Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/modules/brotli/dec/huffman.c
Line
Count
Source (jump to first uncovered line)
1
/* Copyright 2013 Google Inc. All Rights Reserved.
2
3
   Distributed under MIT license.
4
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5
*/
6
7
/* Utilities for building Huffman decoding tables. */
8
9
#include "./huffman.h"
10
11
#include <string.h>  /* memcpy, memset */
12
13
#include "../common/constants.h"
14
#include "../common/platform.h"
15
#include <brotli/types.h>
16
17
#if defined(__cplusplus) || defined(c_plusplus)
18
extern "C" {
19
#endif
20
21
0
#define BROTLI_REVERSE_BITS_MAX 8
22
23
#if defined(BROTLI_RBIT)
24
#define BROTLI_REVERSE_BITS_BASE \
25
  ((sizeof(brotli_reg_t) << 3) - BROTLI_REVERSE_BITS_MAX)
26
#else
27
0
#define BROTLI_REVERSE_BITS_BASE 0
28
static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = {
29
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
30
  0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
31
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
32
  0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
33
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
34
  0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
35
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
36
  0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
37
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
38
  0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
39
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
40
  0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
41
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
42
  0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
43
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
44
  0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
45
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
46
  0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
47
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
48
  0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
49
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
50
  0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
51
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
52
  0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
53
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
54
  0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
55
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
56
  0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
57
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
58
  0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
59
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
60
  0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
61
};
62
#endif  /* BROTLI_RBIT */
63
64
#define BROTLI_REVERSE_BITS_LOWEST \
65
0
  ((brotli_reg_t)1 << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE))
66
67
/* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX),
68
   where reverse(value, len) is the bit-wise reversal of the len least
69
   significant bits of value. */
70
0
static BROTLI_INLINE brotli_reg_t BrotliReverseBits(brotli_reg_t num) {
71
#if defined(BROTLI_RBIT)
72
  return BROTLI_RBIT(num);
73
#else
74
  return kReverseBits[num];
75
0
#endif
76
0
}
77
78
/* Stores code in table[0], table[step], table[2*step], ..., table[end] */
79
/* Assumes that end is an integer multiple of step */
80
static BROTLI_INLINE void ReplicateValue(HuffmanCode* table,
81
                                         int step, int end,
82
0
                                         HuffmanCode code) {
83
0
  do {
84
0
    end -= step;
85
0
    table[end] = code;
86
0
  } while (end > 0);
87
0
}
88
89
/* Returns the table width of the next 2nd level table. |count| is the histogram
90
   of bit lengths for the remaining symbols, |len| is the code length of the
91
   next processed symbol. */
92
static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count,
93
0
                                          int len, int root_bits) {
94
0
  int left = 1 << (len - root_bits);
95
0
  while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) {
96
0
    left -= count[len];
97
0
    if (left <= 0) break;
98
0
    ++len;
99
0
    left <<= 1;
100
0
  }
101
0
  return len - root_bits;
102
0
}
103
104
void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table,
105
                                        const uint8_t* const code_lengths,
106
0
                                        uint16_t* count) {
107
0
  HuffmanCode code;       /* current table entry */
108
0
  int symbol;             /* symbol index in original or sorted table */
109
0
  brotli_reg_t key;       /* prefix code */
110
0
  brotli_reg_t key_step;  /* prefix code addend */
111
0
  int step;               /* step size to replicate values in current table */
112
0
  int table_size;         /* size of current table */
113
0
  int sorted[BROTLI_CODE_LENGTH_CODES];  /* symbols sorted by code length */
114
0
  /* offsets in sorted table for each length */
115
0
  int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1];
116
0
  int bits;
117
0
  int bits_count;
118
0
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <=
119
0
                BROTLI_REVERSE_BITS_MAX);
120
0
121
0
  /* Generate offsets into sorted symbol table by code length. */
122
0
  symbol = -1;
123
0
  bits = 1;
124
0
  BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, {
125
0
    symbol += count[bits];
126
0
    offset[bits] = symbol;
127
0
    bits++;
128
0
  });
129
0
  /* Symbols with code length 0 are placed after all other symbols. */
130
0
  offset[0] = BROTLI_CODE_LENGTH_CODES - 1;
131
0
132
0
  /* Sort symbols by length, by symbol order within each length. */
133
0
  symbol = BROTLI_CODE_LENGTH_CODES;
134
0
  do {
135
0
    BROTLI_REPEAT(6, {
136
0
      symbol--;
137
0
      sorted[offset[code_lengths[symbol]]--] = symbol;
138
0
    });
139
0
  } while (symbol != 0);
140
0
141
0
  table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH;
142
0
143
0
  /* Special case: all symbols but one have 0 code length. */
144
0
  if (offset[0] == 0) {
145
0
    code.bits = 0;
146
0
    code.value = (uint16_t)sorted[0];
147
0
    for (key = 0; key < (brotli_reg_t)table_size; ++key) {
148
0
      table[key] = code;
149
0
    }
150
0
    return;
151
0
  }
152
0
153
0
  /* Fill in table. */
154
0
  key = 0;
155
0
  key_step = BROTLI_REVERSE_BITS_LOWEST;
156
0
  symbol = 0;
157
0
  bits = 1;
158
0
  step = 2;
159
0
  do {
160
0
    code.bits = (uint8_t)bits;
161
0
    for (bits_count = count[bits]; bits_count != 0; --bits_count) {
162
0
      code.value = (uint16_t)sorted[symbol++];
163
0
      ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
164
0
      key += key_step;
165
0
    }
166
0
    step <<= 1;
167
0
    key_step >>= 1;
168
0
  } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH);
169
0
}
170
171
uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table,
172
                                 int root_bits,
173
                                 const uint16_t* const symbol_lists,
174
0
                                 uint16_t* count) {
175
0
  HuffmanCode code;       /* current table entry */
176
0
  HuffmanCode* table;     /* next available space in table */
177
0
  int len;                /* current code length */
178
0
  int symbol;             /* symbol index in original or sorted table */
179
0
  brotli_reg_t key;       /* prefix code */
180
0
  brotli_reg_t key_step;  /* prefix code addend */
181
0
  brotli_reg_t sub_key;   /* 2nd level table prefix code */
182
0
  brotli_reg_t sub_key_step;  /* 2nd level table prefix code addend */
183
0
  int step;               /* step size to replicate values in current table */
184
0
  int table_bits;         /* key length of current table */
185
0
  int table_size;         /* size of current table */
186
0
  int total_size;         /* sum of root table size and 2nd level table sizes */
187
0
  int max_length = -1;
188
0
  int bits;
189
0
  int bits_count;
190
0
191
0
  BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX);
192
0
  BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <=
193
0
                BROTLI_REVERSE_BITS_MAX);
194
0
195
0
  while (symbol_lists[max_length] == 0xFFFF) max_length--;
196
0
  max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1;
197
0
198
0
  table = root_table;
199
0
  table_bits = root_bits;
200
0
  table_size = 1 << table_bits;
201
0
  total_size = table_size;
202
0
203
0
  /* Fill in the root table. Reduce the table size to if possible,
204
0
     and create the repetitions by memcpy. */
205
0
  if (table_bits > max_length) {
206
0
    table_bits = max_length;
207
0
    table_size = 1 << table_bits;
208
0
  }
209
0
  key = 0;
210
0
  key_step = BROTLI_REVERSE_BITS_LOWEST;
211
0
  bits = 1;
212
0
  step = 2;
213
0
  do {
214
0
    code.bits = (uint8_t)bits;
215
0
    symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
216
0
    for (bits_count = count[bits]; bits_count != 0; --bits_count) {
217
0
      symbol = symbol_lists[symbol];
218
0
      code.value = (uint16_t)symbol;
219
0
      ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code);
220
0
      key += key_step;
221
0
    }
222
0
    step <<= 1;
223
0
    key_step >>= 1;
224
0
  } while (++bits <= table_bits);
225
0
226
0
  /* If root_bits != table_bits then replicate to fill the remaining slots. */
227
0
  while (total_size != table_size) {
228
0
    memcpy(&table[table_size], &table[0],
229
0
           (size_t)table_size * sizeof(table[0]));
230
0
    table_size <<= 1;
231
0
  }
232
0
233
0
  /* Fill in 2nd level tables and add pointers to root table. */
234
0
  key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1);
235
0
  sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1);
236
0
  sub_key_step = BROTLI_REVERSE_BITS_LOWEST;
237
0
  for (len = root_bits + 1, step = 2; len <= max_length; ++len) {
238
0
    symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1);
239
0
    for (; count[len] != 0; --count[len]) {
240
0
      if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) {
241
0
        table += table_size;
242
0
        table_bits = NextTableBitSize(count, len, root_bits);
243
0
        table_size = 1 << table_bits;
244
0
        total_size += table_size;
245
0
        sub_key = BrotliReverseBits(key);
246
0
        key += key_step;
247
0
        root_table[sub_key].bits = (uint8_t)(table_bits + root_bits);
248
0
        root_table[sub_key].value =
249
0
            (uint16_t)(((size_t)(table - root_table)) - sub_key);
250
0
        sub_key = 0;
251
0
      }
252
0
      code.bits = (uint8_t)(len - root_bits);
253
0
      symbol = symbol_lists[symbol];
254
0
      code.value = (uint16_t)symbol;
255
0
      ReplicateValue(
256
0
          &table[BrotliReverseBits(sub_key)], step, table_size, code);
257
0
      sub_key += sub_key_step;
258
0
    }
259
0
    step <<= 1;
260
0
    sub_key_step >>= 1;
261
0
  }
262
0
  return (uint32_t)total_size;
263
0
}
264
265
uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table,
266
                                       int root_bits,
267
                                       uint16_t* val,
268
0
                                       uint32_t num_symbols) {
269
0
  uint32_t table_size = 1;
270
0
  const uint32_t goal_size = 1U << root_bits;
271
0
  switch (num_symbols) {
272
0
    case 0:
273
0
      table[0].bits = 0;
274
0
      table[0].value = val[0];
275
0
      break;
276
0
    case 1:
277
0
      table[0].bits = 1;
278
0
      table[1].bits = 1;
279
0
      if (val[1] > val[0]) {
280
0
        table[0].value = val[0];
281
0
        table[1].value = val[1];
282
0
      } else {
283
0
        table[0].value = val[1];
284
0
        table[1].value = val[0];
285
0
      }
286
0
      table_size = 2;
287
0
      break;
288
0
    case 2:
289
0
      table[0].bits = 1;
290
0
      table[0].value = val[0];
291
0
      table[2].bits = 1;
292
0
      table[2].value = val[0];
293
0
      if (val[2] > val[1]) {
294
0
        table[1].value = val[1];
295
0
        table[3].value = val[2];
296
0
      } else {
297
0
        table[1].value = val[2];
298
0
        table[3].value = val[1];
299
0
      }
300
0
      table[1].bits = 2;
301
0
      table[3].bits = 2;
302
0
      table_size = 4;
303
0
      break;
304
0
    case 3: {
305
0
      int i, k;
306
0
      for (i = 0; i < 3; ++i) {
307
0
        for (k = i + 1; k < 4; ++k) {
308
0
          if (val[k] < val[i]) {
309
0
            uint16_t t = val[k];
310
0
            val[k] = val[i];
311
0
            val[i] = t;
312
0
          }
313
0
        }
314
0
      }
315
0
      for (i = 0; i < 4; ++i) {
316
0
        table[i].bits = 2;
317
0
      }
318
0
      table[0].value = val[0];
319
0
      table[2].value = val[1];
320
0
      table[1].value = val[2];
321
0
      table[3].value = val[3];
322
0
      table_size = 4;
323
0
      break;
324
0
    }
325
0
    case 4: {
326
0
      int i;
327
0
      if (val[3] < val[2]) {
328
0
        uint16_t t = val[3];
329
0
        val[3] = val[2];
330
0
        val[2] = t;
331
0
      }
332
0
      for (i = 0; i < 7; ++i) {
333
0
        table[i].value = val[0];
334
0
        table[i].bits = (uint8_t)(1 + (i & 1));
335
0
      }
336
0
      table[1].value = val[1];
337
0
      table[3].value = val[2];
338
0
      table[5].value = val[1];
339
0
      table[7].value = val[3];
340
0
      table[3].bits = 3;
341
0
      table[7].bits = 3;
342
0
      table_size = 8;
343
0
      break;
344
0
    }
345
0
  }
346
0
  while (table_size != goal_size) {
347
0
    memcpy(&table[table_size], &table[0],
348
0
           (size_t)table_size * sizeof(table[0]));
349
0
    table_size <<= 1;
350
0
  }
351
0
  return goal_size;
352
0
}
353
354
#if defined(__cplusplus) || defined(c_plusplus)
355
}  /* extern "C" */
356
#endif