1289 | 0 | * are still boosted appropriately for KF/GF/ARF |
1290 | 0 | */ |
1291 | 0 | cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
1292 | 0 | cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
1293 | 0 |
|
1294 | 0 | /* Scan the first pass file and calculate an average Intra / Inter error |
1295 | 0 | * score ratio for the sequence |
1296 | 0 | */ |
1297 | 0 | { |
1298 | 0 | double sum_iiratio = 0.0; |
1299 | 0 | double IIRatio; |
1300 | 0 |
|
1301 | 0 | start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ |
1302 | 0 |
|
1303 | 0 | while (input_stats(cpi, &this_frame) != EOF) { |
1304 | 0 | IIRatio = |
1305 | 0 | this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); |
1306 | 0 | IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; |
1307 | 0 | sum_iiratio += IIRatio; |
1308 | 0 | } |
1309 | 0 |
|
1310 | 0 | cpi->twopass.avg_iiratio = |
1311 | 0 | sum_iiratio / |
1312 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); |
1313 | 0 |
|
1314 | 0 | /* Reset file position */ |
1315 | 0 | reset_fpf_position(cpi, start_pos); |
1316 | 0 | } |
1317 | 0 |
|
1318 | 0 | /* Scan the first pass file and calculate a modified total error based |
1319 | 0 | * upon the bias/power function used to allocate bits |
1320 | 0 | */ |
1321 | 0 | { |
1322 | 0 | start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ |
1323 | 0 |
|
1324 | 0 | cpi->twopass.modified_error_total = 0.0; |
1325 | 0 | cpi->twopass.modified_error_used = 0.0; |
1326 | 0 |
|
1327 | 0 | while (input_stats(cpi, &this_frame) != EOF) { |
1328 | 0 | cpi->twopass.modified_error_total += |
1329 | 0 | calculate_modified_err(cpi, &this_frame); |
1330 | 0 | } |
1331 | 0 | cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; |
1332 | 0 |
|
1333 | 0 | reset_fpf_position(cpi, start_pos); /* Reset file position */ |
1334 | 0 | } |
1335 | 0 | } |
1336 | | |
1337 | 0 | void vp8_end_second_pass(VP8_COMP *cpi) { (void)cpi; } |
1338 | | |
1339 | | /* This function gives and estimate of how badly we believe the prediction |
1340 | | * quality is decaying from frame to frame. |
1341 | | */ |
1342 | | static double get_prediction_decay_rate(VP8_COMP *cpi, |
1343 | 0 | FIRSTPASS_STATS *next_frame) { |
1344 | 0 | double prediction_decay_rate; |
1345 | 0 | double motion_decay; |
1346 | 0 | double motion_pct = next_frame->pcnt_motion; |
1347 | 0 | (void)cpi; |
1348 | 0 |
|
1349 | 0 | /* Initial basis is the % mbs inter coded */ |
1350 | 0 | prediction_decay_rate = next_frame->pcnt_inter; |
1351 | 0 |
|
1352 | 0 | /* High % motion -> somewhat higher decay rate */ |
1353 | 0 | motion_decay = (1.0 - (motion_pct / 20.0)); |
1354 | 0 | if (motion_decay < prediction_decay_rate) { |
1355 | 0 | prediction_decay_rate = motion_decay; |
1356 | 0 | } |
1357 | 0 |
|
1358 | 0 | /* Adjustment to decay rate based on speed of motion */ |
1359 | 0 | { |
1360 | 0 | double this_mv_rabs; |
1361 | 0 | double this_mv_cabs; |
1362 | 0 | double distance_factor; |
1363 | 0 |
|
1364 | 0 | this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); |
1365 | 0 | this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); |
1366 | 0 |
|
1367 | 0 | distance_factor = |
1368 | 0 | sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / |
1369 | 0 | 250.0; |
1370 | 0 | distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); |
1371 | 0 | if (distance_factor < prediction_decay_rate) { |
1372 | 0 | prediction_decay_rate = distance_factor; |
1373 | 0 | } |
1374 | 0 | } |
1375 | 0 |
|
1376 | 0 | return prediction_decay_rate; |
1377 | 0 | } |
1378 | | |
1379 | | /* Function to test for a condition where a complex transition is followed |
1380 | | * by a static section. For example in slide shows where there is a fade |
1381 | | * between slides. This is to help with more optimal kf and gf positioning. |
1382 | | */ |
1383 | | static int detect_transition_to_still(VP8_COMP *cpi, int frame_interval, |
1384 | | int still_interval, |
1385 | | double loop_decay_rate, |
1386 | 0 | double decay_accumulator) { |
1387 | 0 | int trans_to_still = 0; |
1388 | 0 |
|
1389 | 0 | /* Break clause to detect very still sections after motion |
1390 | 0 | * For example a static image after a fade or other transition |
1391 | 0 | * instead of a clean scene cut. |
1392 | 0 | */ |
1393 | 0 | if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && |
1394 | 0 | (decay_accumulator < 0.9)) { |
1395 | 0 | int j; |
1396 | 0 | FIRSTPASS_STATS *position = cpi->twopass.stats_in; |
1397 | 0 | FIRSTPASS_STATS tmp_next_frame; |
1398 | 0 | double decay_rate; |
1399 | 0 |
|
1400 | 0 | /* Look ahead a few frames to see if static condition persists... */ |
1401 | 0 | for (j = 0; j < still_interval; ++j) { |
1402 | 0 | if (EOF == input_stats(cpi, &tmp_next_frame)) break; |
1403 | 0 | |
1404 | 0 | decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); |
1405 | 0 | if (decay_rate < 0.999) break; |
1406 | 0 | } |
1407 | 0 | /* Reset file position */ |
1408 | 0 | reset_fpf_position(cpi, position); |
1409 | 0 |
|
1410 | 0 | /* Only if it does do we signal a transition to still */ |
1411 | 0 | if (j == still_interval) trans_to_still = 1; |
1412 | 0 | } |
1413 | 0 |
|
1414 | 0 | return trans_to_still; |
1415 | 0 | } |
1416 | | |
1417 | | /* This function detects a flash through the high relative pcnt_second_ref |
1418 | | * score in the frame following a flash frame. The offset passed in should |
1419 | | * reflect this |
1420 | | */ |
1421 | 0 | static int detect_flash(VP8_COMP *cpi, int offset) { |
1422 | 0 | FIRSTPASS_STATS next_frame; |
1423 | 0 |
|
1424 | 0 | int flash_detected = 0; |
1425 | 0 |
|
1426 | 0 | /* Read the frame data. */ |
1427 | 0 | /* The return is 0 (no flash detected) if not a valid frame */ |
1428 | 0 | if (read_frame_stats(cpi, &next_frame, offset) != EOF) { |
1429 | 0 | /* What we are looking for here is a situation where there is a |
1430 | 0 | * brief break in prediction (such as a flash) but subsequent frames |
1431 | 0 | * are reasonably well predicted by an earlier (pre flash) frame. |
1432 | 0 | * The recovery after a flash is indicated by a high pcnt_second_ref |
1433 | 0 | * comapred to pcnt_inter. |
1434 | 0 | */ |
1435 | 0 | if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) && |
1436 | 0 | (next_frame.pcnt_second_ref >= 0.5)) { |
1437 | 0 | flash_detected = 1; |
1438 | 0 |
|
1439 | 0 | /*if (1) |
1440 | 0 | { |
1441 | 0 | FILE *f = fopen("flash.stt", "a"); |
1442 | 0 | fprintf(f, "%8.0f %6.2f %6.2f\n", |
1443 | 0 | next_frame.frame, |
1444 | 0 | next_frame.pcnt_inter, |
1445 | 0 | next_frame.pcnt_second_ref); |
1446 | 0 | fclose(f); |
1447 | 0 | }*/ |
1448 | 0 | } |
1449 | 0 | } |
1450 | 0 |
|
1451 | 0 | return flash_detected; |
1452 | 0 | } |
1453 | | |
1454 | | /* Update the motion related elements to the GF arf boost calculation */ |
1455 | | static void accumulate_frame_motion_stats(VP8_COMP *cpi, |
1456 | | FIRSTPASS_STATS *this_frame, |
1457 | | double *this_frame_mv_in_out, |
1458 | | double *mv_in_out_accumulator, |
1459 | | double *abs_mv_in_out_accumulator, |
1460 | 0 | double *mv_ratio_accumulator) { |
1461 | 0 | double this_frame_mvr_ratio; |
1462 | 0 | double this_frame_mvc_ratio; |
1463 | 0 | double motion_pct; |
1464 | 0 | (void)cpi; |
1465 | 0 |
|
1466 | 0 | /* Accumulate motion stats. */ |
1467 | 0 | motion_pct = this_frame->pcnt_motion; |
1468 | 0 |
|
1469 | 0 | /* Accumulate Motion In/Out of frame stats */ |
1470 | 0 | *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
1471 | 0 | *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
1472 | 0 | *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); |
1473 | 0 |
|
1474 | 0 | /* Accumulate a measure of how uniform (or conversely how random) |
1475 | 0 | * the motion field is. (A ratio of absmv / mv) |
1476 | 0 | */ |
1477 | 0 | if (motion_pct > 0.05) { |
1478 | 0 | this_frame_mvr_ratio = |
1479 | 0 | fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
1480 | 0 |
|
1481 | 0 | this_frame_mvc_ratio = |
1482 | 0 | fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
1483 | 0 |
|
1484 | 0 | *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) |
1485 | 0 | ? (this_frame_mvr_ratio * motion_pct) |
1486 | 0 | : this_frame->mvr_abs * motion_pct; |
1487 | 0 |
|
1488 | 0 | *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) |
1489 | 0 | ? (this_frame_mvc_ratio * motion_pct) |
1490 | 0 | : this_frame->mvc_abs * motion_pct; |
1491 | 0 | } |
1492 | 0 | } |
1493 | | |
1494 | | /* Calculate a baseline boost number for the current frame. */ |
1495 | | static double calc_frame_boost(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame, |
1496 | 0 | double this_frame_mv_in_out) { |
1497 | 0 | double frame_boost; |
1498 | 0 |
|
1499 | 0 | /* Underlying boost factor is based on inter intra error ratio */ |
1500 | 0 | if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) { |
1501 | 0 | frame_boost = (IIFACTOR * this_frame->intra_error / |
1502 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
1503 | 0 | } else { |
1504 | 0 | frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / |
1505 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
1506 | 0 | } |
1507 | 0 |
|
1508 | 0 | /* Increase boost for frames where new data coming into frame |
1509 | 0 | * (eg zoom out). Slightly reduce boost if there is a net balance |
1510 | 0 | * of motion out of the frame (zoom in). |
1511 | 0 | * The range for this_frame_mv_in_out is -1.0 to +1.0 |
1512 | 0 | */ |
1513 | 0 | if (this_frame_mv_in_out > 0.0) { |
1514 | 0 | frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
1515 | 0 | /* In extreme case boost is halved */ |
1516 | 0 | } else { |
1517 | 0 | frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
1518 | 0 | } |
1519 | 0 |
|
1520 | 0 | /* Clip to maximum */ |
1521 | 0 | if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; |
1522 | 0 |
|
1523 | 0 | return frame_boost; |
1524 | 0 | } |
1525 | | |
1526 | | #if NEW_BOOST |
1527 | | static int calc_arf_boost(VP8_COMP *cpi, int offset, int f_frames, int b_frames, |
1528 | 0 | int *f_boost, int *b_boost) { |
1529 | 0 | FIRSTPASS_STATS this_frame; |
1530 | 0 |
|
1531 | 0 | int i; |
1532 | 0 | double boost_score = 0.0; |
1533 | 0 | double mv_ratio_accumulator = 0.0; |
1534 | 0 | double decay_accumulator = 1.0; |
1535 | 0 | double this_frame_mv_in_out = 0.0; |
1536 | 0 | double mv_in_out_accumulator = 0.0; |
1537 | 0 | double abs_mv_in_out_accumulator = 0.0; |
1538 | 0 | double r; |
1539 | 0 | int flash_detected = 0; |
1540 | 0 |
|
1541 | 0 | /* Search forward from the proposed arf/next gf position */ |
1542 | 0 | for (i = 0; i < f_frames; ++i) { |
1543 | 0 | if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; |
1544 | 0 | |
1545 | 0 | /* Update the motion related elements to the boost calculation */ |
1546 | 0 | accumulate_frame_motion_stats( |
1547 | 0 | cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
1548 | 0 | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
1549 | 0 |
|
1550 | 0 | /* Calculate the baseline boost number for this frame */ |
1551 | 0 | r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); |
1552 | 0 |
|
1553 | 0 | /* We want to discount the the flash frame itself and the recovery |
1554 | 0 | * frame that follows as both will have poor scores. |
1555 | 0 | */ |
1556 | 0 | flash_detected = |
1557 | 0 | detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); |
1558 | 0 |
|
1559 | 0 | /* Cumulative effect of prediction quality decay */ |
1560 | 0 | if (!flash_detected) { |
1561 | 0 | decay_accumulator = |
1562 | 0 | decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); |
1563 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
1564 | 0 | } |
1565 | 0 | boost_score += (decay_accumulator * r); |
1566 | 0 |
|
1567 | 0 | /* Break out conditions. */ |
1568 | 0 | if ((!flash_detected) && |
1569 | 0 | ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || |
1570 | 0 | (mv_in_out_accumulator < -2.0))) { |
1571 | 0 | break; |
1572 | 0 | } |
1573 | 0 | } |
1574 | 0 |
|
1575 | 0 | *f_boost = (int)(boost_score * 100.0) >> 4; |
1576 | 0 |
|
1577 | 0 | /* Reset for backward looking loop */ |
1578 | 0 | boost_score = 0.0; |
1579 | 0 | mv_ratio_accumulator = 0.0; |
1580 | 0 | decay_accumulator = 1.0; |
1581 | 0 | this_frame_mv_in_out = 0.0; |
1582 | 0 | mv_in_out_accumulator = 0.0; |
1583 | 0 | abs_mv_in_out_accumulator = 0.0; |
1584 | 0 |
|
1585 | 0 | /* Search forward from the proposed arf/next gf position */ |
1586 | 0 | for (i = -1; i >= -b_frames; i--) { |
1587 | 0 | if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; |
1588 | 0 | |
1589 | 0 | /* Update the motion related elements to the boost calculation */ |
1590 | 0 | accumulate_frame_motion_stats( |
1591 | 0 | cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
1592 | 0 | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
1593 | 0 |
|
1594 | 0 | /* Calculate the baseline boost number for this frame */ |
1595 | 0 | r = calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out); |
1596 | 0 |
|
1597 | 0 | /* We want to discount the the flash frame itself and the recovery |
1598 | 0 | * frame that follows as both will have poor scores. |
1599 | 0 | */ |
1600 | 0 | flash_detected = |
1601 | 0 | detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); |
1602 | 0 |
|
1603 | 0 | /* Cumulative effect of prediction quality decay */ |
1604 | 0 | if (!flash_detected) { |
1605 | 0 | decay_accumulator = |
1606 | 0 | decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); |
1607 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
1608 | 0 | } |
1609 | 0 |
|
1610 | 0 | boost_score += (decay_accumulator * r); |
1611 | 0 |
|
1612 | 0 | /* Break out conditions. */ |
1613 | 0 | if ((!flash_detected) && |
1614 | 0 | ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || |
1615 | 0 | (mv_in_out_accumulator < -2.0))) { |
1616 | 0 | break; |
1617 | 0 | } |
1618 | 0 | } |
1619 | 0 | *b_boost = (int)(boost_score * 100.0) >> 4; |
1620 | 0 |
|
1621 | 0 | return (*f_boost + *b_boost); |
1622 | 0 | } |
1623 | | #endif |
1624 | | |
1625 | | /* Analyse and define a gf/arf group . */ |
1626 | 0 | static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
1627 | 0 | FIRSTPASS_STATS next_frame; |
1628 | 0 | FIRSTPASS_STATS *start_pos; |
1629 | 0 | int i; |
1630 | 0 | double r; |
1631 | 0 | double boost_score = 0.0; |
1632 | 0 | double old_boost_score = 0.0; |
1633 | 0 | double gf_group_err = 0.0; |
1634 | 0 | double gf_first_frame_err = 0.0; |
1635 | 0 | double mod_frame_err = 0.0; |
1636 | 0 |
|
1637 | 0 | double mv_ratio_accumulator = 0.0; |
1638 | 0 | double decay_accumulator = 1.0; |
1639 | 0 |
|
1640 | 0 | double loop_decay_rate = 1.00; /* Starting decay rate */ |
1641 | 0 |
|
1642 | 0 | double this_frame_mv_in_out = 0.0; |
1643 | 0 | double mv_in_out_accumulator = 0.0; |
1644 | 0 | double abs_mv_in_out_accumulator = 0.0; |
1645 | 0 | double mod_err_per_mb_accumulator = 0.0; |
1646 | 0 |
|
1647 | 0 | int max_bits = frame_max_bits(cpi); /* Max for a single frame */ |
1648 | 0 |
|
1649 | 0 | unsigned int allow_alt_ref = |
1650 | 0 | cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; |
1651 | 0 |
|
1652 | 0 | int alt_boost = 0; |
1653 | 0 | int f_boost = 0; |
1654 | 0 | int b_boost = 0; |
1655 | 0 | int flash_detected; |
1656 | 0 |
|
1657 | 0 | cpi->twopass.gf_group_bits = 0; |
1658 | 0 | cpi->twopass.gf_decay_rate = 0; |
1659 | 0 |
|
1660 | 0 | vpx_clear_system_state(); |
1661 | 0 |
|
1662 | 0 | start_pos = cpi->twopass.stats_in; |
1663 | 0 |
|
1664 | 0 | memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ |
1665 | 0 |
|
1666 | 0 | /* Load stats for the current frame. */ |
1667 | 0 | mod_frame_err = calculate_modified_err(cpi, this_frame); |
1668 | 0 |
|
1669 | 0 | /* Note the error of the frame at the start of the group (this will be |
1670 | 0 | * the GF frame error if we code a normal gf |
1671 | 0 | */ |
1672 | 0 | gf_first_frame_err = mod_frame_err; |
1673 | 0 |
|
1674 | 0 | /* Special treatment if the current frame is a key frame (which is also |
1675 | 0 | * a gf). If it is then its error score (and hence bit allocation) need |
1676 | 0 | * to be subtracted out from the calculation for the GF group |
1677 | 0 | */ |
1678 | 0 | if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; |
1679 | 0 |
|
1680 | 0 | /* Scan forward to try and work out how many frames the next gf group |
1681 | 0 | * should contain and what level of boost is appropriate for the GF |
1682 | 0 | * or ARF that will be coded with the group |
1683 | 0 | */ |
1684 | 0 | i = 0; |
1685 | 0 |
|
1686 | 0 | while (((i < cpi->twopass.static_scene_max_gf_interval) || |
1687 | 0 | ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && |
1688 | 0 | (i < cpi->twopass.frames_to_key)) { |
1689 | 0 | i++; |
1690 | 0 |
|
1691 | 0 | /* Accumulate error score of frames in this gf group */ |
1692 | 0 | mod_frame_err = calculate_modified_err(cpi, this_frame); |
1693 | 0 |
|
1694 | 0 | gf_group_err += mod_frame_err; |
1695 | 0 |
|
1696 | 0 | mod_err_per_mb_accumulator += |
1697 | 0 | mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); |
1698 | 0 |
|
1699 | 0 | if (EOF == input_stats(cpi, &next_frame)) break; |
1700 | 0 | |
1701 | 0 | /* Test for the case where there is a brief flash but the prediction |
1702 | 0 | * quality back to an earlier frame is then restored. |
1703 | 0 | */ |
1704 | 0 | flash_detected = detect_flash(cpi, 0); |
1705 | 0 |
|
1706 | 0 | /* Update the motion related elements to the boost calculation */ |
1707 | 0 | accumulate_frame_motion_stats( |
1708 | 0 | cpi, &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
1709 | 0 | &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
1710 | 0 |
|
1711 | 0 | /* Calculate a baseline boost number for this frame */ |
1712 | 0 | r = calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out); |
1713 | 0 |
|
1714 | 0 | /* Cumulative effect of prediction quality decay */ |
1715 | 0 | if (!flash_detected) { |
1716 | 0 | loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
1717 | 0 | decay_accumulator = decay_accumulator * loop_decay_rate; |
1718 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
1719 | 0 | } |
1720 | 0 | boost_score += (decay_accumulator * r); |
1721 | 0 |
|
1722 | 0 | /* Break clause to detect very still sections after motion |
1723 | 0 | * For example a staic image after a fade or other transition. |
1724 | 0 | */ |
1725 | 0 | if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, |
1726 | 0 | decay_accumulator)) { |
1727 | 0 | allow_alt_ref = 0; |
1728 | 0 | boost_score = old_boost_score; |
1729 | 0 | break; |
1730 | 0 | } |
1731 | 0 | |
1732 | 0 | /* Break out conditions. */ |
1733 | 0 | if ( |
1734 | 0 | /* Break at cpi->max_gf_interval unless almost totally static */ |
1735 | 0 | (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || |
1736 | 0 | ( |
1737 | 0 | /* Dont break out with a very short interval */ |
1738 | 0 | (i > MIN_GF_INTERVAL) && |
1739 | 0 | /* Dont break out very close to a key frame */ |
1740 | 0 | ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && |
1741 | 0 | ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && |
1742 | 0 | (!flash_detected) && ((mv_ratio_accumulator > 100.0) || |
1743 | 0 | (abs_mv_in_out_accumulator > 3.0) || |
1744 | 0 | (mv_in_out_accumulator < -2.0) || |
1745 | 0 | ((boost_score - old_boost_score) < 2.0)))) { |
1746 | 0 | boost_score = old_boost_score; |
1747 | 0 | break; |
1748 | 0 | } |
1749 | 0 | |
1750 | 0 | memcpy(this_frame, &next_frame, sizeof(*this_frame)); |
1751 | 0 |
|
1752 | 0 | old_boost_score = boost_score; |
1753 | 0 | } |
1754 | 0 |
|
1755 | 0 | cpi->twopass.gf_decay_rate = |
1756 | 0 | (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; |
1757 | 0 |
|
1758 | 0 | /* When using CBR apply additional buffer related upper limits */ |
1759 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
1760 | 0 | double max_boost; |
1761 | 0 |
|
1762 | 0 | /* For cbr apply buffer related limits */ |
1763 | 0 | if (cpi->drop_frames_allowed) { |
1764 | 0 | int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * |
1765 | 0 | (cpi->oxcf.optimal_buffer_level / 100); |
1766 | 0 |
|
1767 | 0 | if (cpi->buffer_level > df_buffer_level) { |
1768 | 0 | max_boost = |
1769 | 0 | ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / |
1770 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
1771 | 0 | } else { |
1772 | 0 | max_boost = 0.0; |
1773 | 0 | } |
1774 | 0 | } else if (cpi->buffer_level > 0) { |
1775 | 0 | max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / |
1776 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
1777 | 0 | } else { |
1778 | 0 | max_boost = 0.0; |
1779 | 0 | } |
1780 | 0 |
|
1781 | 0 | if (boost_score > max_boost) boost_score = max_boost; |
1782 | 0 | } |
1783 | 0 |
|
1784 | 0 | /* Dont allow conventional gf too near the next kf */ |
1785 | 0 | if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { |
1786 | 0 | while (i < cpi->twopass.frames_to_key) { |
1787 | 0 | i++; |
1788 | 0 |
|
1789 | 0 | if (EOF == input_stats(cpi, this_frame)) break; |
1790 | 0 | |
1791 | 0 | if (i < cpi->twopass.frames_to_key) { |
1792 | 0 | mod_frame_err = calculate_modified_err(cpi, this_frame); |
1793 | 0 | gf_group_err += mod_frame_err; |
1794 | 0 | } |
1795 | 0 | } |
1796 | 0 | } |
1797 | 0 |
|
1798 | 0 | cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; |
1799 | 0 |
|
1800 | 0 | #if NEW_BOOST |
1801 | 0 | /* Alterrnative boost calculation for alt ref */ |
1802 | 0 | alt_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); |
1803 | 0 | #endif |
1804 | 0 |
|
1805 | 0 | /* Should we use the alternate refernce frame */ |
1806 | 0 | if (allow_alt_ref && (i >= MIN_GF_INTERVAL) && |
1807 | 0 | /* dont use ARF very near next kf */ |
1808 | 0 | (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && |
1809 | 0 | #if NEW_BOOST |
1810 | 0 | ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && |
1811 | 0 | ((mv_in_out_accumulator / (double)i > -0.2) || |
1812 | 0 | (mv_in_out_accumulator > -2.0)) && |
1813 | 0 | (b_boost > 100) && (f_boost > 100)) |
1814 | | #else |
1815 | | (next_frame.pcnt_inter > 0.75) && |
1816 | | ((mv_in_out_accumulator / (double)i > -0.2) || |
1817 | | (mv_in_out_accumulator > -2.0)) && |
1818 | | (cpi->gfu_boost > 100) && (cpi->twopass.gf_decay_rate <= |
1819 | | (ARF_DECAY_THRESH + (cpi->gfu_boost / 200)))) |
1820 | | #endif |
1821 | 0 | { |
1822 | 0 | int Boost; |
1823 | 0 | int allocation_chunks; |
1824 | 0 | int Q = |
1825 | 0 | (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
1826 | 0 | int tmp_q; |
1827 | 0 | int arf_frame_bits = 0; |
1828 | 0 | int group_bits; |
1829 | 0 |
|
1830 | 0 | #if NEW_BOOST |
1831 | 0 | cpi->gfu_boost = alt_boost; |
1832 | 0 | #endif |
1833 | 0 |
|
1834 | 0 | /* Estimate the bits to be allocated to the group as a whole */ |
1835 | 0 | if ((cpi->twopass.kf_group_bits > 0) && |
1836 | 0 | (cpi->twopass.kf_group_error_left > 0)) { |
1837 | 0 | group_bits = |
1838 | 0 | (int)((double)cpi->twopass.kf_group_bits * |
1839 | 0 | (gf_group_err / (double)cpi->twopass.kf_group_error_left)); |
1840 | 0 | } else { |
1841 | 0 | group_bits = 0; |
1842 | 0 | } |
1843 | 0 |
|
1844 | 0 | /* Boost for arf frame */ |
1845 | 0 | #if NEW_BOOST |
1846 | 0 | Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
1847 | | #else |
1848 | | Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
1849 | | #endif |
1850 | | Boost += (i * 50); |
1851 | 0 |
|
1852 | 0 | /* Set max and minimum boost and hence minimum allocation */ |
1853 | 0 | if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { |
1854 | 0 | Boost = ((cpi->baseline_gf_interval + 1) * 200); |
1855 | 0 | } else if (Boost < 125) { |
1856 | 0 | Boost = 125; |
1857 | 0 | } |
1858 | 0 |
|
1859 | 0 | allocation_chunks = (i * 100) + Boost; |
1860 | 0 |
|
1861 | 0 | /* Normalize Altboost and allocations chunck down to prevent overflow */ |
1862 | 0 | while (Boost > 1000) { |
1863 | 0 | Boost /= 2; |
1864 | 0 | allocation_chunks /= 2; |
1865 | 0 | } |
1866 | 0 |
|
1867 | 0 | /* Calculate the number of bits to be spent on the arf based on the |
1868 | 0 | * boost number |
1869 | 0 | */ |
1870 | 0 | arf_frame_bits = |
1871 | 0 | (int)((double)Boost * (group_bits / (double)allocation_chunks)); |
1872 | 0 |
|
1873 | 0 | /* Estimate if there are enough bits available to make worthwhile use |
1874 | 0 | * of an arf. |
1875 | 0 | */ |
1876 | 0 | tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); |
1877 | 0 |
|
1878 | 0 | /* Only use an arf if it is likely we will be able to code |
1879 | 0 | * it at a lower Q than the surrounding frames. |
1880 | 0 | */ |
1881 | 0 | if (tmp_q < cpi->worst_quality) { |
1882 | 0 | int half_gf_int; |
1883 | 0 | int frames_after_arf; |
1884 | 0 | int frames_bwd = cpi->oxcf.arnr_max_frames - 1; |
1885 | 0 | int frames_fwd = cpi->oxcf.arnr_max_frames - 1; |
1886 | 0 |
|
1887 | 0 | cpi->source_alt_ref_pending = 1; |
1888 | 0 |
|
1889 | 0 | /* |
1890 | 0 | * For alt ref frames the error score for the end frame of the |
1891 | 0 | * group (the alt ref frame) should not contribute to the group |
1892 | 0 | * total and hence the number of bit allocated to the group. |
1893 | 0 | * Rather it forms part of the next group (it is the GF at the |
1894 | 0 | * start of the next group) |
1895 | 0 | * gf_group_err -= mod_frame_err; |
1896 | 0 | * |
1897 | 0 | * For alt ref frames alt ref frame is technically part of the |
1898 | 0 | * GF frame for the next group but we always base the error |
1899 | 0 | * calculation and bit allocation on the current group of frames. |
1900 | 0 | * |
1901 | 0 | * Set the interval till the next gf or arf. |
1902 | 0 | * For ARFs this is the number of frames to be coded before the |
1903 | 0 | * future frame that is coded as an ARF. |
1904 | 0 | * The future frame itself is part of the next group |
1905 | 0 | */ |
1906 | 0 | cpi->baseline_gf_interval = i; |
1907 | 0 |
|
1908 | 0 | /* |
1909 | 0 | * Define the arnr filter width for this group of frames: |
1910 | 0 | * We only filter frames that lie within a distance of half |
1911 | 0 | * the GF interval from the ARF frame. We also have to trap |
1912 | 0 | * cases where the filter extends beyond the end of clip. |
1913 | 0 | * Note: this_frame->frame has been updated in the loop |
1914 | 0 | * so it now points at the ARF frame. |
1915 | 0 | */ |
1916 | 0 | half_gf_int = cpi->baseline_gf_interval >> 1; |
1917 | 0 | frames_after_arf = |
1918 | 0 | (int)(cpi->twopass.total_stats.count - this_frame->frame - 1); |
1919 | 0 |
|
1920 | 0 | switch (cpi->oxcf.arnr_type) { |
1921 | 0 | case 1: /* Backward filter */ |
1922 | 0 | frames_fwd = 0; |
1923 | 0 | if (frames_bwd > half_gf_int) frames_bwd = half_gf_int; |
1924 | 0 | break; |
1925 | 0 |
|
1926 | 0 | case 2: /* Forward filter */ |
1927 | 0 | if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; |
1928 | 0 | if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; |
1929 | 0 | frames_bwd = 0; |
1930 | 0 | break; |
1931 | 0 |
|
1932 | 0 | case 3: /* Centered filter */ |
1933 | 0 | default: |
1934 | 0 | frames_fwd >>= 1; |
1935 | 0 | if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; |
1936 | 0 | if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; |
1937 | 0 |
|
1938 | 0 | frames_bwd = frames_fwd; |
1939 | 0 |
|
1940 | 0 | /* For even length filter there is one more frame backward |
1941 | 0 | * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. |
1942 | 0 | */ |
1943 | 0 | if (frames_bwd < half_gf_int) { |
1944 | 0 | frames_bwd += (cpi->oxcf.arnr_max_frames + 1) & 0x1; |
1945 | 0 | } |
1946 | 0 | break; |
1947 | 0 | } |
1948 | 0 |
|
1949 | 0 | cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; |
1950 | 0 | } else { |
1951 | 0 | cpi->source_alt_ref_pending = 0; |
1952 | 0 | cpi->baseline_gf_interval = i; |
1953 | 0 | } |
1954 | 0 | } else { |
1955 | 0 | cpi->source_alt_ref_pending = 0; |
1956 | 0 | cpi->baseline_gf_interval = i; |
1957 | 0 | } |
1958 | 0 |
|
1959 | 0 | /* |
1960 | 0 | * Now decide how many bits should be allocated to the GF group as a |
1961 | 0 | * proportion of those remaining in the kf group. |
1962 | 0 | * The final key frame group in the clip is treated as a special case |
1963 | 0 | * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. |
1964 | 0 | * This is also important for short clips where there may only be one |
1965 | 0 | * key frame. |
1966 | 0 | */ |
1967 | 0 | if (cpi->twopass.frames_to_key >= |
1968 | 0 | (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) { |
1969 | 0 | cpi->twopass.kf_group_bits = |
1970 | 0 | (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; |
1971 | 0 | } |
1972 | 0 |
|
1973 | 0 | /* Calculate the bits to be allocated to the group as a whole */ |
1974 | 0 | if ((cpi->twopass.kf_group_bits > 0) && |
1975 | 0 | (cpi->twopass.kf_group_error_left > 0)) { |
1976 | 0 | cpi->twopass.gf_group_bits = |
1977 | 0 | (int64_t)(cpi->twopass.kf_group_bits * |
1978 | 0 | (gf_group_err / cpi->twopass.kf_group_error_left)); |
1979 | 0 | } else { |
1980 | 0 | cpi->twopass.gf_group_bits = 0; |
1981 | 0 | } |
1982 | 0 |
|
1983 | 0 | cpi->twopass.gf_group_bits = |
1984 | 0 | (cpi->twopass.gf_group_bits < 0) |
1985 | 0 | ? 0 |
1986 | 0 | : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) |
1987 | 0 | ? cpi->twopass.kf_group_bits |
1988 | 0 | : cpi->twopass.gf_group_bits; |
1989 | 0 |
|
1990 | 0 | /* Clip cpi->twopass.gf_group_bits based on user supplied data rate |
1991 | 0 | * variability limit (cpi->oxcf.two_pass_vbrmax_section) |
1992 | 0 | */ |
1993 | 0 | if (cpi->twopass.gf_group_bits > |
1994 | 0 | (int64_t)max_bits * cpi->baseline_gf_interval) { |
1995 | 0 | cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; |
1996 | 0 | } |
1997 | 0 |
|
1998 | 0 | /* Reset the file position */ |
1999 | 0 | reset_fpf_position(cpi, start_pos); |
2000 | 0 |
|
2001 | 0 | /* Update the record of error used so far (only done once per gf group) */ |
2002 | 0 | cpi->twopass.modified_error_used += gf_group_err; |
2003 | 0 |
|
2004 | 0 | /* Assign bits to the arf or gf. */ |
2005 | 0 | for (i = 0; i <= (cpi->source_alt_ref_pending && |
2006 | 0 | cpi->common.frame_type != KEY_FRAME); |
2007 | 0 | i++) { |
2008 | 0 | int Boost; |
2009 | 0 | int allocation_chunks; |
2010 | 0 | int Q = |
2011 | 0 | (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
2012 | 0 | int gf_bits; |
2013 | 0 |
|
2014 | 0 | /* For ARF frames */ |
2015 | 0 | if (cpi->source_alt_ref_pending && i == 0) { |
2016 | 0 | #if NEW_BOOST |
2017 | 0 | Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
2018 | | #else |
2019 | | Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
2020 | | #endif |
2021 | | Boost += (cpi->baseline_gf_interval * 50); |
2022 | 0 |
|
2023 | 0 | /* Set max and minimum boost and hence minimum allocation */ |
2024 | 0 | if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) { |
2025 | 0 | Boost = ((cpi->baseline_gf_interval + 1) * 200); |
2026 | 0 | } else if (Boost < 125) { |
2027 | 0 | Boost = 125; |
2028 | 0 | } |
2029 | 0 |
|
2030 | 0 | allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost; |
2031 | 0 | } |
2032 | 0 | /* Else for standard golden frames */ |
2033 | 0 | else { |
2034 | 0 | /* boost based on inter / intra ratio of subsequent frames */ |
2035 | 0 | Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; |
2036 | 0 |
|
2037 | 0 | /* Set max and minimum boost and hence minimum allocation */ |
2038 | 0 | if (Boost > (cpi->baseline_gf_interval * 150)) { |
2039 | 0 | Boost = (cpi->baseline_gf_interval * 150); |
2040 | 0 | } else if (Boost < 125) { |
2041 | 0 | Boost = 125; |
2042 | 0 | } |
2043 | 0 |
|
2044 | 0 | allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100); |
2045 | 0 | } |
2046 | 0 |
|
2047 | 0 | /* Normalize Altboost and allocations chunck down to prevent overflow */ |
2048 | 0 | while (Boost > 1000) { |
2049 | 0 | Boost /= 2; |
2050 | 0 | allocation_chunks /= 2; |
2051 | 0 | } |
2052 | 0 |
|
2053 | 0 | /* Calculate the number of bits to be spent on the gf or arf based on |
2054 | 0 | * the boost number |
2055 | 0 | */ |
2056 | 0 | gf_bits = (int)((double)Boost * |
2057 | 0 | (cpi->twopass.gf_group_bits / (double)allocation_chunks)); |
2058 | 0 |
|
2059 | 0 | /* If the frame that is to be boosted is simpler than the average for |
2060 | 0 | * the gf/arf group then use an alternative calculation |
2061 | 0 | * based on the error score of the frame itself |
2062 | 0 | */ |
2063 | 0 | if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { |
2064 | 0 | double alt_gf_grp_bits; |
2065 | 0 | int alt_gf_bits; |
2066 | 0 |
|
2067 | 0 | alt_gf_grp_bits = |
2068 | 0 | (double)cpi->twopass.kf_group_bits * |
2069 | 0 | (mod_frame_err * (double)cpi->baseline_gf_interval) / |
2070 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); |
2071 | 0 |
|
2072 | 0 | alt_gf_bits = |
2073 | 0 | (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks)); |
2074 | 0 |
|
2075 | 0 | if (gf_bits > alt_gf_bits) { |
2076 | 0 | gf_bits = alt_gf_bits; |
2077 | 0 | } |
2078 | 0 | } |
2079 | 0 | /* Else if it is harder than other frames in the group make sure it at |
2080 | 0 | * least receives an allocation in keeping with its relative error |
2081 | 0 | * score, otherwise it may be worse off than an "un-boosted" frame |
2082 | 0 | */ |
2083 | 0 | else { |
2084 | 0 | int alt_gf_bits = |
2085 | 0 | (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / |
2086 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); |
2087 | 0 |
|
2088 | 0 | if (alt_gf_bits > gf_bits) { |
2089 | 0 | gf_bits = alt_gf_bits; |
2090 | 0 | } |
2091 | 0 | } |
2092 | 0 |
|
2093 | 0 | /* Apply an additional limit for CBR */ |
2094 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2095 | 0 | if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) { |
2096 | 0 | cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); |
2097 | 0 | } |
2098 | 0 | } |
2099 | 0 |
|
2100 | 0 | /* Dont allow a negative value for gf_bits */ |
2101 | 0 | if (gf_bits < 0) gf_bits = 0; |
2102 | 0 |
|
2103 | 0 | /* Add in minimum for a frame */ |
2104 | 0 | gf_bits += cpi->min_frame_bandwidth; |
2105 | 0 |
|
2106 | 0 | if (i == 0) { |
2107 | 0 | cpi->twopass.gf_bits = gf_bits; |
2108 | 0 | } |
2109 | 0 | if (i == 1 || (!cpi->source_alt_ref_pending && |
2110 | 0 | (cpi->common.frame_type != KEY_FRAME))) { |
2111 | 0 | /* Per frame bit target for this frame */ |
2112 | 0 | cpi->per_frame_bandwidth = gf_bits; |
2113 | 0 | } |
2114 | 0 | } |
2115 | 0 |
|
2116 | 0 | { |
2117 | 0 | /* Adjust KF group bits and error remainin */ |
2118 | 0 | cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; |
2119 | 0 | cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; |
2120 | 0 |
|
2121 | 0 | if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; |
2122 | 0 |
|
2123 | 0 | /* Note the error score left in the remaining frames of the group. |
2124 | 0 | * For normal GFs we want to remove the error score for the first |
2125 | 0 | * frame of the group (except in Key frame case where this has |
2126 | 0 | * already happened) |
2127 | 0 | */ |
2128 | 0 | if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) { |
2129 | 0 | cpi->twopass.gf_group_error_left = |
2130 | 0 | (int)(gf_group_err - gf_first_frame_err); |
2131 | 0 | } else { |
2132 | 0 | cpi->twopass.gf_group_error_left = (int)gf_group_err; |
2133 | 0 | } |
2134 | 0 |
|
2135 | 0 | cpi->twopass.gf_group_bits -= |
2136 | 0 | cpi->twopass.gf_bits - cpi->min_frame_bandwidth; |
2137 | 0 |
|
2138 | 0 | if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; |
2139 | 0 |
|
2140 | 0 | /* This condition could fail if there are two kfs very close together |
2141 | 0 | * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the |
2142 | 0 | * calculation of cpi->twopass.alt_extra_bits. |
2143 | 0 | */ |
2144 | 0 | if (cpi->baseline_gf_interval >= 3) { |
2145 | 0 | #if NEW_BOOST |
2146 | 0 | int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; |
2147 | | #else |
2148 | | int boost = cpi->gfu_boost; |
2149 | | #endif |
2150 | 0 | if (boost >= 150) { |
2151 | 0 | int pct_extra; |
2152 | 0 |
|
2153 | 0 | pct_extra = (boost - 100) / 50; |
2154 | 0 | pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
2155 | 0 |
|
2156 | 0 | cpi->twopass.alt_extra_bits = |
2157 | 0 | (int)(cpi->twopass.gf_group_bits * pct_extra) / 100; |
2158 | 0 | cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; |
2159 | 0 | cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval - 1) >> 1); |
2160 | 0 | } else { |
2161 | 0 | cpi->twopass.alt_extra_bits = 0; |
2162 | 0 | } |
2163 | 0 | } else { |
2164 | 0 | cpi->twopass.alt_extra_bits = 0; |
2165 | 0 | } |
2166 | 0 | } |
2167 | 0 |
|
2168 | 0 | /* Adjustments based on a measure of complexity of the section */ |
2169 | 0 | if (cpi->common.frame_type != KEY_FRAME) { |
2170 | 0 | FIRSTPASS_STATS sectionstats; |
2171 | 0 | double Ratio; |
2172 | 0 |
|
2173 | 0 | zero_stats(§ionstats); |
2174 | 0 | reset_fpf_position(cpi, start_pos); |
2175 | 0 |
|
2176 | 0 | for (i = 0; i < cpi->baseline_gf_interval; ++i) { |
2177 | 0 | input_stats(cpi, &next_frame); |
2178 | 0 | accumulate_stats(§ionstats, &next_frame); |
2179 | 0 | } |
2180 | 0 |
|
2181 | 0 | avg_stats(§ionstats); |
2182 | 0 |
|
2183 | 0 | cpi->twopass.section_intra_rating = |
2184 | 0 | (unsigned int)(sectionstats.intra_error / |
2185 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
2186 | 0 |
|
2187 | 0 | Ratio = sectionstats.intra_error / |
2188 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
2189 | 0 | cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
2190 | 0 |
|
2191 | 0 | if (cpi->twopass.section_max_qfactor < 0.80) { |
2192 | 0 | cpi->twopass.section_max_qfactor = 0.80; |
2193 | 0 | } |
2194 | 0 |
|
2195 | 0 | reset_fpf_position(cpi, start_pos); |
2196 | 0 | } |
2197 | 0 | } |
2198 | | |
2199 | | /* Allocate bits to a normal frame that is neither a gf an arf or a key frame. |
2200 | | */ |
2201 | 0 | static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
2202 | 0 | int target_frame_size; |
2203 | 0 |
|
2204 | 0 | double modified_err; |
2205 | 0 | double err_fraction; |
2206 | 0 |
|
2207 | 0 | int max_bits = frame_max_bits(cpi); /* Max for a single frame */ |
2208 | 0 |
|
2209 | 0 | /* Calculate modified prediction error used in bit allocation */ |
2210 | 0 | modified_err = calculate_modified_err(cpi, this_frame); |
2211 | 0 |
|
2212 | 0 | /* What portion of the remaining GF group error is used by this frame */ |
2213 | 0 | if (cpi->twopass.gf_group_error_left > 0) { |
2214 | 0 | err_fraction = modified_err / cpi->twopass.gf_group_error_left; |
2215 | 0 | } else { |
2216 | 0 | err_fraction = 0.0; |
2217 | 0 | } |
2218 | 0 |
|
2219 | 0 | /* How many of those bits available for allocation should we give it? */ |
2220 | 0 | target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); |
2221 | 0 |
|
2222 | 0 | /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) |
2223 | 0 | * at the top end. |
2224 | 0 | */ |
2225 | 0 | if (target_frame_size < 0) { |
2226 | 0 | target_frame_size = 0; |
2227 | 0 | } else { |
2228 | 0 | if (target_frame_size > max_bits) target_frame_size = max_bits; |
2229 | 0 |
|
2230 | 0 | if (target_frame_size > cpi->twopass.gf_group_bits) { |
2231 | 0 | target_frame_size = (int)cpi->twopass.gf_group_bits; |
2232 | 0 | } |
2233 | 0 | } |
2234 | 0 |
|
2235 | 0 | /* Adjust error and bits remaining */ |
2236 | 0 | cpi->twopass.gf_group_error_left -= (int)modified_err; |
2237 | 0 | cpi->twopass.gf_group_bits -= target_frame_size; |
2238 | 0 |
|
2239 | 0 | if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; |
2240 | 0 |
|
2241 | 0 | /* Add in the minimum number of bits that is set aside for every frame. */ |
2242 | 0 | target_frame_size += cpi->min_frame_bandwidth; |
2243 | 0 |
|
2244 | 0 | /* Every other frame gets a few extra bits */ |
2245 | 0 | if ((cpi->frames_since_golden & 0x01) && |
2246 | 0 | (cpi->frames_till_gf_update_due > 0)) { |
2247 | 0 | target_frame_size += cpi->twopass.alt_extra_bits; |
2248 | 0 | } |
2249 | 0 |
|
2250 | 0 | /* Per frame bit target for this frame */ |
2251 | 0 | cpi->per_frame_bandwidth = target_frame_size; |
2252 | 0 | } |
2253 | | |
2254 | 0 | void vp8_second_pass(VP8_COMP *cpi) { |
2255 | 0 | int tmp_q; |
2256 | 0 | int frames_left = |
2257 | 0 | (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); |
2258 | 0 |
|
2259 | 0 | FIRSTPASS_STATS this_frame; |
2260 | 0 | FIRSTPASS_STATS this_frame_copy; |
2261 | 0 |
|
2262 | 0 | double this_frame_intra_error; |
2263 | 0 | double this_frame_coded_error; |
2264 | 0 |
|
2265 | 0 | int overhead_bits; |
2266 | 0 |
|
2267 | 0 | vp8_zero(this_frame); |
2268 | 0 |
|
2269 | 0 | if (!cpi->twopass.stats_in) { |
2270 | 0 | return; |
2271 | 0 | } |
2272 | 0 | |
2273 | 0 | vpx_clear_system_state(); |
2274 | 0 |
|
2275 | 0 | if (EOF == input_stats(cpi, &this_frame)) return; |
2276 | 0 | |
2277 | 0 | this_frame_intra_error = this_frame.intra_error; |
2278 | 0 | this_frame_coded_error = this_frame.coded_error; |
2279 | 0 |
|
2280 | 0 | /* keyframe and section processing ! */ |
2281 | 0 | if (cpi->twopass.frames_to_key == 0) { |
2282 | 0 | /* Define next KF group and assign bits to it */ |
2283 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2284 | 0 | find_next_key_frame(cpi, &this_frame_copy); |
2285 | 0 |
|
2286 | 0 | /* Special case: Error error_resilient_mode mode does not make much |
2287 | 0 | * sense for two pass but with its current meaning this code is |
2288 | 0 | * designed to stop outlandish behaviour if someone does set it when |
2289 | 0 | * using two pass. It effectively disables GF groups. This is |
2290 | 0 | * temporary code until we decide what should really happen in this |
2291 | 0 | * case. |
2292 | 0 | */ |
2293 | 0 | if (cpi->oxcf.error_resilient_mode) { |
2294 | 0 | cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; |
2295 | 0 | cpi->twopass.gf_group_error_left = (int)cpi->twopass.kf_group_error_left; |
2296 | 0 | cpi->baseline_gf_interval = cpi->twopass.frames_to_key; |
2297 | 0 | cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
2298 | 0 | cpi->source_alt_ref_pending = 0; |
2299 | 0 | } |
2300 | 0 | } |
2301 | 0 |
|
2302 | 0 | /* Is this a GF / ARF (Note that a KF is always also a GF) */ |
2303 | 0 | if (cpi->frames_till_gf_update_due == 0) { |
2304 | 0 | /* Define next gf group and assign bits to it */ |
2305 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2306 | 0 | define_gf_group(cpi, &this_frame_copy); |
2307 | 0 |
|
2308 | 0 | /* If we are going to code an altref frame at the end of the group |
2309 | 0 | * and the current frame is not a key frame.... If the previous |
2310 | 0 | * group used an arf this frame has already benefited from that arf |
2311 | 0 | * boost and it should not be given extra bits If the previous |
2312 | 0 | * group was NOT coded using arf we may want to apply some boost to |
2313 | 0 | * this GF as well |
2314 | 0 | */ |
2315 | 0 | if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { |
2316 | 0 | /* Assign a standard frames worth of bits from those allocated |
2317 | 0 | * to the GF group |
2318 | 0 | */ |
2319 | 0 | int bak = cpi->per_frame_bandwidth; |
2320 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2321 | 0 | assign_std_frame_bits(cpi, &this_frame_copy); |
2322 | 0 | cpi->per_frame_bandwidth = bak; |
2323 | 0 | } |
2324 | 0 | } |
2325 | 0 |
|
2326 | 0 | /* Otherwise this is an ordinary frame */ |
2327 | 0 | else { |
2328 | 0 | /* Special case: Error error_resilient_mode mode does not make much |
2329 | 0 | * sense for two pass but with its current meaning but this code is |
2330 | 0 | * designed to stop outlandish behaviour if someone does set it |
2331 | 0 | * when using two pass. It effectively disables GF groups. This is |
2332 | 0 | * temporary code till we decide what should really happen in this |
2333 | 0 | * case. |
2334 | 0 | */ |
2335 | 0 | if (cpi->oxcf.error_resilient_mode) { |
2336 | 0 | cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; |
2337 | 0 |
|
2338 | 0 | if (cpi->common.frame_type != KEY_FRAME) { |
2339 | 0 | /* Assign bits from those allocated to the GF group */ |
2340 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2341 | 0 | assign_std_frame_bits(cpi, &this_frame_copy); |
2342 | 0 | } |
2343 | 0 | } else { |
2344 | 0 | /* Assign bits from those allocated to the GF group */ |
2345 | 0 | memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
2346 | 0 | assign_std_frame_bits(cpi, &this_frame_copy); |
2347 | 0 | } |
2348 | 0 | } |
2349 | 0 |
|
2350 | 0 | /* Keep a globally available copy of this and the next frame's iiratio. */ |
2351 | 0 | cpi->twopass.this_iiratio = |
2352 | 0 | (unsigned int)(this_frame_intra_error / |
2353 | 0 | DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); |
2354 | 0 | { |
2355 | 0 | FIRSTPASS_STATS next_frame; |
2356 | 0 | if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
2357 | 0 | cpi->twopass.next_iiratio = |
2358 | 0 | (unsigned int)(next_frame.intra_error / |
2359 | 0 | DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
2360 | 0 | } |
2361 | 0 | } |
2362 | 0 |
|
2363 | 0 | /* Set nominal per second bandwidth for this frame */ |
2364 | 0 | cpi->target_bandwidth = |
2365 | 0 | (int)(cpi->per_frame_bandwidth * cpi->output_framerate); |
2366 | 0 | if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; |
2367 | 0 |
|
2368 | 0 | /* Account for mv, mode and other overheads. */ |
2369 | 0 | overhead_bits = (int)estimate_modemvcost(cpi, &cpi->twopass.total_left_stats); |
2370 | 0 |
|
2371 | 0 | /* Special case code for first frame. */ |
2372 | 0 | if (cpi->common.current_video_frame == 0) { |
2373 | 0 | cpi->twopass.est_max_qcorrection_factor = 1.0; |
2374 | 0 |
|
2375 | 0 | /* Set a cq_level in constrained quality mode. */ |
2376 | 0 | if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { |
2377 | 0 | int est_cq; |
2378 | 0 |
|
2379 | 0 | est_cq = estimate_cq(cpi, &cpi->twopass.total_left_stats, |
2380 | 0 | (int)(cpi->twopass.bits_left / frames_left), |
2381 | 0 | overhead_bits); |
2382 | 0 |
|
2383 | 0 | cpi->cq_target_quality = cpi->oxcf.cq_level; |
2384 | 0 | if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq; |
2385 | 0 | } |
2386 | 0 |
|
2387 | 0 | /* guess at maxq needed in 2nd pass */ |
2388 | 0 | cpi->twopass.maxq_max_limit = cpi->worst_quality; |
2389 | 0 | cpi->twopass.maxq_min_limit = cpi->best_quality; |
2390 | 0 |
|
2391 | 0 | tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, |
2392 | 0 | (int)(cpi->twopass.bits_left / frames_left), |
2393 | 0 | overhead_bits); |
2394 | 0 |
|
2395 | 0 | /* Limit the maxq value returned subsequently. |
2396 | 0 | * This increases the risk of overspend or underspend if the initial |
2397 | 0 | * estimate for the clip is bad, but helps prevent excessive |
2398 | 0 | * variation in Q, especially near the end of a clip |
2399 | 0 | * where for example a small overspend may cause Q to crash |
2400 | 0 | */ |
2401 | 0 | cpi->twopass.maxq_max_limit = |
2402 | 0 | ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality; |
2403 | 0 | cpi->twopass.maxq_min_limit = |
2404 | 0 | ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality; |
2405 | 0 |
|
2406 | 0 | cpi->active_worst_quality = tmp_q; |
2407 | 0 | cpi->ni_av_qi = tmp_q; |
2408 | 0 | } |
2409 | 0 |
|
2410 | 0 | /* The last few frames of a clip almost always have to few or too many |
2411 | 0 | * bits and for the sake of over exact rate control we dont want to make |
2412 | 0 | * radical adjustments to the allowed quantizer range just to use up a |
2413 | 0 | * few surplus bits or get beneath the target rate. |
2414 | 0 | */ |
2415 | 0 | else if ((cpi->common.current_video_frame < |
2416 | 0 | (((unsigned int)cpi->twopass.total_stats.count * 255) >> 8)) && |
2417 | 0 | ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < |
2418 | 0 | (unsigned int)cpi->twopass.total_stats.count)) { |
2419 | 0 | if (frames_left < 1) frames_left = 1; |
2420 | 0 |
|
2421 | 0 | tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, |
2422 | 0 | (int)(cpi->twopass.bits_left / frames_left), |
2423 | 0 | overhead_bits); |
2424 | 0 |
|
2425 | 0 | /* Move active_worst_quality but in a damped way */ |
2426 | 0 | if (tmp_q > cpi->active_worst_quality) { |
2427 | 0 | cpi->active_worst_quality++; |
2428 | 0 | } else if (tmp_q < cpi->active_worst_quality) { |
2429 | 0 | cpi->active_worst_quality--; |
2430 | 0 | } |
2431 | 0 |
|
2432 | 0 | cpi->active_worst_quality = |
2433 | 0 | ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; |
2434 | 0 | } |
2435 | 0 |
|
2436 | 0 | cpi->twopass.frames_to_key--; |
2437 | 0 |
|
2438 | 0 | /* Update the total stats remaining sturcture */ |
2439 | 0 | subtract_stats(&cpi->twopass.total_left_stats, &this_frame); |
2440 | 0 | } |
2441 | | |
2442 | | static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, |
2443 | | FIRSTPASS_STATS *this_frame, |
2444 | 0 | FIRSTPASS_STATS *next_frame) { |
2445 | 0 | int is_viable_kf = 0; |
2446 | 0 |
|
2447 | 0 | /* Does the frame satisfy the primary criteria of a key frame |
2448 | 0 | * If so, then examine how well it predicts subsequent frames |
2449 | 0 | */ |
2450 | 0 | if ((this_frame->pcnt_second_ref < 0.10) && |
2451 | 0 | (next_frame->pcnt_second_ref < 0.10) && |
2452 | 0 | ((this_frame->pcnt_inter < 0.05) || |
2453 | 0 | (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && |
2454 | 0 | ((this_frame->intra_error / |
2455 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
2456 | 0 | ((fabs(last_frame->coded_error - this_frame->coded_error) / |
2457 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > |
2458 | 0 | .40) || |
2459 | 0 | (fabs(last_frame->intra_error - this_frame->intra_error) / |
2460 | 0 | DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > |
2461 | 0 | .40) || |
2462 | 0 | ((next_frame->intra_error / |
2463 | 0 | DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { |
2464 | 0 | int i; |
2465 | 0 | FIRSTPASS_STATS *start_pos; |
2466 | 0 |
|
2467 | 0 | FIRSTPASS_STATS local_next_frame; |
2468 | 0 |
|
2469 | 0 | double boost_score = 0.0; |
2470 | 0 | double old_boost_score = 0.0; |
2471 | 0 | double decay_accumulator = 1.0; |
2472 | 0 | double next_iiratio; |
2473 | 0 |
|
2474 | 0 | memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); |
2475 | 0 |
|
2476 | 0 | /* Note the starting file position so we can reset to it */ |
2477 | 0 | start_pos = cpi->twopass.stats_in; |
2478 | 0 |
|
2479 | 0 | /* Examine how well the key frame predicts subsequent frames */ |
2480 | 0 | for (i = 0; i < 16; ++i) { |
2481 | 0 | next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / |
2482 | 0 | DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
2483 | 0 |
|
2484 | 0 | if (next_iiratio > RMAX) next_iiratio = RMAX; |
2485 | 0 |
|
2486 | 0 | /* Cumulative effect of decay in prediction quality */ |
2487 | 0 | if (local_next_frame.pcnt_inter > 0.85) { |
2488 | 0 | decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
2489 | 0 | } else { |
2490 | 0 | decay_accumulator = |
2491 | 0 | decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); |
2492 | 0 | } |
2493 | 0 |
|
2494 | 0 | /* Keep a running total */ |
2495 | 0 | boost_score += (decay_accumulator * next_iiratio); |
2496 | 0 |
|
2497 | 0 | /* Test various breakout clauses */ |
2498 | 0 | if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || |
2499 | 0 | (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < |
2500 | 0 | 0.20) && |
2501 | 0 | (next_iiratio < 3.0)) || |
2502 | 0 | ((boost_score - old_boost_score) < 0.5) || |
2503 | 0 | (local_next_frame.intra_error < 200)) { |
2504 | 0 | break; |
2505 | 0 | } |
2506 | 0 | |
2507 | 0 | old_boost_score = boost_score; |
2508 | 0 |
|
2509 | 0 | /* Get the next frame details */ |
2510 | 0 | if (EOF == input_stats(cpi, &local_next_frame)) break; |
2511 | 0 | } |
2512 | 0 |
|
2513 | 0 | /* If there is tolerable prediction for at least the next 3 frames |
2514 | 0 | * then break out else discard this pottential key frame and move on |
2515 | 0 | */ |
2516 | 0 | if (boost_score > 5.0 && (i > 3)) { |
2517 | 0 | is_viable_kf = 1; |
2518 | 0 | } else { |
2519 | 0 | /* Reset the file position */ |
2520 | 0 | reset_fpf_position(cpi, start_pos); |
2521 | 0 |
|
2522 | 0 | is_viable_kf = 0; |
2523 | 0 | } |
2524 | 0 | } |
2525 | 0 |
|
2526 | 0 | return is_viable_kf; |
2527 | 0 | } |
2528 | 0 | static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
2529 | 0 | int i, j; |
2530 | 0 | FIRSTPASS_STATS last_frame; |
2531 | 0 | FIRSTPASS_STATS first_frame; |
2532 | 0 | FIRSTPASS_STATS next_frame; |
2533 | 0 | FIRSTPASS_STATS *start_position; |
2534 | 0 |
|
2535 | 0 | double decay_accumulator = 1.0; |
2536 | 0 | double boost_score = 0; |
2537 | 0 | double old_boost_score = 0.0; |
2538 | 0 | double loop_decay_rate; |
2539 | 0 |
|
2540 | 0 | double kf_mod_err = 0.0; |
2541 | 0 | double kf_group_err = 0.0; |
2542 | 0 | double kf_group_intra_err = 0.0; |
2543 | 0 | double kf_group_coded_err = 0.0; |
2544 | 0 | double recent_loop_decay[8] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; |
2545 | 0 |
|
2546 | 0 | memset(&next_frame, 0, sizeof(next_frame)); |
2547 | 0 |
|
2548 | 0 | vpx_clear_system_state(); |
2549 | 0 | start_position = cpi->twopass.stats_in; |
2550 | 0 |
|
2551 | 0 | cpi->common.frame_type = KEY_FRAME; |
2552 | 0 |
|
2553 | 0 | /* is this a forced key frame by interval */ |
2554 | 0 | cpi->this_key_frame_forced = cpi->next_key_frame_forced; |
2555 | 0 |
|
2556 | 0 | /* Clear the alt ref active flag as this can never be active on a key |
2557 | 0 | * frame |
2558 | 0 | */ |
2559 | 0 | cpi->source_alt_ref_active = 0; |
2560 | 0 |
|
2561 | 0 | /* Kf is always a gf so clear frames till next gf counter */ |
2562 | 0 | cpi->frames_till_gf_update_due = 0; |
2563 | 0 |
|
2564 | 0 | cpi->twopass.frames_to_key = 1; |
2565 | 0 |
|
2566 | 0 | /* Take a copy of the initial frame details */ |
2567 | 0 | memcpy(&first_frame, this_frame, sizeof(*this_frame)); |
2568 | 0 |
|
2569 | 0 | cpi->twopass.kf_group_bits = 0; |
2570 | 0 | cpi->twopass.kf_group_error_left = 0; |
2571 | 0 |
|
2572 | 0 | kf_mod_err = calculate_modified_err(cpi, this_frame); |
2573 | 0 |
|
2574 | 0 | /* find the next keyframe */ |
2575 | 0 | i = 0; |
2576 | 0 | while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { |
2577 | 0 | /* Accumulate kf group error */ |
2578 | 0 | kf_group_err += calculate_modified_err(cpi, this_frame); |
2579 | 0 |
|
2580 | 0 | /* These figures keep intra and coded error counts for all frames |
2581 | 0 | * including key frames in the group. The effect of the key frame |
2582 | 0 | * itself can be subtracted out using the first_frame data |
2583 | 0 | * collected above |
2584 | 0 | */ |
2585 | 0 | kf_group_intra_err += this_frame->intra_error; |
2586 | 0 | kf_group_coded_err += this_frame->coded_error; |
2587 | 0 |
|
2588 | 0 | /* Load the next frame's stats. */ |
2589 | 0 | memcpy(&last_frame, this_frame, sizeof(*this_frame)); |
2590 | 0 | input_stats(cpi, this_frame); |
2591 | 0 |
|
2592 | 0 | /* Provided that we are not at the end of the file... */ |
2593 | 0 | if (cpi->oxcf.auto_key && |
2594 | 0 | lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
2595 | 0 | /* Normal scene cut check */ |
2596 | 0 | if ((i >= MIN_GF_INTERVAL) && |
2597 | 0 | test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) { |
2598 | 0 | break; |
2599 | 0 | } |
2600 | 0 | |
2601 | 0 | /* How fast is prediction quality decaying */ |
2602 | 0 | loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
2603 | 0 |
|
2604 | 0 | /* We want to know something about the recent past... rather than |
2605 | 0 | * as used elsewhere where we are concened with decay in prediction |
2606 | 0 | * quality since the last GF or KF. |
2607 | 0 | */ |
2608 | 0 | recent_loop_decay[i % 8] = loop_decay_rate; |
2609 | 0 | decay_accumulator = 1.0; |
2610 | 0 | for (j = 0; j < 8; ++j) { |
2611 | 0 | decay_accumulator = decay_accumulator * recent_loop_decay[j]; |
2612 | 0 | } |
2613 | 0 |
|
2614 | 0 | /* Special check for transition or high motion followed by a |
2615 | 0 | * static scene. |
2616 | 0 | */ |
2617 | 0 | if (detect_transition_to_still(cpi, i, |
2618 | 0 | ((int)(cpi->key_frame_frequency) - (int)i), |
2619 | 0 | loop_decay_rate, decay_accumulator)) { |
2620 | 0 | break; |
2621 | 0 | } |
2622 | 0 | |
2623 | 0 | /* Step on to the next frame */ |
2624 | 0 | cpi->twopass.frames_to_key++; |
2625 | 0 |
|
2626 | 0 | /* If we don't have a real key frame within the next two |
2627 | 0 | * forcekeyframeevery intervals then break out of the loop. |
2628 | 0 | */ |
2629 | 0 | if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) { |
2630 | 0 | break; |
2631 | 0 | } |
2632 | 0 | } else { |
2633 | 0 | cpi->twopass.frames_to_key++; |
2634 | 0 | } |
2635 | 0 |
|
2636 | 0 | i++; |
2637 | 0 | } |
2638 | 0 |
|
2639 | 0 | /* If there is a max kf interval set by the user we must obey it. |
2640 | 0 | * We already breakout of the loop above at 2x max. |
2641 | 0 | * This code centers the extra kf if the actual natural |
2642 | 0 | * interval is between 1x and 2x |
2643 | 0 | */ |
2644 | 0 | if (cpi->oxcf.auto_key && |
2645 | 0 | cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) { |
2646 | 0 | FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; |
2647 | 0 | FIRSTPASS_STATS tmp_frame; |
2648 | 0 |
|
2649 | 0 | cpi->twopass.frames_to_key /= 2; |
2650 | 0 |
|
2651 | 0 | /* Copy first frame details */ |
2652 | 0 | memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); |
2653 | 0 |
|
2654 | 0 | /* Reset to the start of the group */ |
2655 | 0 | reset_fpf_position(cpi, start_position); |
2656 | 0 |
|
2657 | 0 | kf_group_err = 0; |
2658 | 0 | kf_group_intra_err = 0; |
2659 | 0 | kf_group_coded_err = 0; |
2660 | 0 |
|
2661 | 0 | /* Rescan to get the correct error data for the forced kf group */ |
2662 | 0 | for (i = 0; i < cpi->twopass.frames_to_key; ++i) { |
2663 | 0 | /* Accumulate kf group errors */ |
2664 | 0 | kf_group_err += calculate_modified_err(cpi, &tmp_frame); |
2665 | 0 | kf_group_intra_err += tmp_frame.intra_error; |
2666 | 0 | kf_group_coded_err += tmp_frame.coded_error; |
2667 | 0 |
|
2668 | 0 | /* Load a the next frame's stats */ |
2669 | 0 | input_stats(cpi, &tmp_frame); |
2670 | 0 | } |
2671 | 0 |
|
2672 | 0 | /* Reset to the start of the group */ |
2673 | 0 | reset_fpf_position(cpi, current_pos); |
2674 | 0 |
|
2675 | 0 | cpi->next_key_frame_forced = 1; |
2676 | 0 | } else { |
2677 | 0 | cpi->next_key_frame_forced = 0; |
2678 | 0 | } |
2679 | 0 |
|
2680 | 0 | /* Special case for the last frame of the file */ |
2681 | 0 | if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { |
2682 | 0 | /* Accumulate kf group error */ |
2683 | 0 | kf_group_err += calculate_modified_err(cpi, this_frame); |
2684 | 0 |
|
2685 | 0 | /* These figures keep intra and coded error counts for all frames |
2686 | 0 | * including key frames in the group. The effect of the key frame |
2687 | 0 | * itself can be subtracted out using the first_frame data |
2688 | 0 | * collected above |
2689 | 0 | */ |
2690 | 0 | kf_group_intra_err += this_frame->intra_error; |
2691 | 0 | kf_group_coded_err += this_frame->coded_error; |
2692 | 0 | } |
2693 | 0 |
|
2694 | 0 | /* Calculate the number of bits that should be assigned to the kf group. */ |
2695 | 0 | if ((cpi->twopass.bits_left > 0) && |
2696 | 0 | (cpi->twopass.modified_error_left > 0.0)) { |
2697 | 0 | /* Max for a single normal frame (not key frame) */ |
2698 | 0 | int max_bits = frame_max_bits(cpi); |
2699 | 0 |
|
2700 | 0 | /* Maximum bits for the kf group */ |
2701 | 0 | int64_t max_grp_bits; |
2702 | 0 |
|
2703 | 0 | /* Default allocation based on bits left and relative |
2704 | 0 | * complexity of the section |
2705 | 0 | */ |
2706 | 0 | cpi->twopass.kf_group_bits = |
2707 | 0 | (int64_t)(cpi->twopass.bits_left * |
2708 | 0 | (kf_group_err / cpi->twopass.modified_error_left)); |
2709 | 0 |
|
2710 | 0 | /* Clip based on maximum per frame rate defined by the user. */ |
2711 | 0 | max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; |
2712 | 0 | if (cpi->twopass.kf_group_bits > max_grp_bits) { |
2713 | 0 | cpi->twopass.kf_group_bits = max_grp_bits; |
2714 | 0 | } |
2715 | 0 |
|
2716 | 0 | /* Additional special case for CBR if buffer is getting full. */ |
2717 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2718 | 0 | int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; |
2719 | 0 | int64_t buffer_lvl = cpi->buffer_level; |
2720 | 0 |
|
2721 | 0 | /* If the buffer is near or above the optimal and this kf group is |
2722 | 0 | * not being allocated much then increase the allocation a bit. |
2723 | 0 | */ |
2724 | 0 | if (buffer_lvl >= opt_buffer_lvl) { |
2725 | 0 | int64_t high_water_mark = |
2726 | 0 | (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1; |
2727 | 0 |
|
2728 | 0 | int64_t av_group_bits; |
2729 | 0 |
|
2730 | 0 | /* Av bits per frame * number of frames */ |
2731 | 0 | av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * |
2732 | 0 | (int64_t)cpi->twopass.frames_to_key; |
2733 | 0 |
|
2734 | 0 | /* We are at or above the maximum. */ |
2735 | 0 | if (cpi->buffer_level >= high_water_mark) { |
2736 | 0 | int64_t min_group_bits; |
2737 | 0 |
|
2738 | 0 | min_group_bits = |
2739 | 0 | av_group_bits + (int64_t)(buffer_lvl - high_water_mark); |
2740 | 0 |
|
2741 | 0 | if (cpi->twopass.kf_group_bits < min_group_bits) { |
2742 | 0 | cpi->twopass.kf_group_bits = min_group_bits; |
2743 | 0 | } |
2744 | 0 | } |
2745 | 0 | /* We are above optimal but below the maximum */ |
2746 | 0 | else if (cpi->twopass.kf_group_bits < av_group_bits) { |
2747 | 0 | int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits; |
2748 | 0 |
|
2749 | 0 | cpi->twopass.kf_group_bits += (int64_t)( |
2750 | 0 | (double)bits_below_av * (double)(buffer_lvl - opt_buffer_lvl) / |
2751 | 0 | (double)(high_water_mark - opt_buffer_lvl)); |
2752 | 0 | } |
2753 | 0 | } |
2754 | 0 | } |
2755 | 0 | } else { |
2756 | 0 | cpi->twopass.kf_group_bits = 0; |
2757 | 0 | } |
2758 | 0 |
|
2759 | 0 | /* Reset the first pass file position */ |
2760 | 0 | reset_fpf_position(cpi, start_position); |
2761 | 0 |
|
2762 | 0 | /* determine how big to make this keyframe based on how well the |
2763 | 0 | * subsequent frames use inter blocks |
2764 | 0 | */ |
2765 | 0 | decay_accumulator = 1.0; |
2766 | 0 | boost_score = 0.0; |
2767 | 0 |
|
2768 | 0 | for (i = 0; i < cpi->twopass.frames_to_key; ++i) { |
2769 | 0 | double r; |
2770 | 0 |
|
2771 | 0 | if (EOF == input_stats(cpi, &next_frame)) break; |
2772 | 0 | |
2773 | 0 | if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) { |
2774 | 0 | r = (IIKFACTOR2 * next_frame.intra_error / |
2775 | 0 | DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
2776 | 0 | } else { |
2777 | 0 | r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / |
2778 | 0 | DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
2779 | 0 | } |
2780 | 0 |
|
2781 | 0 | if (r > RMAX) r = RMAX; |
2782 | 0 |
|
2783 | 0 | /* How fast is prediction quality decaying */ |
2784 | 0 | loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
2785 | 0 |
|
2786 | 0 | decay_accumulator = decay_accumulator * loop_decay_rate; |
2787 | 0 | decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
2788 | 0 |
|
2789 | 0 | boost_score += (decay_accumulator * r); |
2790 | 0 |
|
2791 | 0 | if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) { |
2792 | 0 | break; |
2793 | 0 | } |
2794 | 0 | |
2795 | 0 | old_boost_score = boost_score; |
2796 | 0 | } |
2797 | 0 |
|
2798 | 0 | if (1) { |
2799 | 0 | FIRSTPASS_STATS sectionstats; |
2800 | 0 | double Ratio; |
2801 | 0 |
|
2802 | 0 | zero_stats(§ionstats); |
2803 | 0 | reset_fpf_position(cpi, start_position); |
2804 | 0 |
|
2805 | 0 | for (i = 0; i < cpi->twopass.frames_to_key; ++i) { |
2806 | 0 | input_stats(cpi, &next_frame); |
2807 | 0 | accumulate_stats(§ionstats, &next_frame); |
2808 | 0 | } |
2809 | 0 |
|
2810 | 0 | avg_stats(§ionstats); |
2811 | 0 |
|
2812 | 0 | cpi->twopass.section_intra_rating = |
2813 | 0 | (unsigned int)(sectionstats.intra_error / |
2814 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
2815 | 0 |
|
2816 | 0 | Ratio = sectionstats.intra_error / |
2817 | 0 | DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
2818 | 0 | cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
2819 | 0 |
|
2820 | 0 | if (cpi->twopass.section_max_qfactor < 0.80) { |
2821 | 0 | cpi->twopass.section_max_qfactor = 0.80; |
2822 | 0 | } |
2823 | 0 | } |
2824 | 0 |
|
2825 | 0 | /* When using CBR apply additional buffer fullness related upper limits */ |
2826 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2827 | 0 | double max_boost; |
2828 | 0 |
|
2829 | 0 | if (cpi->drop_frames_allowed) { |
2830 | 0 | int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark * |
2831 | 0 | (cpi->oxcf.optimal_buffer_level / 100)); |
2832 | 0 |
|
2833 | 0 | if (cpi->buffer_level > df_buffer_level) { |
2834 | 0 | max_boost = |
2835 | 0 | ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / |
2836 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
2837 | 0 | } else { |
2838 | 0 | max_boost = 0.0; |
2839 | 0 | } |
2840 | 0 | } else if (cpi->buffer_level > 0) { |
2841 | 0 | max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / |
2842 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
2843 | 0 | } else { |
2844 | 0 | max_boost = 0.0; |
2845 | 0 | } |
2846 | 0 |
|
2847 | 0 | if (boost_score > max_boost) boost_score = max_boost; |
2848 | 0 | } |
2849 | 0 |
|
2850 | 0 | /* Reset the first pass file position */ |
2851 | 0 | reset_fpf_position(cpi, start_position); |
2852 | 0 |
|
2853 | 0 | /* Work out how many bits to allocate for the key frame itself */ |
2854 | 0 | if (1) { |
2855 | 0 | int kf_boost = (int)boost_score; |
2856 | 0 | int allocation_chunks; |
2857 | 0 | int Counter = cpi->twopass.frames_to_key; |
2858 | 0 | int alt_kf_bits; |
2859 | 0 | YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; |
2860 | 0 | /* Min boost based on kf interval */ |
2861 | | #if 0 |
2862 | | |
2863 | | while ((kf_boost < 48) && (Counter > 0)) |
2864 | | { |
2865 | | Counter -= 2; |
2866 | | kf_boost ++; |
2867 | | } |
2868 | | |
2869 | | #endif |
2870 | |
|
2871 | 0 | if (kf_boost < 48) { |
2872 | 0 | kf_boost += ((Counter + 1) >> 1); |
2873 | 0 |
|
2874 | 0 | if (kf_boost > 48) kf_boost = 48; |
2875 | 0 | } |
2876 | 0 |
|
2877 | 0 | /* bigger frame sizes need larger kf boosts, smaller frames smaller |
2878 | 0 | * boosts... |
2879 | 0 | */ |
2880 | 0 | if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) { |
2881 | 0 | kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); |
2882 | 0 | } else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) { |
2883 | 0 | kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); |
2884 | 0 | } |
2885 | 0 |
|
2886 | 0 | /* Min KF boost */ |
2887 | 0 | kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ |
2888 | 0 | if (kf_boost < 250) kf_boost = 250; |
2889 | 0 |
|
2890 | 0 | /* |
2891 | 0 | * We do three calculations for kf size. |
2892 | 0 | * The first is based on the error score for the whole kf group. |
2893 | 0 | * The second (optionaly) on the key frames own error if this is |
2894 | 0 | * smaller than the average for the group. |
2895 | 0 | * The final one insures that the frame receives at least the |
2896 | 0 | * allocation it would have received based on its own error score vs |
2897 | 0 | * the error score remaining |
2898 | 0 | * Special case if the sequence appears almost totaly static |
2899 | 0 | * as measured by the decay accumulator. In this case we want to |
2900 | 0 | * spend almost all of the bits on the key frame. |
2901 | 0 | * cpi->twopass.frames_to_key-1 because key frame itself is taken |
2902 | 0 | * care of by kf_boost. |
2903 | 0 | */ |
2904 | 0 | if (decay_accumulator >= 0.99) { |
2905 | 0 | allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; |
2906 | 0 | } else { |
2907 | 0 | allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; |
2908 | 0 | } |
2909 | 0 |
|
2910 | 0 | /* Normalize Altboost and allocations chunck down to prevent overflow */ |
2911 | 0 | while (kf_boost > 1000) { |
2912 | 0 | kf_boost /= 2; |
2913 | 0 | allocation_chunks /= 2; |
2914 | 0 | } |
2915 | 0 |
|
2916 | 0 | cpi->twopass.kf_group_bits = |
2917 | 0 | (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; |
2918 | 0 |
|
2919 | 0 | /* Calculate the number of bits to be spent on the key frame */ |
2920 | 0 | cpi->twopass.kf_bits = |
2921 | 0 | (int)((double)kf_boost * |
2922 | 0 | ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); |
2923 | 0 |
|
2924 | 0 | /* Apply an additional limit for CBR */ |
2925 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
2926 | 0 | if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) { |
2927 | 0 | cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); |
2928 | 0 | } |
2929 | 0 | } |
2930 | 0 |
|
2931 | 0 | /* If the key frame is actually easier than the average for the |
2932 | 0 | * kf group (which does sometimes happen... eg a blank intro frame) |
2933 | 0 | * Then use an alternate calculation based on the kf error score |
2934 | 0 | * which should give a smaller key frame. |
2935 | 0 | */ |
2936 | 0 | if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { |
2937 | 0 | double alt_kf_grp_bits = |
2938 | 0 | ((double)cpi->twopass.bits_left * |
2939 | 0 | (kf_mod_err * (double)cpi->twopass.frames_to_key) / |
2940 | 0 | DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); |
2941 | 0 |
|
2942 | 0 | alt_kf_bits = (int)((double)kf_boost * |
2943 | 0 | (alt_kf_grp_bits / (double)allocation_chunks)); |
2944 | 0 |
|
2945 | 0 | if (cpi->twopass.kf_bits > alt_kf_bits) { |
2946 | 0 | cpi->twopass.kf_bits = alt_kf_bits; |
2947 | 0 | } |
2948 | 0 | } |
2949 | 0 | /* Else if it is much harder than other frames in the group make sure |
2950 | 0 | * it at least receives an allocation in keeping with its relative |
2951 | 0 | * error score |
2952 | 0 | */ |
2953 | 0 | else { |
2954 | 0 | alt_kf_bits = (int)((double)cpi->twopass.bits_left * |
2955 | 0 | (kf_mod_err / DOUBLE_DIVIDE_CHECK( |
2956 | 0 | cpi->twopass.modified_error_left))); |
2957 | 0 |
|
2958 | 0 | if (alt_kf_bits > cpi->twopass.kf_bits) { |
2959 | 0 | cpi->twopass.kf_bits = alt_kf_bits; |
2960 | 0 | } |
2961 | 0 | } |
2962 | 0 |
|
2963 | 0 | cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; |
2964 | 0 | /* Add in the minimum frame allowance */ |
2965 | 0 | cpi->twopass.kf_bits += cpi->min_frame_bandwidth; |
2966 | 0 |
|
2967 | 0 | /* Peer frame bit target for this frame */ |
2968 | 0 | cpi->per_frame_bandwidth = cpi->twopass.kf_bits; |
2969 | 0 |
|
2970 | 0 | /* Convert to a per second bitrate */ |
2971 | 0 | cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_framerate); |
2972 | 0 | } |
2973 | 0 |
|
2974 | 0 | /* Note the total error score of the kf group minus the key frame itself */ |
2975 | 0 | cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
2976 | 0 |
|
2977 | 0 | /* Adjust the count of total modified error left. The count of bits left |
2978 | 0 | * is adjusted elsewhere based on real coded frame sizes |
2979 | 0 | */ |
2980 | 0 | cpi->twopass.modified_error_left -= kf_group_err; |
2981 | 0 |
|
2982 | 0 | if (cpi->oxcf.allow_spatial_resampling) { |
2983 | 0 | int resample_trigger = 0; |
2984 | 0 | int last_kf_resampled = 0; |
2985 | 0 | int kf_q; |
2986 | 0 | int scale_val = 0; |
2987 | 0 | int hr, hs, vr, vs; |
2988 | 0 | int new_width = cpi->oxcf.Width; |
2989 | 0 | int new_height = cpi->oxcf.Height; |
2990 | 0 |
|
2991 | 0 | int projected_buffer_level; |
2992 | 0 | int tmp_q; |
2993 | 0 |
|
2994 | 0 | double projected_bits_perframe; |
2995 | 0 | double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / |
2996 | 0 | (kf_group_coded_err - first_frame.coded_error); |
2997 | 0 | double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; |
2998 | 0 | double bits_per_frame; |
2999 | 0 | double av_bits_per_frame; |
3000 | 0 | double effective_size_ratio; |
3001 | 0 |
|
3002 | 0 | if ((cpi->common.Width != cpi->oxcf.Width) || |
3003 | 0 | (cpi->common.Height != cpi->oxcf.Height)) { |
3004 | 0 | last_kf_resampled = 1; |
3005 | 0 | } |
3006 | 0 |
|
3007 | 0 | /* Set back to unscaled by defaults */ |
3008 | 0 | cpi->common.horiz_scale = NORMAL; |
3009 | 0 | cpi->common.vert_scale = NORMAL; |
3010 | 0 |
|
3011 | 0 | /* Calculate Average bits per frame. */ |
3012 | 0 | av_bits_per_frame = cpi->oxcf.target_bandwidth / |
3013 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->framerate); |
3014 | 0 |
|
3015 | 0 | /* CBR... Use the clip average as the target for deciding resample */ |
3016 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
3017 | 0 | bits_per_frame = av_bits_per_frame; |
3018 | 0 | } |
3019 | 0 | |
3020 | 0 | /* In VBR we want to avoid downsampling in easy section unless we |
3021 | 0 | * are under extreme pressure So use the larger of target bitrate |
3022 | 0 | * for this section or average bitrate for sequence |
3023 | 0 | */ |
3024 | 0 | else { |
3025 | 0 | /* This accounts for how hard the section is... */ |
3026 | 0 | bits_per_frame = |
3027 | 0 | (double)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); |
3028 | 0 |
|
3029 | 0 | /* Dont turn to resampling in easy sections just because they |
3030 | 0 | * have been assigned a small number of bits |
3031 | 0 | */ |
3032 | 0 | if (bits_per_frame < av_bits_per_frame) { |
3033 | 0 | bits_per_frame = av_bits_per_frame; |
3034 | 0 | } |
3035 | 0 | } |
3036 | 0 |
|
3037 | 0 | /* bits_per_frame should comply with our minimum */ |
3038 | 0 | if (bits_per_frame < (cpi->oxcf.target_bandwidth * |
3039 | 0 | cpi->oxcf.two_pass_vbrmin_section / 100)) { |
3040 | 0 | bits_per_frame = (cpi->oxcf.target_bandwidth * |
3041 | 0 | cpi->oxcf.two_pass_vbrmin_section / 100); |
3042 | 0 | } |
3043 | 0 |
|
3044 | 0 | /* Work out if spatial resampling is necessary */ |
3045 | 0 | kf_q = estimate_kf_group_q(cpi, err_per_frame, (int)bits_per_frame, |
3046 | 0 | group_iiratio); |
3047 | 0 |
|
3048 | 0 | /* If we project a required Q higher than the maximum allowed Q then |
3049 | 0 | * make a guess at the actual size of frames in this section |
3050 | 0 | */ |
3051 | 0 | projected_bits_perframe = bits_per_frame; |
3052 | 0 | tmp_q = kf_q; |
3053 | 0 |
|
3054 | 0 | while (tmp_q > cpi->worst_quality) { |
3055 | 0 | projected_bits_perframe *= 1.04; |
3056 | 0 | tmp_q--; |
3057 | 0 | } |
3058 | 0 |
|
3059 | 0 | /* Guess at buffer level at the end of the section */ |
3060 | 0 | projected_buffer_level = |
3061 | 0 | (int)(cpi->buffer_level - |
3062 | 0 | (int)((projected_bits_perframe - av_bits_per_frame) * |
3063 | 0 | cpi->twopass.frames_to_key)); |
3064 | 0 |
|
3065 | 0 | if (0) { |
3066 | 0 | FILE *f = fopen("Subsamle.stt", "a"); |
3067 | 0 | fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", |
3068 | 0 | cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, |
3069 | 0 | cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, |
3070 | 0 | (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), |
3071 | 0 | new_height, new_width); |
3072 | 0 | fclose(f); |
3073 | 0 | } |
3074 | 0 |
|
3075 | 0 | /* The trigger for spatial resampling depends on the various |
3076 | 0 | * parameters such as whether we are streaming (CBR) or VBR. |
3077 | 0 | */ |
3078 | 0 | if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { |
3079 | 0 | /* Trigger resample if we are projected to fall below down |
3080 | 0 | * sample level or resampled last time and are projected to |
3081 | 0 | * remain below the up sample level |
3082 | 0 | */ |
3083 | 0 | if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * |
3084 | 0 | cpi->oxcf.optimal_buffer_level / 100)) || |
3085 | 0 | (last_kf_resampled && |
3086 | 0 | (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * |
3087 | 0 | cpi->oxcf.optimal_buffer_level / 100)))) { |
3088 | 0 | resample_trigger = 1; |
3089 | 0 | } else { |
3090 | 0 | resample_trigger = 0; |
3091 | 0 | } |
3092 | 0 | } else { |
3093 | 0 | int64_t clip_bits = (int64_t)( |
3094 | 0 | cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / |
3095 | 0 | DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); |
3096 | 0 | int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; |
3097 | 0 |
|
3098 | 0 | /* If triggered last time the threshold for triggering again is |
3099 | 0 | * reduced: |
3100 | 0 | * |
3101 | 0 | * Projected Q higher than allowed and Overspend > 5% of total |
3102 | 0 | * bits |
3103 | 0 | */ |
3104 | 0 | if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || |
3105 | 0 | ((kf_q > cpi->worst_quality) && (over_spend > clip_bits / 20))) { |
3106 | 0 | resample_trigger = 1; |
3107 | 0 | } else { |
3108 | 0 | resample_trigger = 0; |
3109 | 0 | } |
3110 | 0 | } |
3111 | 0 |
|
3112 | 0 | if (resample_trigger) { |
3113 | 0 | while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) { |
3114 | 0 | scale_val++; |
3115 | 0 |
|
3116 | 0 | cpi->common.vert_scale = vscale_lookup[scale_val]; |
3117 | 0 | cpi->common.horiz_scale = hscale_lookup[scale_val]; |
3118 | 0 |
|
3119 | 0 | Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); |
3120 | 0 | Scale2Ratio(cpi->common.vert_scale, &vr, &vs); |
3121 | 0 |
|
3122 | 0 | new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; |
3123 | 0 | new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; |
3124 | 0 |
|
3125 | 0 | /* Reducing the area to 1/4 does not reduce the complexity |
3126 | 0 | * (err_per_frame) to 1/4... effective_sizeratio attempts |
3127 | 0 | * to provide a crude correction for this |
3128 | 0 | */ |
3129 | 0 | effective_size_ratio = (double)(new_width * new_height) / |
3130 | 0 | (double)(cpi->oxcf.Width * cpi->oxcf.Height); |
3131 | 0 | effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; |
3132 | 0 |
|
3133 | 0 | /* Now try again and see what Q we get with the smaller |
3134 | 0 | * image size |
3135 | 0 | */ |
3136 | 0 | kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, |
3137 | 0 | (int)bits_per_frame, group_iiratio); |
3138 | 0 |
|
3139 | 0 | if (0) { |
3140 | 0 | FILE *f = fopen("Subsamle.stt", "a"); |
3141 | 0 | fprintf( |
3142 | 0 | f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, |
3143 | 0 | cpi->common.horiz_scale, cpi->common.vert_scale, |
3144 | 0 | kf_group_err / cpi->twopass.frames_to_key, |
3145 | 0 | (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), |
3146 | 0 | new_height, new_width); |
3147 | 0 | fclose(f); |
3148 | 0 | } |
3149 | 0 | } |
3150 | 0 | } |
3151 | 0 |
|
3152 | 0 | if ((cpi->common.Width != new_width) || |
3153 | 0 | (cpi->common.Height != new_height)) { |
3154 | 0 | cpi->common.Width = new_width; |
3155 | 0 | cpi->common.Height = new_height; |
3156 | 0 | vp8_alloc_compressor_data(cpi); |
3157 | 0 | } |
3158 | 0 | } |
3159 | 0 | } |