Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/modules/fdlibm/src/e_acos.cpp
Line
Count
Source (jump to first uncovered line)
1
2
/* @(#)e_acos.c 1.3 95/01/18 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice 
10
 * is preserved.
11
 * ====================================================
12
 */
13
14
//#include <sys/cdefs.h>
15
//__FBSDID("$FreeBSD$");
16
17
/* __ieee754_acos(x)
18
 * Method :                  
19
 *  acos(x)  = pi/2 - asin(x)
20
 *  acos(-x) = pi/2 + asin(x)
21
 * For |x|<=0.5
22
 *  acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
23
 * For x>0.5
24
 *  acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
25
 *    = 2asin(sqrt((1-x)/2))  
26
 *    = 2s + 2s*z*R(z)  ...z=(1-x)/2, s=sqrt(z)
27
 *    = 2f + (2c + 2s*z*R(z))
28
 *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
29
 *     for f so that f+c ~ sqrt(z).
30
 * For x<-0.5
31
 *  acos(x) = pi - 2asin(sqrt((1-|x|)/2))
32
 *    = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
33
 *
34
 * Special cases:
35
 *  if x is NaN, return x itself;
36
 *  if |x|>1, return NaN with invalid signal.
37
 *
38
 * Function needed: sqrt
39
 */
40
41
#include <float.h>
42
43
#include "math_private.h"
44
45
static const double
46
one=  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
47
pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
48
pio2_hi =  1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
49
static volatile double
50
pio2_lo =  6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
51
static const double
52
pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
53
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
54
pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
55
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
56
pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
57
pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
58
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
59
qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
60
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
61
qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
62
63
double
64
__ieee754_acos(double x)
65
0
{
66
0
  double z,p,q,r,w,s,c,df;
67
0
  int32_t hx,ix;
68
0
  GET_HIGH_WORD(hx,x);
69
0
  ix = hx&0x7fffffff;
70
0
  if(ix>=0x3ff00000) { /* |x| >= 1 */
71
0
      u_int32_t lx;
72
0
      GET_LOW_WORD(lx,x);
73
0
      if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
74
0
    if(hx>0) return 0.0;   /* acos(1) = 0  */
75
0
    else return pi+2.0*pio2_lo; /* acos(-1)= pi */
76
0
      }
77
0
      return (x-x)/(x-x);   /* acos(|x|>1) is NaN */
78
0
  }
79
0
  if(ix<0x3fe00000) { /* |x| < 0.5 */
80
0
      if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
81
0
      z = x*x;
82
0
      p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
83
0
      q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
84
0
      r = p/q;
85
0
      return pio2_hi - (x - (pio2_lo-x*r));
86
0
  } else  if (hx<0) {   /* x < -0.5 */
87
0
      z = (one+x)*0.5;
88
0
      p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
89
0
      q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
90
0
      s = sqrt(z);
91
0
      r = p/q;
92
0
      w = r*s-pio2_lo;
93
0
      return pi - 2.0*(s+w);
94
0
  } else {     /* x > 0.5 */
95
0
      z = (one-x)*0.5;
96
0
      s = sqrt(z);
97
0
      df = s;
98
0
      SET_LOW_WORD(df,0);
99
0
      c  = (z-df*df)/(s+df);
100
0
      p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
101
0
      q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
102
0
      r = p/q;
103
0
      w = r*s+c;
104
0
      return 2.0*(df+w);
105
0
  }
106
0
}