/src/mozilla-central/mfbt/decimal/Decimal.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (C) 2012 Google Inc. All rights reserved. |
3 | | * |
4 | | * Redistribution and use in source and binary forms, with or without |
5 | | * modification, are permitted provided that the following conditions are |
6 | | * met: |
7 | | * |
8 | | * * Redistributions of source code must retain the above copyright |
9 | | * notice, this list of conditions and the following disclaimer. |
10 | | * * Redistributions in binary form must reproduce the above |
11 | | * copyright notice, this list of conditions and the following disclaimer |
12 | | * in the documentation and/or other materials provided with the |
13 | | * distribution. |
14 | | * * Neither the name of Google Inc. nor the names of its |
15 | | * contributors may be used to endorse or promote products derived from |
16 | | * this software without specific prior written permission. |
17 | | * |
18 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | | */ |
30 | | |
31 | | #include "Decimal.h" |
32 | | #include "moz-decimal-utils.h" |
33 | | |
34 | | using namespace moz_decimal_utils; |
35 | | |
36 | | #include <algorithm> |
37 | | #include <float.h> |
38 | | |
39 | | namespace blink { |
40 | | |
41 | | namespace DecimalPrivate { |
42 | | |
43 | | static int const ExponentMax = 1023; |
44 | | static int const ExponentMin = -1023; |
45 | | static int const Precision = 18; |
46 | | |
47 | | static const uint64_t MaxCoefficient = UINT64_C(0xDE0B6B3A763FFFF); // 999999999999999999 == 18 9's |
48 | | |
49 | | // This class handles Decimal special values. |
50 | | class SpecialValueHandler { |
51 | | STACK_ALLOCATED(); |
52 | | WTF_MAKE_NONCOPYABLE(SpecialValueHandler); |
53 | | public: |
54 | | enum HandleResult { |
55 | | BothFinite, |
56 | | BothInfinity, |
57 | | EitherNaN, |
58 | | LHSIsInfinity, |
59 | | RHSIsInfinity, |
60 | | }; |
61 | | |
62 | | SpecialValueHandler(const Decimal& lhs, const Decimal& rhs); |
63 | | HandleResult handle(); |
64 | | Decimal value() const; |
65 | | |
66 | | private: |
67 | | enum Result { |
68 | | ResultIsLHS, |
69 | | ResultIsRHS, |
70 | | ResultIsUnknown, |
71 | | }; |
72 | | |
73 | | const Decimal& m_lhs; |
74 | | const Decimal& m_rhs; |
75 | | Result m_result; |
76 | | }; |
77 | | |
78 | | SpecialValueHandler::SpecialValueHandler(const Decimal& lhs, const Decimal& rhs) |
79 | | : m_lhs(lhs), m_rhs(rhs), m_result(ResultIsUnknown) |
80 | 0 | { |
81 | 0 | } |
82 | | |
83 | | SpecialValueHandler::HandleResult SpecialValueHandler::handle() |
84 | 0 | { |
85 | 0 | if (m_lhs.isFinite() && m_rhs.isFinite()) |
86 | 0 | return BothFinite; |
87 | 0 | |
88 | 0 | const Decimal::EncodedData::FormatClass lhsClass = m_lhs.value().formatClass(); |
89 | 0 | const Decimal::EncodedData::FormatClass rhsClass = m_rhs.value().formatClass(); |
90 | 0 | if (lhsClass == Decimal::EncodedData::ClassNaN) { |
91 | 0 | m_result = ResultIsLHS; |
92 | 0 | return EitherNaN; |
93 | 0 | } |
94 | 0 | |
95 | 0 | if (rhsClass == Decimal::EncodedData::ClassNaN) { |
96 | 0 | m_result = ResultIsRHS; |
97 | 0 | return EitherNaN; |
98 | 0 | } |
99 | 0 | |
100 | 0 | if (lhsClass == Decimal::EncodedData::ClassInfinity) |
101 | 0 | return rhsClass == Decimal::EncodedData::ClassInfinity ? BothInfinity : LHSIsInfinity; |
102 | 0 | |
103 | 0 | if (rhsClass == Decimal::EncodedData::ClassInfinity) |
104 | 0 | return RHSIsInfinity; |
105 | 0 | |
106 | 0 | ASSERT_NOT_REACHED(); |
107 | 0 | return BothFinite; |
108 | 0 | } |
109 | | |
110 | | Decimal SpecialValueHandler::value() const |
111 | 0 | { |
112 | 0 | switch (m_result) { |
113 | 0 | case ResultIsLHS: |
114 | 0 | return m_lhs; |
115 | 0 | case ResultIsRHS: |
116 | 0 | return m_rhs; |
117 | 0 | case ResultIsUnknown: |
118 | 0 | default: |
119 | 0 | ASSERT_NOT_REACHED(); |
120 | 0 | return m_lhs; |
121 | 0 | } |
122 | 0 | } |
123 | | |
124 | | // This class is used for 128 bit unsigned integer arithmetic. |
125 | | class UInt128 { |
126 | | public: |
127 | | UInt128(uint64_t low, uint64_t high) |
128 | | : m_high(high), m_low(low) |
129 | 0 | { |
130 | 0 | } |
131 | | |
132 | | UInt128& operator/=(uint32_t); |
133 | | |
134 | 0 | uint64_t high() const { return m_high; } |
135 | 0 | uint64_t low() const { return m_low; } |
136 | | |
137 | 0 | static UInt128 multiply(uint64_t u, uint64_t v) { return UInt128(u * v, multiplyHigh(u, v)); } |
138 | | |
139 | | private: |
140 | 0 | static uint32_t highUInt32(uint64_t x) { return static_cast<uint32_t>(x >> 32); } |
141 | 0 | static uint32_t lowUInt32(uint64_t x) { return static_cast<uint32_t>(x & ((static_cast<uint64_t>(1) << 32) - 1)); } |
142 | 0 | static uint64_t makeUInt64(uint32_t low, uint32_t high) { return low | (static_cast<uint64_t>(high) << 32); } |
143 | | |
144 | | static uint64_t multiplyHigh(uint64_t, uint64_t); |
145 | | |
146 | | uint64_t m_high; |
147 | | uint64_t m_low; |
148 | | }; |
149 | | |
150 | | UInt128& UInt128::operator/=(const uint32_t divisor) |
151 | 0 | { |
152 | 0 | ASSERT(divisor); |
153 | 0 |
|
154 | 0 | if (!m_high) { |
155 | 0 | m_low /= divisor; |
156 | 0 | return *this; |
157 | 0 | } |
158 | 0 | |
159 | 0 | uint32_t dividend[4]; |
160 | 0 | dividend[0] = lowUInt32(m_low); |
161 | 0 | dividend[1] = highUInt32(m_low); |
162 | 0 | dividend[2] = lowUInt32(m_high); |
163 | 0 | dividend[3] = highUInt32(m_high); |
164 | 0 |
|
165 | 0 | uint32_t quotient[4]; |
166 | 0 | uint32_t remainder = 0; |
167 | 0 | for (int i = 3; i >= 0; --i) { |
168 | 0 | const uint64_t work = makeUInt64(dividend[i], remainder); |
169 | 0 | remainder = static_cast<uint32_t>(work % divisor); |
170 | 0 | quotient[i] = static_cast<uint32_t>(work / divisor); |
171 | 0 | } |
172 | 0 | m_low = makeUInt64(quotient[0], quotient[1]); |
173 | 0 | m_high = makeUInt64(quotient[2], quotient[3]); |
174 | 0 | return *this; |
175 | 0 | } |
176 | | |
177 | | // Returns high 64bit of 128bit product. |
178 | | uint64_t UInt128::multiplyHigh(uint64_t u, uint64_t v) |
179 | 0 | { |
180 | 0 | const uint64_t uLow = lowUInt32(u); |
181 | 0 | const uint64_t uHigh = highUInt32(u); |
182 | 0 | const uint64_t vLow = lowUInt32(v); |
183 | 0 | const uint64_t vHigh = highUInt32(v); |
184 | 0 | const uint64_t partialProduct = uHigh * vLow + highUInt32(uLow * vLow); |
185 | 0 | return uHigh * vHigh + highUInt32(partialProduct) + highUInt32(uLow * vHigh + lowUInt32(partialProduct)); |
186 | 0 | } |
187 | | |
188 | | static int countDigits(uint64_t x) |
189 | 0 | { |
190 | 0 | int numberOfDigits = 0; |
191 | 0 | for (uint64_t powerOfTen = 1; x >= powerOfTen; powerOfTen *= 10) { |
192 | 0 | ++numberOfDigits; |
193 | 0 | if (powerOfTen >= std::numeric_limits<uint64_t>::max() / 10) |
194 | 0 | break; |
195 | 0 | } |
196 | 0 | return numberOfDigits; |
197 | 0 | } |
198 | | |
199 | | static uint64_t scaleDown(uint64_t x, int n) |
200 | 0 | { |
201 | 0 | ASSERT(n >= 0); |
202 | 0 | while (n > 0 && x) { |
203 | 0 | x /= 10; |
204 | 0 | --n; |
205 | 0 | } |
206 | 0 | return x; |
207 | 0 | } |
208 | | |
209 | | static uint64_t scaleUp(uint64_t x, int n) |
210 | 0 | { |
211 | 0 | ASSERT(n >= 0); |
212 | 0 | ASSERT(n <= Precision); |
213 | 0 |
|
214 | 0 | uint64_t y = 1; |
215 | 0 | uint64_t z = 10; |
216 | 0 | for (;;) { |
217 | 0 | if (n & 1) |
218 | 0 | y = y * z; |
219 | 0 |
|
220 | 0 | n >>= 1; |
221 | 0 | if (!n) |
222 | 0 | return x * y; |
223 | 0 | |
224 | 0 | z = z * z; |
225 | 0 | } |
226 | 0 | } |
227 | | |
228 | | } // namespace DecimalPrivate |
229 | | |
230 | | using namespace DecimalPrivate; |
231 | | |
232 | | Decimal::EncodedData::EncodedData(Sign sign, FormatClass formatClass) |
233 | | : m_coefficient(0) |
234 | | , m_exponent(0) |
235 | | , m_formatClass(formatClass) |
236 | | , m_sign(sign) |
237 | 0 | { |
238 | 0 | } |
239 | | |
240 | | Decimal::EncodedData::EncodedData(Sign sign, int exponent, uint64_t coefficient) |
241 | | : m_formatClass(coefficient ? ClassNormal : ClassZero) |
242 | | , m_sign(sign) |
243 | 33 | { |
244 | 33 | if (exponent >= ExponentMin && exponent <= ExponentMax) { |
245 | 33 | while (coefficient > MaxCoefficient) { |
246 | 0 | coefficient /= 10; |
247 | 0 | ++exponent; |
248 | 0 | } |
249 | 33 | } |
250 | 33 | |
251 | 33 | if (exponent > ExponentMax) { |
252 | 0 | m_coefficient = 0; |
253 | 0 | m_exponent = 0; |
254 | 0 | m_formatClass = ClassInfinity; |
255 | 0 | return; |
256 | 0 | } |
257 | 33 | |
258 | 33 | if (exponent < ExponentMin) { |
259 | 0 | m_coefficient = 0; |
260 | 0 | m_exponent = 0; |
261 | 0 | m_formatClass = ClassZero; |
262 | 0 | return; |
263 | 0 | } |
264 | 33 | |
265 | 33 | m_coefficient = coefficient; |
266 | 33 | m_exponent = static_cast<int16_t>(exponent); |
267 | 33 | } |
268 | | |
269 | | bool Decimal::EncodedData::operator==(const EncodedData& another) const |
270 | 0 | { |
271 | 0 | return m_sign == another.m_sign |
272 | 0 | && m_formatClass == another.m_formatClass |
273 | 0 | && m_exponent == another.m_exponent |
274 | 0 | && m_coefficient == another.m_coefficient; |
275 | 0 | } |
276 | | |
277 | | Decimal::Decimal(int32_t i32) |
278 | | : m_data(i32 < 0 ? Negative : Positive, 0, i32 < 0 ? static_cast<uint64_t>(-static_cast<int64_t>(i32)) : static_cast<uint64_t>(i32)) |
279 | 33 | { |
280 | 33 | } |
281 | | |
282 | | Decimal::Decimal(Sign sign, int exponent, uint64_t coefficient) |
283 | | : m_data(sign, coefficient ? exponent : 0, coefficient) |
284 | 0 | { |
285 | 0 | } |
286 | | |
287 | | Decimal::Decimal(const EncodedData& data) |
288 | | : m_data(data) |
289 | 0 | { |
290 | 0 | } |
291 | | |
292 | | Decimal::Decimal(const Decimal& other) |
293 | | : m_data(other.m_data) |
294 | 0 | { |
295 | 0 | } |
296 | | |
297 | | Decimal& Decimal::operator=(const Decimal& other) |
298 | 0 | { |
299 | 0 | m_data = other.m_data; |
300 | 0 | return *this; |
301 | 0 | } |
302 | | |
303 | | Decimal& Decimal::operator+=(const Decimal& other) |
304 | 0 | { |
305 | 0 | m_data = (*this + other).m_data; |
306 | 0 | return *this; |
307 | 0 | } |
308 | | |
309 | | Decimal& Decimal::operator-=(const Decimal& other) |
310 | 0 | { |
311 | 0 | m_data = (*this - other).m_data; |
312 | 0 | return *this; |
313 | 0 | } |
314 | | |
315 | | Decimal& Decimal::operator*=(const Decimal& other) |
316 | 0 | { |
317 | 0 | m_data = (*this * other).m_data; |
318 | 0 | return *this; |
319 | 0 | } |
320 | | |
321 | | Decimal& Decimal::operator/=(const Decimal& other) |
322 | 0 | { |
323 | 0 | m_data = (*this / other).m_data; |
324 | 0 | return *this; |
325 | 0 | } |
326 | | |
327 | | Decimal Decimal::operator-() const |
328 | 0 | { |
329 | 0 | if (isNaN()) |
330 | 0 | return *this; |
331 | 0 | |
332 | 0 | Decimal result(*this); |
333 | 0 | result.m_data.setSign(invertSign(m_data.sign())); |
334 | 0 | return result; |
335 | 0 | } |
336 | | |
337 | | Decimal Decimal::operator+(const Decimal& rhs) const |
338 | 0 | { |
339 | 0 | const Decimal& lhs = *this; |
340 | 0 | const Sign lhsSign = lhs.sign(); |
341 | 0 | const Sign rhsSign = rhs.sign(); |
342 | 0 |
|
343 | 0 | SpecialValueHandler handler(lhs, rhs); |
344 | 0 | switch (handler.handle()) { |
345 | 0 | case SpecialValueHandler::BothFinite: |
346 | 0 | break; |
347 | 0 |
|
348 | 0 | case SpecialValueHandler::BothInfinity: |
349 | 0 | return lhsSign == rhsSign ? lhs : nan(); |
350 | 0 |
|
351 | 0 | case SpecialValueHandler::EitherNaN: |
352 | 0 | return handler.value(); |
353 | 0 |
|
354 | 0 | case SpecialValueHandler::LHSIsInfinity: |
355 | 0 | return lhs; |
356 | 0 |
|
357 | 0 | case SpecialValueHandler::RHSIsInfinity: |
358 | 0 | return rhs; |
359 | 0 | } |
360 | 0 | |
361 | 0 | const AlignedOperands alignedOperands = alignOperands(lhs, rhs); |
362 | 0 |
|
363 | 0 | const uint64_t result = lhsSign == rhsSign |
364 | 0 | ? alignedOperands.lhsCoefficient + alignedOperands.rhsCoefficient |
365 | 0 | : alignedOperands.lhsCoefficient - alignedOperands.rhsCoefficient; |
366 | 0 |
|
367 | 0 | if (lhsSign == Negative && rhsSign == Positive && !result) |
368 | 0 | return Decimal(Positive, alignedOperands.exponent, 0); |
369 | 0 | |
370 | 0 | return static_cast<int64_t>(result) >= 0 |
371 | 0 | ? Decimal(lhsSign, alignedOperands.exponent, result) |
372 | 0 | : Decimal(invertSign(lhsSign), alignedOperands.exponent, -static_cast<int64_t>(result)); |
373 | 0 | } |
374 | | |
375 | | Decimal Decimal::operator-(const Decimal& rhs) const |
376 | 0 | { |
377 | 0 | const Decimal& lhs = *this; |
378 | 0 | const Sign lhsSign = lhs.sign(); |
379 | 0 | const Sign rhsSign = rhs.sign(); |
380 | 0 |
|
381 | 0 | SpecialValueHandler handler(lhs, rhs); |
382 | 0 | switch (handler.handle()) { |
383 | 0 | case SpecialValueHandler::BothFinite: |
384 | 0 | break; |
385 | 0 |
|
386 | 0 | case SpecialValueHandler::BothInfinity: |
387 | 0 | return lhsSign == rhsSign ? nan() : lhs; |
388 | 0 |
|
389 | 0 | case SpecialValueHandler::EitherNaN: |
390 | 0 | return handler.value(); |
391 | 0 |
|
392 | 0 | case SpecialValueHandler::LHSIsInfinity: |
393 | 0 | return lhs; |
394 | 0 |
|
395 | 0 | case SpecialValueHandler::RHSIsInfinity: |
396 | 0 | return infinity(invertSign(rhsSign)); |
397 | 0 | } |
398 | 0 | |
399 | 0 | const AlignedOperands alignedOperands = alignOperands(lhs, rhs); |
400 | 0 |
|
401 | 0 | const uint64_t result = lhsSign == rhsSign |
402 | 0 | ? alignedOperands.lhsCoefficient - alignedOperands.rhsCoefficient |
403 | 0 | : alignedOperands.lhsCoefficient + alignedOperands.rhsCoefficient; |
404 | 0 |
|
405 | 0 | if (lhsSign == Negative && rhsSign == Negative && !result) |
406 | 0 | return Decimal(Positive, alignedOperands.exponent, 0); |
407 | 0 | |
408 | 0 | return static_cast<int64_t>(result) >= 0 |
409 | 0 | ? Decimal(lhsSign, alignedOperands.exponent, result) |
410 | 0 | : Decimal(invertSign(lhsSign), alignedOperands.exponent, -static_cast<int64_t>(result)); |
411 | 0 | } |
412 | | |
413 | | Decimal Decimal::operator*(const Decimal& rhs) const |
414 | 0 | { |
415 | 0 | const Decimal& lhs = *this; |
416 | 0 | const Sign lhsSign = lhs.sign(); |
417 | 0 | const Sign rhsSign = rhs.sign(); |
418 | 0 | const Sign resultSign = lhsSign == rhsSign ? Positive : Negative; |
419 | 0 |
|
420 | 0 | SpecialValueHandler handler(lhs, rhs); |
421 | 0 | switch (handler.handle()) { |
422 | 0 | case SpecialValueHandler::BothFinite: { |
423 | 0 | const uint64_t lhsCoefficient = lhs.m_data.coefficient(); |
424 | 0 | const uint64_t rhsCoefficient = rhs.m_data.coefficient(); |
425 | 0 | int resultExponent = lhs.exponent() + rhs.exponent(); |
426 | 0 | UInt128 work(UInt128::multiply(lhsCoefficient, rhsCoefficient)); |
427 | 0 | while (work.high()) { |
428 | 0 | work /= 10; |
429 | 0 | ++resultExponent; |
430 | 0 | } |
431 | 0 | return Decimal(resultSign, resultExponent, work.low()); |
432 | 0 | } |
433 | 0 |
|
434 | 0 | case SpecialValueHandler::BothInfinity: |
435 | 0 | return infinity(resultSign); |
436 | 0 |
|
437 | 0 | case SpecialValueHandler::EitherNaN: |
438 | 0 | return handler.value(); |
439 | 0 |
|
440 | 0 | case SpecialValueHandler::LHSIsInfinity: |
441 | 0 | return rhs.isZero() ? nan() : infinity(resultSign); |
442 | 0 |
|
443 | 0 | case SpecialValueHandler::RHSIsInfinity: |
444 | 0 | return lhs.isZero() ? nan() : infinity(resultSign); |
445 | 0 | } |
446 | 0 | |
447 | 0 | ASSERT_NOT_REACHED(); |
448 | 0 | return nan(); |
449 | 0 | } |
450 | | |
451 | | Decimal Decimal::operator/(const Decimal& rhs) const |
452 | 0 | { |
453 | 0 | const Decimal& lhs = *this; |
454 | 0 | const Sign lhsSign = lhs.sign(); |
455 | 0 | const Sign rhsSign = rhs.sign(); |
456 | 0 | const Sign resultSign = lhsSign == rhsSign ? Positive : Negative; |
457 | 0 |
|
458 | 0 | SpecialValueHandler handler(lhs, rhs); |
459 | 0 | switch (handler.handle()) { |
460 | 0 | case SpecialValueHandler::BothFinite: |
461 | 0 | break; |
462 | 0 |
|
463 | 0 | case SpecialValueHandler::BothInfinity: |
464 | 0 | return nan(); |
465 | 0 |
|
466 | 0 | case SpecialValueHandler::EitherNaN: |
467 | 0 | return handler.value(); |
468 | 0 |
|
469 | 0 | case SpecialValueHandler::LHSIsInfinity: |
470 | 0 | return infinity(resultSign); |
471 | 0 |
|
472 | 0 | case SpecialValueHandler::RHSIsInfinity: |
473 | 0 | return zero(resultSign); |
474 | 0 | } |
475 | 0 | |
476 | 0 | ASSERT(lhs.isFinite()); |
477 | 0 | ASSERT(rhs.isFinite()); |
478 | 0 |
|
479 | 0 | if (rhs.isZero()) |
480 | 0 | return lhs.isZero() ? nan() : infinity(resultSign); |
481 | 0 | |
482 | 0 | int resultExponent = lhs.exponent() - rhs.exponent(); |
483 | 0 |
|
484 | 0 | if (lhs.isZero()) |
485 | 0 | return Decimal(resultSign, resultExponent, 0); |
486 | 0 | |
487 | 0 | uint64_t remainder = lhs.m_data.coefficient(); |
488 | 0 | const uint64_t divisor = rhs.m_data.coefficient(); |
489 | 0 | uint64_t result = 0; |
490 | 0 | for (;;) { |
491 | 0 | while (remainder < divisor && result < MaxCoefficient / 10) { |
492 | 0 | remainder *= 10; |
493 | 0 | result *= 10; |
494 | 0 | --resultExponent; |
495 | 0 | } |
496 | 0 | if (remainder < divisor) |
497 | 0 | break; |
498 | 0 | uint64_t quotient = remainder / divisor; |
499 | 0 | if (result > MaxCoefficient - quotient) |
500 | 0 | break; |
501 | 0 | result += quotient; |
502 | 0 | remainder %= divisor; |
503 | 0 | if (!remainder) |
504 | 0 | break; |
505 | 0 | } |
506 | 0 |
|
507 | 0 | if (remainder > divisor / 2) |
508 | 0 | ++result; |
509 | 0 |
|
510 | 0 | return Decimal(resultSign, resultExponent, result); |
511 | 0 | } |
512 | | |
513 | | bool Decimal::operator==(const Decimal& rhs) const |
514 | 0 | { |
515 | 0 | if (isNaN() || rhs.isNaN()) |
516 | 0 | return false; |
517 | 0 | return m_data == rhs.m_data || compareTo(rhs).isZero(); |
518 | 0 | } |
519 | | |
520 | | bool Decimal::operator!=(const Decimal& rhs) const |
521 | 0 | { |
522 | 0 | if (isNaN() || rhs.isNaN()) |
523 | 0 | return true; |
524 | 0 | if (m_data == rhs.m_data) |
525 | 0 | return false; |
526 | 0 | const Decimal result = compareTo(rhs); |
527 | 0 | if (result.isNaN()) |
528 | 0 | return false; |
529 | 0 | return !result.isZero(); |
530 | 0 | } |
531 | | |
532 | | bool Decimal::operator<(const Decimal& rhs) const |
533 | 0 | { |
534 | 0 | const Decimal result = compareTo(rhs); |
535 | 0 | if (result.isNaN()) |
536 | 0 | return false; |
537 | 0 | return !result.isZero() && result.isNegative(); |
538 | 0 | } |
539 | | |
540 | | bool Decimal::operator<=(const Decimal& rhs) const |
541 | 0 | { |
542 | 0 | if (isNaN() || rhs.isNaN()) |
543 | 0 | return false; |
544 | 0 | if (m_data == rhs.m_data) |
545 | 0 | return true; |
546 | 0 | const Decimal result = compareTo(rhs); |
547 | 0 | if (result.isNaN()) |
548 | 0 | return false; |
549 | 0 | return result.isZero() || result.isNegative(); |
550 | 0 | } |
551 | | |
552 | | bool Decimal::operator>(const Decimal& rhs) const |
553 | 0 | { |
554 | 0 | const Decimal result = compareTo(rhs); |
555 | 0 | if (result.isNaN()) |
556 | 0 | return false; |
557 | 0 | return !result.isZero() && result.isPositive(); |
558 | 0 | } |
559 | | |
560 | | bool Decimal::operator>=(const Decimal& rhs) const |
561 | 0 | { |
562 | 0 | if (isNaN() || rhs.isNaN()) |
563 | 0 | return false; |
564 | 0 | if (m_data == rhs.m_data) |
565 | 0 | return true; |
566 | 0 | const Decimal result = compareTo(rhs); |
567 | 0 | if (result.isNaN()) |
568 | 0 | return false; |
569 | 0 | return result.isZero() || !result.isNegative(); |
570 | 0 | } |
571 | | |
572 | | Decimal Decimal::abs() const |
573 | 0 | { |
574 | 0 | Decimal result(*this); |
575 | 0 | result.m_data.setSign(Positive); |
576 | 0 | return result; |
577 | 0 | } |
578 | | |
579 | | Decimal::AlignedOperands Decimal::alignOperands(const Decimal& lhs, const Decimal& rhs) |
580 | 0 | { |
581 | 0 | ASSERT(lhs.isFinite()); |
582 | 0 | ASSERT(rhs.isFinite()); |
583 | 0 |
|
584 | 0 | const int lhsExponent = lhs.exponent(); |
585 | 0 | const int rhsExponent = rhs.exponent(); |
586 | 0 | int exponent = std::min(lhsExponent, rhsExponent); |
587 | 0 | uint64_t lhsCoefficient = lhs.m_data.coefficient(); |
588 | 0 | uint64_t rhsCoefficient = rhs.m_data.coefficient(); |
589 | 0 |
|
590 | 0 | if (lhsExponent > rhsExponent) { |
591 | 0 | const int numberOfLHSDigits = countDigits(lhsCoefficient); |
592 | 0 | if (numberOfLHSDigits) { |
593 | 0 | const int lhsShiftAmount = lhsExponent - rhsExponent; |
594 | 0 | const int overflow = numberOfLHSDigits + lhsShiftAmount - Precision; |
595 | 0 | if (overflow <= 0) { |
596 | 0 | lhsCoefficient = scaleUp(lhsCoefficient, lhsShiftAmount); |
597 | 0 | } else { |
598 | 0 | lhsCoefficient = scaleUp(lhsCoefficient, lhsShiftAmount - overflow); |
599 | 0 | rhsCoefficient = scaleDown(rhsCoefficient, overflow); |
600 | 0 | exponent += overflow; |
601 | 0 | } |
602 | 0 | } |
603 | 0 |
|
604 | 0 | } else if (lhsExponent < rhsExponent) { |
605 | 0 | const int numberOfRHSDigits = countDigits(rhsCoefficient); |
606 | 0 | if (numberOfRHSDigits) { |
607 | 0 | const int rhsShiftAmount = rhsExponent - lhsExponent; |
608 | 0 | const int overflow = numberOfRHSDigits + rhsShiftAmount - Precision; |
609 | 0 | if (overflow <= 0) { |
610 | 0 | rhsCoefficient = scaleUp(rhsCoefficient, rhsShiftAmount); |
611 | 0 | } else { |
612 | 0 | rhsCoefficient = scaleUp(rhsCoefficient, rhsShiftAmount - overflow); |
613 | 0 | lhsCoefficient = scaleDown(lhsCoefficient, overflow); |
614 | 0 | exponent += overflow; |
615 | 0 | } |
616 | 0 | } |
617 | 0 | } |
618 | 0 |
|
619 | 0 | AlignedOperands alignedOperands; |
620 | 0 | alignedOperands.exponent = exponent; |
621 | 0 | alignedOperands.lhsCoefficient = lhsCoefficient; |
622 | 0 | alignedOperands.rhsCoefficient = rhsCoefficient; |
623 | 0 | return alignedOperands; |
624 | 0 | } |
625 | | |
626 | | static bool isMultiplePowersOfTen(uint64_t coefficient, int n) |
627 | 0 | { |
628 | 0 | return !coefficient || !(coefficient % scaleUp(1, n)); |
629 | 0 | } |
630 | | |
631 | | // Round toward positive infinity. |
632 | | Decimal Decimal::ceil() const |
633 | 0 | { |
634 | 0 | if (isSpecial()) |
635 | 0 | return *this; |
636 | 0 | |
637 | 0 | if (exponent() >= 0) |
638 | 0 | return *this; |
639 | 0 | |
640 | 0 | uint64_t result = m_data.coefficient(); |
641 | 0 | const int numberOfDigits = countDigits(result); |
642 | 0 | const int numberOfDropDigits = -exponent(); |
643 | 0 | if (numberOfDigits <= numberOfDropDigits) |
644 | 0 | return isPositive() ? Decimal(1) : zero(Positive); |
645 | 0 | |
646 | 0 | result = scaleDown(result, numberOfDropDigits); |
647 | 0 | if (isPositive() && !isMultiplePowersOfTen(m_data.coefficient(), numberOfDropDigits)) |
648 | 0 | ++result; |
649 | 0 | return Decimal(sign(), 0, result); |
650 | 0 | } |
651 | | |
652 | | Decimal Decimal::compareTo(const Decimal& rhs) const |
653 | 0 | { |
654 | 0 | const Decimal result(*this - rhs); |
655 | 0 | switch (result.m_data.formatClass()) { |
656 | 0 | case EncodedData::ClassInfinity: |
657 | 0 | return result.isNegative() ? Decimal(-1) : Decimal(1); |
658 | 0 |
|
659 | 0 | case EncodedData::ClassNaN: |
660 | 0 | case EncodedData::ClassNormal: |
661 | 0 | return result; |
662 | 0 |
|
663 | 0 | case EncodedData::ClassZero: |
664 | 0 | return zero(Positive); |
665 | 0 |
|
666 | 0 | default: |
667 | 0 | ASSERT_NOT_REACHED(); |
668 | 0 | return nan(); |
669 | 0 | } |
670 | 0 | } |
671 | | |
672 | | // Round toward negative infinity. |
673 | | Decimal Decimal::floor() const |
674 | 0 | { |
675 | 0 | if (isSpecial()) |
676 | 0 | return *this; |
677 | 0 | |
678 | 0 | if (exponent() >= 0) |
679 | 0 | return *this; |
680 | 0 | |
681 | 0 | uint64_t result = m_data.coefficient(); |
682 | 0 | const int numberOfDigits = countDigits(result); |
683 | 0 | const int numberOfDropDigits = -exponent(); |
684 | 0 | if (numberOfDigits < numberOfDropDigits) |
685 | 0 | return isPositive() ? zero(Positive) : Decimal(-1); |
686 | 0 | |
687 | 0 | result = scaleDown(result, numberOfDropDigits); |
688 | 0 | if (isNegative() && !isMultiplePowersOfTen(m_data.coefficient(), numberOfDropDigits)) |
689 | 0 | ++result; |
690 | 0 | return Decimal(sign(), 0, result); |
691 | 0 | } |
692 | | |
693 | | Decimal Decimal::fromDouble(double doubleValue) |
694 | 0 | { |
695 | 0 | if (std::isfinite(doubleValue)) |
696 | 0 | return fromString(mozToString(doubleValue)); |
697 | 0 | |
698 | 0 | if (std::isinf(doubleValue)) |
699 | 0 | return infinity(doubleValue < 0 ? Negative : Positive); |
700 | 0 |
|
701 | 0 | return nan(); |
702 | 0 | } |
703 | | |
704 | | Decimal Decimal::fromString(const String& str) |
705 | 0 | { |
706 | 0 | int exponent = 0; |
707 | 0 | Sign exponentSign = Positive; |
708 | 0 | int numberOfDigits = 0; |
709 | 0 | int numberOfDigitsAfterDot = 0; |
710 | 0 | int numberOfExtraDigits = 0; |
711 | 0 | Sign sign = Positive; |
712 | 0 |
|
713 | 0 | enum { |
714 | 0 | StateDigit, |
715 | 0 | StateDot, |
716 | 0 | StateDotDigit, |
717 | 0 | StateE, |
718 | 0 | StateEDigit, |
719 | 0 | StateESign, |
720 | 0 | StateSign, |
721 | 0 | StateStart, |
722 | 0 | StateZero, |
723 | 0 | } state = StateStart; |
724 | 0 |
|
725 | 0 | #define HandleCharAndBreak(expected, nextState) \ |
726 | 0 | if (ch == expected) { \ |
727 | 0 | state = nextState; \ |
728 | 0 | break; \ |
729 | 0 | } |
730 | 0 |
|
731 | 0 | #define HandleTwoCharsAndBreak(expected1, expected2, nextState) \ |
732 | 0 | if (ch == expected1 || ch == expected2) { \ |
733 | 0 | state = nextState; \ |
734 | 0 | break; \ |
735 | 0 | } |
736 | 0 |
|
737 | 0 | uint64_t accumulator = 0; |
738 | 0 | for (unsigned index = 0; index < str.length(); ++index) { |
739 | 0 | const int ch = str[index]; |
740 | 0 | switch (state) { |
741 | 0 | case StateDigit: |
742 | 0 | if (ch >= '0' && ch <= '9') { |
743 | 0 | if (numberOfDigits < Precision) { |
744 | 0 | ++numberOfDigits; |
745 | 0 | accumulator *= 10; |
746 | 0 | accumulator += ch - '0'; |
747 | 0 | } else { |
748 | 0 | ++numberOfExtraDigits; |
749 | 0 | } |
750 | 0 | break; |
751 | 0 | } |
752 | 0 |
|
753 | 0 | HandleCharAndBreak('.', StateDot); |
754 | 0 | HandleTwoCharsAndBreak('E', 'e', StateE); |
755 | 0 | return nan(); |
756 | 0 |
|
757 | 0 | case StateDot: |
758 | 0 | case StateDotDigit: |
759 | 0 | if (ch >= '0' && ch <= '9') { |
760 | 0 | if (numberOfDigits < Precision) { |
761 | 0 | ++numberOfDigits; |
762 | 0 | ++numberOfDigitsAfterDot; |
763 | 0 | accumulator *= 10; |
764 | 0 | accumulator += ch - '0'; |
765 | 0 | } |
766 | 0 | state = StateDotDigit; |
767 | 0 | break; |
768 | 0 | } |
769 | 0 |
|
770 | 0 | HandleTwoCharsAndBreak('E', 'e', StateE); |
771 | 0 | return nan(); |
772 | 0 |
|
773 | 0 | case StateE: |
774 | 0 | if (ch == '+') { |
775 | 0 | exponentSign = Positive; |
776 | 0 | state = StateESign; |
777 | 0 | break; |
778 | 0 | } |
779 | 0 | |
780 | 0 | if (ch == '-') { |
781 | 0 | exponentSign = Negative; |
782 | 0 | state = StateESign; |
783 | 0 | break; |
784 | 0 | } |
785 | 0 | |
786 | 0 | if (ch >= '0' && ch <= '9') { |
787 | 0 | exponent = ch - '0'; |
788 | 0 | state = StateEDigit; |
789 | 0 | break; |
790 | 0 | } |
791 | 0 | |
792 | 0 | return nan(); |
793 | 0 |
|
794 | 0 | case StateEDigit: |
795 | 0 | if (ch >= '0' && ch <= '9') { |
796 | 0 | exponent *= 10; |
797 | 0 | exponent += ch - '0'; |
798 | 0 | if (exponent > ExponentMax + Precision) { |
799 | 0 | if (accumulator) |
800 | 0 | return exponentSign == Negative ? zero(Positive) : infinity(sign); |
801 | 0 | return zero(sign); |
802 | 0 | } |
803 | 0 | state = StateEDigit; |
804 | 0 | break; |
805 | 0 | } |
806 | 0 | |
807 | 0 | return nan(); |
808 | 0 |
|
809 | 0 | case StateESign: |
810 | 0 | if (ch >= '0' && ch <= '9') { |
811 | 0 | exponent = ch - '0'; |
812 | 0 | state = StateEDigit; |
813 | 0 | break; |
814 | 0 | } |
815 | 0 | |
816 | 0 | return nan(); |
817 | 0 |
|
818 | 0 | case StateSign: |
819 | 0 | if (ch >= '1' && ch <= '9') { |
820 | 0 | accumulator = ch - '0'; |
821 | 0 | numberOfDigits = 1; |
822 | 0 | state = StateDigit; |
823 | 0 | break; |
824 | 0 | } |
825 | 0 | |
826 | 0 | HandleCharAndBreak('0', StateZero); |
827 | 0 | return nan(); |
828 | 0 |
|
829 | 0 | case StateStart: |
830 | 0 | if (ch >= '1' && ch <= '9') { |
831 | 0 | accumulator = ch - '0'; |
832 | 0 | numberOfDigits = 1; |
833 | 0 | state = StateDigit; |
834 | 0 | break; |
835 | 0 | } |
836 | 0 | |
837 | 0 | if (ch == '-') { |
838 | 0 | sign = Negative; |
839 | 0 | state = StateSign; |
840 | 0 | break; |
841 | 0 | } |
842 | 0 | |
843 | 0 | if (ch == '+') { |
844 | 0 | sign = Positive; |
845 | 0 | state = StateSign; |
846 | 0 | break; |
847 | 0 | } |
848 | 0 | |
849 | 0 | HandleCharAndBreak('0', StateZero); |
850 | 0 | HandleCharAndBreak('.', StateDot); |
851 | 0 | return nan(); |
852 | 0 |
|
853 | 0 | case StateZero: |
854 | 0 | if (ch == '0') |
855 | 0 | break; |
856 | 0 | |
857 | 0 | if (ch >= '1' && ch <= '9') { |
858 | 0 | accumulator = ch - '0'; |
859 | 0 | numberOfDigits = 1; |
860 | 0 | state = StateDigit; |
861 | 0 | break; |
862 | 0 | } |
863 | 0 | |
864 | 0 | HandleCharAndBreak('.', StateDot); |
865 | 0 | HandleTwoCharsAndBreak('E', 'e', StateE); |
866 | 0 | return nan(); |
867 | 0 |
|
868 | 0 | default: |
869 | 0 | ASSERT_NOT_REACHED(); |
870 | 0 | return nan(); |
871 | 0 | } |
872 | 0 | } |
873 | 0 |
|
874 | 0 | if (state == StateZero) |
875 | 0 | return zero(sign); |
876 | 0 | |
877 | 0 | if (state == StateDigit || state == StateEDigit || state == StateDotDigit) { |
878 | 0 | int resultExponent = exponent * (exponentSign == Negative ? -1 : 1) - numberOfDigitsAfterDot + numberOfExtraDigits; |
879 | 0 | if (resultExponent < ExponentMin) |
880 | 0 | return zero(Positive); |
881 | 0 | |
882 | 0 | const int overflow = resultExponent - ExponentMax + 1; |
883 | 0 | if (overflow > 0) { |
884 | 0 | if (overflow + numberOfDigits - numberOfDigitsAfterDot > Precision) |
885 | 0 | return infinity(sign); |
886 | 0 | accumulator = scaleUp(accumulator, overflow); |
887 | 0 | resultExponent -= overflow; |
888 | 0 | } |
889 | 0 |
|
890 | 0 | return Decimal(sign, resultExponent, accumulator); |
891 | 0 | } |
892 | 0 | |
893 | 0 | return nan(); |
894 | 0 | } |
895 | | |
896 | | Decimal Decimal::infinity(const Sign sign) |
897 | 0 | { |
898 | 0 | return Decimal(EncodedData(sign, EncodedData::ClassInfinity)); |
899 | 0 | } |
900 | | |
901 | | Decimal Decimal::nan() |
902 | 0 | { |
903 | 0 | return Decimal(EncodedData(Positive, EncodedData::ClassNaN)); |
904 | 0 | } |
905 | | |
906 | | Decimal Decimal::remainder(const Decimal& rhs) const |
907 | 0 | { |
908 | 0 | const Decimal quotient = *this / rhs; |
909 | 0 | return quotient.isSpecial() ? quotient : *this - (quotient.isNegative() ? quotient.ceil() : quotient.floor()) * rhs; |
910 | 0 | } |
911 | | |
912 | | Decimal Decimal::round() const |
913 | 0 | { |
914 | 0 | if (isSpecial()) |
915 | 0 | return *this; |
916 | 0 | |
917 | 0 | if (exponent() >= 0) |
918 | 0 | return *this; |
919 | 0 | |
920 | 0 | uint64_t result = m_data.coefficient(); |
921 | 0 | const int numberOfDigits = countDigits(result); |
922 | 0 | const int numberOfDropDigits = -exponent(); |
923 | 0 | if (numberOfDigits < numberOfDropDigits) |
924 | 0 | return zero(Positive); |
925 | 0 | |
926 | 0 | result = scaleDown(result, numberOfDropDigits - 1); |
927 | 0 | if (result % 10 >= 5) |
928 | 0 | result += 10; |
929 | 0 | result /= 10; |
930 | 0 | return Decimal(sign(), 0, result); |
931 | 0 | } |
932 | | |
933 | | double Decimal::toDouble() const |
934 | 0 | { |
935 | 0 | if (isFinite()) { |
936 | 0 | bool valid; |
937 | 0 | const double doubleValue = mozToDouble(toString(), &valid); |
938 | 0 | return valid ? doubleValue : std::numeric_limits<double>::quiet_NaN(); |
939 | 0 | } |
940 | 0 |
|
941 | 0 | if (isInfinity()) |
942 | 0 | return isNegative() ? -std::numeric_limits<double>::infinity() : std::numeric_limits<double>::infinity(); |
943 | 0 | |
944 | 0 | return std::numeric_limits<double>::quiet_NaN(); |
945 | 0 | } |
946 | | |
947 | | String Decimal::toString() const |
948 | 0 | { |
949 | 0 | switch (m_data.formatClass()) { |
950 | 0 | case EncodedData::ClassInfinity: |
951 | 0 | return sign() ? "-Infinity" : "Infinity"; |
952 | 0 |
|
953 | 0 | case EncodedData::ClassNaN: |
954 | 0 | return "NaN"; |
955 | 0 |
|
956 | 0 | case EncodedData::ClassNormal: |
957 | 0 | case EncodedData::ClassZero: |
958 | 0 | break; |
959 | 0 |
|
960 | 0 | default: |
961 | 0 | ASSERT_NOT_REACHED(); |
962 | 0 | return ""; |
963 | 0 | } |
964 | 0 |
|
965 | 0 | StringBuilder builder; |
966 | 0 | if (sign()) |
967 | 0 | builder.append('-'); |
968 | 0 |
|
969 | 0 | int originalExponent = exponent(); |
970 | 0 | uint64_t coefficient = m_data.coefficient(); |
971 | 0 |
|
972 | 0 | if (originalExponent < 0) { |
973 | 0 | const int maxDigits = DBL_DIG; |
974 | 0 | uint64_t lastDigit = 0; |
975 | 0 | while (countDigits(coefficient) > maxDigits) { |
976 | 0 | lastDigit = coefficient % 10; |
977 | 0 | coefficient /= 10; |
978 | 0 | ++originalExponent; |
979 | 0 | } |
980 | 0 |
|
981 | 0 | if (lastDigit >= 5) |
982 | 0 | ++coefficient; |
983 | 0 |
|
984 | 0 | while (originalExponent < 0 && coefficient && !(coefficient % 10)) { |
985 | 0 | coefficient /= 10; |
986 | 0 | ++originalExponent; |
987 | 0 | } |
988 | 0 | } |
989 | 0 |
|
990 | 0 | const String digits = mozToString(coefficient); |
991 | 0 | int coefficientLength = static_cast<int>(digits.length()); |
992 | 0 | const int adjustedExponent = originalExponent + coefficientLength - 1; |
993 | 0 | if (originalExponent <= 0 && adjustedExponent >= -6) { |
994 | 0 | if (!originalExponent) { |
995 | 0 | builder.append(digits); |
996 | 0 | return builder.toString(); |
997 | 0 | } |
998 | 0 | |
999 | 0 | if (adjustedExponent >= 0) { |
1000 | 0 | for (int i = 0; i < coefficientLength; ++i) { |
1001 | 0 | builder.append(digits[i]); |
1002 | 0 | if (i == adjustedExponent) |
1003 | 0 | builder.append('.'); |
1004 | 0 | } |
1005 | 0 | return builder.toString(); |
1006 | 0 | } |
1007 | 0 |
|
1008 | 0 | builder.appendLiteral("0."); |
1009 | 0 | for (int i = adjustedExponent + 1; i < 0; ++i) |
1010 | 0 | builder.append('0'); |
1011 | 0 |
|
1012 | 0 | builder.append(digits); |
1013 | 0 |
|
1014 | 0 | } else { |
1015 | 0 | builder.append(digits[0]); |
1016 | 0 | while (coefficientLength >= 2 && digits[coefficientLength - 1] == '0') |
1017 | 0 | --coefficientLength; |
1018 | 0 | if (coefficientLength >= 2) { |
1019 | 0 | builder.append('.'); |
1020 | 0 | for (int i = 1; i < coefficientLength; ++i) |
1021 | 0 | builder.append(digits[i]); |
1022 | 0 | } |
1023 | 0 |
|
1024 | 0 | if (adjustedExponent) { |
1025 | 0 | builder.append(adjustedExponent < 0 ? "e" : "e+"); |
1026 | 0 | builder.appendNumber(adjustedExponent); |
1027 | 0 | } |
1028 | 0 | } |
1029 | 0 | return builder.toString(); |
1030 | 0 | } |
1031 | | |
1032 | | bool Decimal::toString(char* strBuf, size_t bufLength) const |
1033 | 0 | { |
1034 | 0 | ASSERT(bufLength > 0); |
1035 | 0 | String str = toString(); |
1036 | 0 | size_t length = str.copy(strBuf, bufLength); |
1037 | 0 | if (length < bufLength) { |
1038 | 0 | strBuf[length] = '\0'; |
1039 | 0 | return true; |
1040 | 0 | } |
1041 | 0 | strBuf[bufLength - 1] = '\0'; |
1042 | 0 | return false; |
1043 | 0 | } |
1044 | | |
1045 | | Decimal Decimal::zero(Sign sign) |
1046 | 0 | { |
1047 | 0 | return Decimal(EncodedData(sign, EncodedData::ClassZero)); |
1048 | 0 | } |
1049 | | |
1050 | | } // namespace blink |