/src/mozilla-central/netwerk/protocol/http/nsHttpConnection.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | /* vim:set ts=4 sw=4 sts=4 et cin: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | // HttpLog.h should generally be included first |
8 | | #include "HttpLog.h" |
9 | | |
10 | | // Log on level :5, instead of default :4. |
11 | | #undef LOG |
12 | 0 | #define LOG(args) LOG5(args) |
13 | | #undef LOG_ENABLED |
14 | | #define LOG_ENABLED() LOG5_ENABLED() |
15 | | |
16 | 0 | #define TLS_EARLY_DATA_NOT_AVAILABLE 0 |
17 | 0 | #define TLS_EARLY_DATA_AVAILABLE_BUT_NOT_USED 1 |
18 | 0 | #define TLS_EARLY_DATA_AVAILABLE_AND_USED 2 |
19 | | |
20 | 0 | #define ESNI_SUCCESSFUL 0 |
21 | 0 | #define ESNI_FAILED 1 |
22 | 0 | #define NO_ESNI_SUCCESSFUL 2 |
23 | 0 | #define NO_ESNI_FAILED 3 |
24 | | |
25 | | #include "ASpdySession.h" |
26 | | #include "mozilla/ChaosMode.h" |
27 | | #include "mozilla/Telemetry.h" |
28 | | #include "nsHttpConnection.h" |
29 | | #include "nsHttpHandler.h" |
30 | | #include "nsHttpRequestHead.h" |
31 | | #include "nsHttpResponseHead.h" |
32 | | #include "nsIClassOfService.h" |
33 | | #include "nsIOService.h" |
34 | | #include "nsISocketTransport.h" |
35 | | #include "nsSocketTransportService2.h" |
36 | | #include "nsISSLSocketControl.h" |
37 | | #include "nsISupportsPriority.h" |
38 | | #include "nsPreloadedStream.h" |
39 | | #include "nsProxyRelease.h" |
40 | | #include "nsSocketTransport2.h" |
41 | | #include "nsStringStream.h" |
42 | | #include "pkix/pkixnss.h" |
43 | | #include "sslt.h" |
44 | | #include "NSSErrorsService.h" |
45 | | #include "TunnelUtils.h" |
46 | | #include "TCPFastOpenLayer.h" |
47 | | |
48 | | namespace mozilla { |
49 | | namespace net { |
50 | | |
51 | | //----------------------------------------------------------------------------- |
52 | | // nsHttpConnection <public> |
53 | | //----------------------------------------------------------------------------- |
54 | | |
55 | | nsHttpConnection::nsHttpConnection() |
56 | | : mSocketInCondition(NS_ERROR_NOT_INITIALIZED) |
57 | | , mSocketOutCondition(NS_ERROR_NOT_INITIALIZED) |
58 | | , mTransaction(nullptr) |
59 | | , mHttpHandler(gHttpHandler) |
60 | | , mCallbacksLock("nsHttpConnection::mCallbacksLock") |
61 | | , mLastReadTime(0) |
62 | | , mLastWriteTime(0) |
63 | | , mMaxHangTime(0) |
64 | | , mConsiderReusedAfterInterval(0) |
65 | | , mConsiderReusedAfterEpoch(0) |
66 | | , mCurrentBytesRead(0) |
67 | | , mMaxBytesRead(0) |
68 | | , mTotalBytesRead(0) |
69 | | , mTotalBytesWritten(0) |
70 | | , mContentBytesWritten(0) |
71 | | , mRtt(0) |
72 | | , mUrgentStartPreferred(false) |
73 | | , mUrgentStartPreferredKnown(false) |
74 | | , mConnectedTransport(false) |
75 | | , mKeepAlive(true) // assume to keep-alive by default |
76 | | , mKeepAliveMask(true) |
77 | | , mDontReuse(false) |
78 | | , mIsReused(false) |
79 | | , mCompletedProxyConnect(false) |
80 | | , mLastTransactionExpectedNoContent(false) |
81 | | , mIdleMonitoring(false) |
82 | | , mProxyConnectInProgress(false) |
83 | | , mExperienced(false) |
84 | | , mInSpdyTunnel(false) |
85 | | , mForcePlainText(false) |
86 | | , mTrafficCount(0) |
87 | | , mTrafficStamp(false) |
88 | | , mHttp1xTransactionCount(0) |
89 | | , mRemainingConnectionUses(0xffffffff) |
90 | | , mNPNComplete(false) |
91 | | , mSetupSSLCalled(false) |
92 | | , mUsingSpdyVersion(SpdyVersion::NONE) |
93 | | , mPriority(nsISupportsPriority::PRIORITY_NORMAL) |
94 | | , mReportedSpdy(false) |
95 | | , mEverUsedSpdy(false) |
96 | | , mLastHttpResponseVersion(HttpVersion::v1_1) |
97 | | , mTransactionCaps(0) |
98 | | , mDefaultTimeoutFactor(1) |
99 | | , mResponseTimeoutEnabled(false) |
100 | | , mTCPKeepaliveConfig(kTCPKeepaliveDisabled) |
101 | | , mForceSendPending(false) |
102 | | , m0RTTChecked(false) |
103 | | , mWaitingFor0RTTResponse(false) |
104 | | , mContentBytesWritten0RTT(0) |
105 | | , mEarlyDataNegotiated(false) |
106 | | , mDid0RTTSpdy(false) |
107 | | , mFastOpen(false) |
108 | | , mFastOpenStatus(TFO_NOT_SET) |
109 | | , mForceSendDuringFastOpenPending(false) |
110 | | , mReceivedSocketWouldBlockDuringFastOpen(false) |
111 | | , mCheckNetworkStallsWithTFO(false) |
112 | | , mLastRequestBytesSentTime(0) |
113 | | , mBootstrappedTimingsSet(false) |
114 | 0 | { |
115 | 0 | LOG(("Creating nsHttpConnection @%p\n", this)); |
116 | 0 |
|
117 | 0 | // the default timeout is for when this connection has not yet processed a |
118 | 0 | // transaction |
119 | 0 | static const PRIntervalTime k5Sec = PR_SecondsToInterval(5); |
120 | 0 | mIdleTimeout = |
121 | 0 | (k5Sec < gHttpHandler->IdleTimeout()) ? k5Sec : gHttpHandler->IdleTimeout(); |
122 | 0 | } |
123 | | |
124 | | nsHttpConnection::~nsHttpConnection() |
125 | 0 | { |
126 | 0 | LOG(("Destroying nsHttpConnection @%p\n", this)); |
127 | 0 |
|
128 | 0 | if (!mEverUsedSpdy) { |
129 | 0 | LOG(("nsHttpConnection %p performed %d HTTP/1.x transactions\n", |
130 | 0 | this, mHttp1xTransactionCount)); |
131 | 0 | Telemetry::Accumulate(Telemetry::HTTP_REQUEST_PER_CONN, |
132 | 0 | mHttp1xTransactionCount); |
133 | 0 | nsHttpConnectionInfo *ci = nullptr; |
134 | 0 | if (mTransaction) { |
135 | 0 | ci = mTransaction->ConnectionInfo(); |
136 | 0 | } |
137 | 0 | if (!ci) { |
138 | 0 | ci = mConnInfo; |
139 | 0 | } |
140 | 0 |
|
141 | 0 | MOZ_ASSERT(ci); |
142 | 0 | if (ci->GetTrrUsed()) { |
143 | 0 | Telemetry::Accumulate(Telemetry::DNS_TRR_REQUEST_PER_CONN, |
144 | 0 | mHttp1xTransactionCount); |
145 | 0 | } |
146 | 0 | } |
147 | 0 |
|
148 | 0 | if (mTotalBytesRead) { |
149 | 0 | uint32_t totalKBRead = static_cast<uint32_t>(mTotalBytesRead >> 10); |
150 | 0 | LOG(("nsHttpConnection %p read %dkb on connection spdy=%d\n", |
151 | 0 | this, totalKBRead, mEverUsedSpdy)); |
152 | 0 | Telemetry::Accumulate(mEverUsedSpdy ? |
153 | 0 | Telemetry::SPDY_KBREAD_PER_CONN : |
154 | 0 | Telemetry::HTTP_KBREAD_PER_CONN, |
155 | 0 | totalKBRead); |
156 | 0 | } |
157 | 0 | if (mForceSendTimer) { |
158 | 0 | mForceSendTimer->Cancel(); |
159 | 0 | mForceSendTimer = nullptr; |
160 | 0 | } |
161 | 0 |
|
162 | 0 | if ((mFastOpenStatus != TFO_FAILED) && |
163 | 0 | (mFastOpenStatus != TFO_HTTP) && |
164 | 0 | (((mFastOpenStatus > TFO_DISABLED_CONNECT) && (mFastOpenStatus < TFO_BACKUP_CONN)) || |
165 | 0 | gHttpHandler->UseFastOpen())) { |
166 | 0 | // TFO_FAILED will be reported in the replacement connection with more |
167 | 0 | // details. |
168 | 0 | // Otherwise report only if TFO is enabled and supported. |
169 | 0 | // If TFO is disabled, report only connections ha cause it to be disabled, e.g. TFO_FAILED_NET_TIMEOUT, etc. |
170 | 0 | Telemetry::Accumulate(Telemetry::TCP_FAST_OPEN_3, mFastOpenStatus); |
171 | 0 | } |
172 | 0 | } |
173 | | |
174 | | nsresult |
175 | | nsHttpConnection::Init(nsHttpConnectionInfo *info, |
176 | | uint16_t maxHangTime, |
177 | | nsISocketTransport *transport, |
178 | | nsIAsyncInputStream *instream, |
179 | | nsIAsyncOutputStream *outstream, |
180 | | bool connectedTransport, |
181 | | nsIInterfaceRequestor *callbacks, |
182 | | PRIntervalTime rtt) |
183 | 0 | { |
184 | 0 | LOG(("nsHttpConnection::Init this=%p sockettransport=%p", this, transport)); |
185 | 0 | NS_ENSURE_ARG_POINTER(info); |
186 | 0 | NS_ENSURE_TRUE(!mConnInfo, NS_ERROR_ALREADY_INITIALIZED); |
187 | 0 |
|
188 | 0 | mConnectedTransport = connectedTransport; |
189 | 0 | mConnInfo = info; |
190 | 0 | MOZ_ASSERT(mConnInfo); |
191 | 0 | mLastWriteTime = mLastReadTime = PR_IntervalNow(); |
192 | 0 | mRtt = rtt; |
193 | 0 | mMaxHangTime = PR_SecondsToInterval(maxHangTime); |
194 | 0 |
|
195 | 0 | mSocketTransport = transport; |
196 | 0 | mSocketIn = instream; |
197 | 0 | mSocketOut = outstream; |
198 | 0 |
|
199 | 0 | // See explanation for non-strictness of this operation in SetSecurityCallbacks. |
200 | 0 | mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>( |
201 | 0 | "nsHttpConnection::mCallbacks", callbacks, false); |
202 | 0 |
|
203 | 0 | mSocketTransport->SetEventSink(this, nullptr); |
204 | 0 | mSocketTransport->SetSecurityCallbacks(this); |
205 | 0 |
|
206 | 0 | return NS_OK; |
207 | 0 | } |
208 | | |
209 | | nsresult |
210 | | nsHttpConnection::TryTakeSubTransactions(nsTArray<RefPtr<nsAHttpTransaction> > &list) |
211 | 0 | { |
212 | 0 | nsresult rv = mTransaction->TakeSubTransactions(list); |
213 | 0 |
|
214 | 0 | if (rv == NS_ERROR_ALREADY_OPENED) { |
215 | 0 | // Has the interface for TakeSubTransactions() changed? |
216 | 0 | LOG(("TakeSubTransactions somehow called after " |
217 | 0 | "nsAHttpTransaction began processing\n")); |
218 | 0 | MOZ_ASSERT(false, |
219 | 0 | "TakeSubTransactions somehow called after " |
220 | 0 | "nsAHttpTransaction began processing"); |
221 | 0 | mTransaction->Close(NS_ERROR_ABORT); |
222 | 0 | return rv; |
223 | 0 | } |
224 | 0 |
|
225 | 0 | if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) { |
226 | 0 | // Has the interface for TakeSubTransactions() changed? |
227 | 0 | LOG(("unexpected rv from nnsAHttpTransaction::TakeSubTransactions()")); |
228 | 0 | MOZ_ASSERT(false, |
229 | 0 | "unexpected result from " |
230 | 0 | "nsAHttpTransaction::TakeSubTransactions()"); |
231 | 0 | mTransaction->Close(NS_ERROR_ABORT); |
232 | 0 | return rv; |
233 | 0 | } |
234 | 0 |
|
235 | 0 | return rv; |
236 | 0 | } |
237 | | |
238 | | nsresult |
239 | | nsHttpConnection::MoveTransactionsToSpdy(nsresult status, nsTArray<RefPtr<nsAHttpTransaction> > &list) |
240 | 0 | { |
241 | 0 | if (NS_FAILED(status)) { // includes NS_ERROR_NOT_IMPLEMENTED |
242 | 0 | MOZ_ASSERT(list.IsEmpty(), "sub transaction list not empty"); |
243 | 0 |
|
244 | 0 | // This is ok - treat mTransaction as a single real request. |
245 | 0 | // Wrap the old http transaction into the new spdy session |
246 | 0 | // as the first stream. |
247 | 0 | LOG(("nsHttpConnection::MoveTransactionsToSpdy moves single transaction %p " |
248 | 0 | "into SpdySession %p\n", mTransaction.get(), mSpdySession.get())); |
249 | 0 | nsresult rv = AddTransaction(mTransaction, mPriority); |
250 | 0 | if (NS_FAILED(rv)) { |
251 | 0 | return rv; |
252 | 0 | } |
253 | 0 | } else { |
254 | 0 | int32_t count = list.Length(); |
255 | 0 |
|
256 | 0 | LOG(("nsHttpConnection::MoveTransactionsToSpdy moving transaction list len=%d " |
257 | 0 | "into SpdySession %p\n", count, mSpdySession.get())); |
258 | 0 |
|
259 | 0 | if (!count) { |
260 | 0 | mTransaction->Close(NS_ERROR_ABORT); |
261 | 0 | return NS_ERROR_ABORT; |
262 | 0 | } |
263 | 0 | |
264 | 0 | for (int32_t index = 0; index < count; ++index) { |
265 | 0 | nsresult rv = AddTransaction(list[index], mPriority); |
266 | 0 | if (NS_FAILED(rv)) { |
267 | 0 | return rv; |
268 | 0 | } |
269 | 0 | } |
270 | 0 | } |
271 | 0 |
|
272 | 0 | return NS_OK; |
273 | 0 | } |
274 | | |
275 | | void |
276 | | nsHttpConnection::Start0RTTSpdy(SpdyVersion spdyVersion) |
277 | 0 | { |
278 | 0 | LOG(("nsHttpConnection::Start0RTTSpdy [this=%p]", this)); |
279 | 0 |
|
280 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
281 | 0 |
|
282 | 0 | mDid0RTTSpdy = true; |
283 | 0 | mUsingSpdyVersion = spdyVersion; |
284 | 0 | mSpdySession = ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, |
285 | 0 | true); |
286 | 0 |
|
287 | 0 | nsTArray<RefPtr<nsAHttpTransaction> > list; |
288 | 0 | nsresult rv = TryTakeSubTransactions(list); |
289 | 0 | if (NS_FAILED(rv) && rv != NS_ERROR_NOT_IMPLEMENTED) { |
290 | 0 | LOG(("nsHttpConnection::Start0RTTSpdy [this=%p] failed taking " |
291 | 0 | "subtransactions rv=%" PRIx32 , this, static_cast<uint32_t>(rv))); |
292 | 0 | return; |
293 | 0 | } |
294 | 0 |
|
295 | 0 | rv = MoveTransactionsToSpdy(rv, list); |
296 | 0 | if (NS_FAILED(rv)) { |
297 | 0 | LOG(("nsHttpConnection::Start0RTTSpdy [this=%p] failed moving " |
298 | 0 | "transactions rv=%" PRIx32 , this, static_cast<uint32_t>(rv))); |
299 | 0 | return; |
300 | 0 | } |
301 | 0 |
|
302 | 0 | mTransaction = mSpdySession; |
303 | 0 | } |
304 | | |
305 | | void |
306 | | nsHttpConnection::StartSpdy(nsISSLSocketControl *sslControl, SpdyVersion spdyVersion) |
307 | 0 | { |
308 | 0 | LOG(("nsHttpConnection::StartSpdy [this=%p, mDid0RTTSpdy=%d]\n", this, mDid0RTTSpdy)); |
309 | 0 |
|
310 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
311 | 0 | MOZ_ASSERT(!mSpdySession || mDid0RTTSpdy); |
312 | 0 |
|
313 | 0 | mUsingSpdyVersion = spdyVersion; |
314 | 0 | mEverUsedSpdy = true; |
315 | 0 | if (sslControl) { |
316 | 0 | sslControl->SetDenyClientCert(true); |
317 | 0 | } |
318 | 0 |
|
319 | 0 | if (!mDid0RTTSpdy) { |
320 | 0 | mSpdySession = ASpdySession::NewSpdySession(spdyVersion, mSocketTransport, |
321 | 0 | false); |
322 | 0 | } |
323 | 0 |
|
324 | 0 | if (!mReportedSpdy) { |
325 | 0 | mReportedSpdy = true; |
326 | 0 | gHttpHandler->ConnMgr()->ReportSpdyConnection(this, true); |
327 | 0 | } |
328 | 0 |
|
329 | 0 | // Setting the connection as reused allows some transactions that fail |
330 | 0 | // with NS_ERROR_NET_RESET to be restarted and SPDY uses that code |
331 | 0 | // to handle clean rejections (such as those that arrived after |
332 | 0 | // a server goaway was generated). |
333 | 0 | mIsReused = true; |
334 | 0 |
|
335 | 0 | // If mTransaction is a muxed object it might represent |
336 | 0 | // several requests. If so, we need to unpack that and |
337 | 0 | // pack them all into a new spdy session. |
338 | 0 |
|
339 | 0 | nsTArray<RefPtr<nsAHttpTransaction> > list; |
340 | 0 | nsresult status = NS_OK; |
341 | 0 | if (!mDid0RTTSpdy) { |
342 | 0 | status = TryTakeSubTransactions(list); |
343 | 0 |
|
344 | 0 | if (NS_FAILED(status) && status != NS_ERROR_NOT_IMPLEMENTED) { |
345 | 0 | return; |
346 | 0 | } |
347 | 0 | } |
348 | 0 | |
349 | 0 | if (NeedSpdyTunnel()) { |
350 | 0 | LOG3(("nsHttpConnection::StartSpdy %p Connecting To a HTTP/2 " |
351 | 0 | "Proxy and Need Connect", this)); |
352 | 0 | MOZ_ASSERT(mProxyConnectStream); |
353 | 0 |
|
354 | 0 | mProxyConnectStream = nullptr; |
355 | 0 | mCompletedProxyConnect = true; |
356 | 0 | mProxyConnectInProgress = false; |
357 | 0 | } |
358 | 0 |
|
359 | 0 | nsresult rv = NS_OK; |
360 | 0 | bool spdyProxy = mConnInfo->UsingHttpsProxy() && !mTLSFilter; |
361 | 0 | if (spdyProxy) { |
362 | 0 | RefPtr<nsHttpConnectionInfo> wildCardProxyCi; |
363 | 0 | rv = mConnInfo->CreateWildCard(getter_AddRefs(wildCardProxyCi)); |
364 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
365 | 0 | gHttpHandler->ConnMgr()->MoveToWildCardConnEntry(mConnInfo, |
366 | 0 | wildCardProxyCi, this); |
367 | 0 | mConnInfo = wildCardProxyCi; |
368 | 0 | MOZ_ASSERT(mConnInfo); |
369 | 0 | } |
370 | 0 |
|
371 | 0 | if (!mDid0RTTSpdy) { |
372 | 0 | rv = MoveTransactionsToSpdy(status, list); |
373 | 0 | if (NS_FAILED(rv)) { |
374 | 0 | return; |
375 | 0 | } |
376 | 0 | } |
377 | 0 | |
378 | 0 | // Disable TCP Keepalives - use SPDY ping instead. |
379 | 0 | rv = DisableTCPKeepalives(); |
380 | 0 | if (NS_FAILED(rv)) { |
381 | 0 | LOG(("nsHttpConnection::StartSpdy [%p] DisableTCPKeepalives failed " |
382 | 0 | "rv[0x%" PRIx32 "]", this, static_cast<uint32_t>(rv))); |
383 | 0 | } |
384 | 0 |
|
385 | 0 | mIdleTimeout = gHttpHandler->SpdyTimeout() * mDefaultTimeoutFactor; |
386 | 0 |
|
387 | 0 | if (!mTLSFilter) { |
388 | 0 | mTransaction = mSpdySession; |
389 | 0 | } else { |
390 | 0 | rv = mTLSFilter->SetProxiedTransaction(mSpdySession); |
391 | 0 | if (NS_FAILED(rv)) { |
392 | 0 | LOG(("nsHttpConnection::StartSpdy [%p] SetProxiedTransaction failed" |
393 | 0 | " rv[0x%x]", this, static_cast<uint32_t>(rv))); |
394 | 0 | } |
395 | 0 | } |
396 | 0 | if (mDontReuse) { |
397 | 0 | mSpdySession->DontReuse(); |
398 | 0 | } |
399 | 0 | } |
400 | | |
401 | | bool |
402 | | nsHttpConnection::EnsureNPNComplete(nsresult &aOut0RTTWriteHandshakeValue, |
403 | | uint32_t &aOut0RTTBytesWritten) |
404 | 0 | { |
405 | 0 | // If for some reason the components to check on NPN aren't available, |
406 | 0 | // this function will just return true to continue on and disable SPDY |
407 | 0 |
|
408 | 0 | aOut0RTTWriteHandshakeValue = NS_OK; |
409 | 0 | aOut0RTTBytesWritten = 0; |
410 | 0 |
|
411 | 0 | MOZ_ASSERT(mSocketTransport); |
412 | 0 | if (!mSocketTransport) { |
413 | 0 | // this cannot happen |
414 | 0 | mNPNComplete = true; |
415 | 0 | return true; |
416 | 0 | } |
417 | 0 | |
418 | 0 | if (mNPNComplete) { |
419 | 0 | return true; |
420 | 0 | } |
421 | 0 | |
422 | 0 | nsresult rv = NS_OK; |
423 | 0 | nsCOMPtr<nsISupports> securityInfo; |
424 | 0 | nsCOMPtr<nsISSLSocketControl> ssl; |
425 | 0 | nsAutoCString negotiatedNPN; |
426 | 0 | // This is neede for telemetry |
427 | 0 | bool handshakeSucceeded = false; |
428 | 0 |
|
429 | 0 | GetSecurityInfo(getter_AddRefs(securityInfo)); |
430 | 0 | if (!securityInfo) { |
431 | 0 | goto npnComplete; |
432 | 0 | } |
433 | 0 | |
434 | 0 | ssl = do_QueryInterface(securityInfo, &rv); |
435 | 0 | if (NS_FAILED(rv)) |
436 | 0 | goto npnComplete; |
437 | 0 | |
438 | 0 | if (!m0RTTChecked) { |
439 | 0 | // We reuse m0RTTChecked. We want to send this status only once. |
440 | 0 | mTransaction->OnTransportStatus(mSocketTransport, |
441 | 0 | NS_NET_STATUS_TLS_HANDSHAKE_STARTING, |
442 | 0 | 0); |
443 | 0 | } |
444 | 0 |
|
445 | 0 | rv = ssl->GetNegotiatedNPN(negotiatedNPN); |
446 | 0 | if (!m0RTTChecked && (rv == NS_ERROR_NOT_CONNECTED) && |
447 | 0 | !mConnInfo->UsingProxy()) { |
448 | 0 | // There is no ALPN info (yet!). We need to consider doing 0RTT. We |
449 | 0 | // will do so if there is ALPN information from a previous session |
450 | 0 | // (AlpnEarlySelection), we are using HTTP/1, and the request data can |
451 | 0 | // be safely retried. |
452 | 0 | m0RTTChecked = true; |
453 | 0 | nsresult rvEarlyAlpn = ssl->GetAlpnEarlySelection(mEarlyNegotiatedALPN); |
454 | 0 | if (NS_FAILED(rvEarlyAlpn)) { |
455 | 0 | // if ssl->DriveHandshake() has never been called the value |
456 | 0 | // for AlpnEarlySelection is still not set. So call it here and |
457 | 0 | // check again. |
458 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete %p - " |
459 | 0 | "early selected alpn not available, we will try one more time.", |
460 | 0 | this)); |
461 | 0 | // Let's do DriveHandshake again. |
462 | 0 | rv = ssl->DriveHandshake(); |
463 | 0 | if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) { |
464 | 0 | goto npnComplete; |
465 | 0 | } |
466 | 0 | |
467 | 0 | // Check NegotiatedNPN first. |
468 | 0 | rv = ssl->GetNegotiatedNPN(negotiatedNPN); |
469 | 0 | if (rv == NS_ERROR_NOT_CONNECTED) { |
470 | 0 | rvEarlyAlpn = ssl->GetAlpnEarlySelection(mEarlyNegotiatedALPN); |
471 | 0 | } |
472 | 0 | } |
473 | 0 |
|
474 | 0 | if (NS_FAILED(rvEarlyAlpn)) { |
475 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete %p - " |
476 | 0 | "early selected alpn not available", this)); |
477 | 0 | mEarlyDataNegotiated = false; |
478 | 0 | } else { |
479 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete %p -" |
480 | 0 | "early selected alpn: %s", this, mEarlyNegotiatedALPN.get())); |
481 | 0 | uint32_t infoIndex; |
482 | 0 | const SpdyInformation *info = gHttpHandler->SpdyInfo(); |
483 | 0 | if (NS_FAILED(info->GetNPNIndex(mEarlyNegotiatedALPN, &infoIndex))) { |
484 | 0 | // This is the HTTP/1 case. |
485 | 0 | // Check if early-data is allowed for this transaction. |
486 | 0 | if (mTransaction->Do0RTT()) { |
487 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - We " |
488 | 0 | "can do 0RTT (http/1)!", this)); |
489 | 0 | mWaitingFor0RTTResponse = true; |
490 | 0 | } |
491 | 0 | } else { |
492 | 0 | // We have h2, we can at least 0-RTT the preamble and opening |
493 | 0 | // SETTINGS, etc, and maybe some of the first request |
494 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - Starting " |
495 | 0 | "0RTT for h2!", this)); |
496 | 0 | mWaitingFor0RTTResponse = true; |
497 | 0 | Start0RTTSpdy(info->Version[infoIndex]); |
498 | 0 | } |
499 | 0 | mEarlyDataNegotiated = true; |
500 | 0 | } |
501 | 0 | } |
502 | 0 |
|
503 | 0 | if (rv == NS_ERROR_NOT_CONNECTED) { |
504 | 0 | if (mWaitingFor0RTTResponse) { |
505 | 0 | aOut0RTTWriteHandshakeValue = mTransaction->ReadSegments(this, |
506 | 0 | nsIOService::gDefaultSegmentSize, &aOut0RTTBytesWritten); |
507 | 0 | if (NS_FAILED(aOut0RTTWriteHandshakeValue) && |
508 | 0 | aOut0RTTWriteHandshakeValue != NS_BASE_STREAM_WOULD_BLOCK) { |
509 | 0 | goto npnComplete; |
510 | 0 | } |
511 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - written %d " |
512 | 0 | "bytes during 0RTT", this, aOut0RTTBytesWritten)); |
513 | 0 | mContentBytesWritten0RTT += aOut0RTTBytesWritten; |
514 | 0 | if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) { |
515 | 0 | mReceivedSocketWouldBlockDuringFastOpen = true; |
516 | 0 | } |
517 | 0 | } |
518 | 0 |
|
519 | 0 | rv = ssl->DriveHandshake(); |
520 | 0 | if (NS_FAILED(rv) && rv != NS_BASE_STREAM_WOULD_BLOCK) { |
521 | 0 | goto npnComplete; |
522 | 0 | } |
523 | 0 | |
524 | 0 | return false; |
525 | 0 | } |
526 | 0 | |
527 | 0 | if (NS_SUCCEEDED(rv)) { |
528 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete %p [%s] negotiated to '%s'%s\n", |
529 | 0 | this, mConnInfo->HashKey().get(), negotiatedNPN.get(), |
530 | 0 | mTLSFilter ? " [Double Tunnel]" : "")); |
531 | 0 |
|
532 | 0 | handshakeSucceeded = true; |
533 | 0 |
|
534 | 0 | int16_t tlsVersion; |
535 | 0 | ssl->GetSSLVersionUsed(&tlsVersion); |
536 | 0 | mConnInfo->SetLessThanTls13((tlsVersion < nsISSLSocketControl::TLS_VERSION_1_3) && |
537 | 0 | (tlsVersion != nsISSLSocketControl::SSL_VERSION_UNKNOWN)); |
538 | 0 |
|
539 | 0 | bool earlyDataAccepted = false; |
540 | 0 | if (mWaitingFor0RTTResponse) { |
541 | 0 | // Check if early data has been accepted. |
542 | 0 | nsresult rvEarlyData = ssl->GetEarlyDataAccepted(&earlyDataAccepted); |
543 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - early data " |
544 | 0 | "that was sent during 0RTT %s been accepted [rv=%" PRIx32 "].", |
545 | 0 | this, earlyDataAccepted ? "has" : "has not", static_cast<uint32_t>(rv))); |
546 | 0 |
|
547 | 0 | if (NS_FAILED(rvEarlyData) || |
548 | 0 | NS_FAILED(mTransaction->Finish0RTT(!earlyDataAccepted, negotiatedNPN != mEarlyNegotiatedALPN))) { |
549 | 0 | LOG(("nsHttpConection::EnsureNPNComplete [this=%p] closing transaction %p", this, mTransaction.get())); |
550 | 0 | mTransaction->Close(NS_ERROR_NET_RESET); |
551 | 0 | goto npnComplete; |
552 | 0 | } |
553 | 0 | } |
554 | 0 |
|
555 | 0 | // Send the 0RTT telemetry only for tls1.3 |
556 | 0 | if (tlsVersion > nsISSLSocketControl::TLS_VERSION_1_2) { |
557 | 0 | Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_NEGOTIATED, |
558 | 0 | (!mEarlyDataNegotiated) ? TLS_EARLY_DATA_NOT_AVAILABLE |
559 | 0 | : ((mWaitingFor0RTTResponse) ? TLS_EARLY_DATA_AVAILABLE_AND_USED |
560 | 0 | : TLS_EARLY_DATA_AVAILABLE_BUT_NOT_USED)); |
561 | 0 | if (mWaitingFor0RTTResponse) { |
562 | 0 | Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_ACCEPTED, |
563 | 0 | earlyDataAccepted); |
564 | 0 | } |
565 | 0 | if (earlyDataAccepted) { |
566 | 0 | Telemetry::Accumulate(Telemetry::TLS_EARLY_DATA_BYTES_WRITTEN, |
567 | 0 | mContentBytesWritten0RTT); |
568 | 0 | } |
569 | 0 | } |
570 | 0 | mWaitingFor0RTTResponse = false; |
571 | 0 |
|
572 | 0 | if (!earlyDataAccepted) { |
573 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] early data not accepted", this)); |
574 | 0 | if (mTransaction->QueryNullTransaction() && |
575 | 0 | (mBootstrappedTimings.secureConnectionStart.IsNull() || |
576 | 0 | mBootstrappedTimings.tcpConnectEnd.IsNull())) { |
577 | 0 | // if TFO is used some socket event will be sent after |
578 | 0 | // mBootstrappedTimings has been set. therefore we should |
579 | 0 | // update them. |
580 | 0 | mBootstrappedTimings.secureConnectionStart = |
581 | 0 | mTransaction->QueryNullTransaction()->GetSecureConnectionStart(); |
582 | 0 | mBootstrappedTimings.tcpConnectEnd = |
583 | 0 | mTransaction->QueryNullTransaction()->GetTcpConnectEnd(); |
584 | 0 | } |
585 | 0 | uint32_t infoIndex; |
586 | 0 | const SpdyInformation *info = gHttpHandler->SpdyInfo(); |
587 | 0 | if (NS_SUCCEEDED(info->GetNPNIndex(negotiatedNPN, &infoIndex))) { |
588 | 0 | StartSpdy(ssl, info->Version[infoIndex]); |
589 | 0 | } |
590 | 0 | } else { |
591 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - %" PRId64 " bytes " |
592 | 0 | "has been sent during 0RTT.", this, mContentBytesWritten0RTT)); |
593 | 0 | mContentBytesWritten = mContentBytesWritten0RTT; |
594 | 0 | if (mSpdySession) { |
595 | 0 | // We had already started 0RTT-spdy, now we need to fully set up |
596 | 0 | // spdy, since we know we're sticking with it. |
597 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] - finishing " |
598 | 0 | "StartSpdy for 0rtt spdy session %p", this, mSpdySession.get())); |
599 | 0 | StartSpdy(ssl, mSpdySession->SpdyVersion()); |
600 | 0 | } |
601 | 0 | } |
602 | 0 |
|
603 | 0 | Telemetry::Accumulate(Telemetry::SPDY_NPN_CONNECT, UsingSpdy()); |
604 | 0 | } |
605 | 0 |
|
606 | 0 | npnComplete: |
607 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] setting complete to true", this)); |
608 | 0 | mNPNComplete = true; |
609 | 0 |
|
610 | 0 | mTransaction->OnTransportStatus(mSocketTransport, |
611 | 0 | NS_NET_STATUS_TLS_HANDSHAKE_ENDED, 0); |
612 | 0 |
|
613 | 0 | // this is happening after the bootstrap was originally written to. so update it. |
614 | 0 | if (mTransaction->QueryNullTransaction() && |
615 | 0 | (mBootstrappedTimings.secureConnectionStart.IsNull() || |
616 | 0 | mBootstrappedTimings.tcpConnectEnd.IsNull())) { |
617 | 0 | // if TFO is used some socket event will be sent after |
618 | 0 | // mBootstrappedTimings has been set. therefore we should |
619 | 0 | // update them. |
620 | 0 | mBootstrappedTimings.secureConnectionStart = |
621 | 0 | mTransaction->QueryNullTransaction()->GetSecureConnectionStart(); |
622 | 0 | mBootstrappedTimings.tcpConnectEnd = |
623 | 0 | mTransaction->QueryNullTransaction()->GetTcpConnectEnd(); |
624 | 0 | } |
625 | 0 |
|
626 | 0 | if (securityInfo) { |
627 | 0 | mBootstrappedTimings.connectEnd = TimeStamp::Now(); |
628 | 0 | } |
629 | 0 |
|
630 | 0 | if (mWaitingFor0RTTResponse) { |
631 | 0 | // Didn't get 0RTT OK, back out of the "attempting 0RTT" state |
632 | 0 | mWaitingFor0RTTResponse = false; |
633 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] 0rtt failed", this)); |
634 | 0 | if (NS_FAILED(mTransaction->Finish0RTT(true, negotiatedNPN != mEarlyNegotiatedALPN))) { |
635 | 0 | mTransaction->Close(NS_ERROR_NET_RESET); |
636 | 0 | } |
637 | 0 | mContentBytesWritten0RTT = 0; |
638 | 0 | } |
639 | 0 |
|
640 | 0 | if (mDid0RTTSpdy && negotiatedNPN != mEarlyNegotiatedALPN) { |
641 | 0 | // Reset the work done by Start0RTTSpdy |
642 | 0 | LOG(("nsHttpConnection::EnsureNPNComplete [this=%p] resetting Start0RTTSpdy", this)); |
643 | 0 | mUsingSpdyVersion = SpdyVersion::NONE; |
644 | 0 | mTransaction = nullptr; |
645 | 0 | mSpdySession = nullptr; |
646 | 0 | // We have to reset this here, just in case we end up starting spdy again, |
647 | 0 | // so it can actually do everything it needs to do. |
648 | 0 | mDid0RTTSpdy = false; |
649 | 0 | } |
650 | 0 |
|
651 | 0 | if (ssl) { |
652 | 0 | // Telemetry for tls failure rate with and without esni; |
653 | 0 | bool esni; |
654 | 0 | mSocketTransport->GetEsniUsed(&esni); |
655 | 0 | Telemetry::Accumulate(Telemetry::ESNI_NOESNI_TLS_SUCCESS_RATE, |
656 | 0 | (esni) ? ((handshakeSucceeded) ? ESNI_SUCCESSFUL : ESNI_FAILED) |
657 | 0 | : ((handshakeSucceeded) ? NO_ESNI_SUCCESSFUL : NO_ESNI_FAILED)); |
658 | 0 | } |
659 | 0 |
|
660 | 0 | if (rv == psm::GetXPCOMFromNSSError(mozilla::pkix::MOZILLA_PKIX_ERROR_MITM_DETECTED)) { |
661 | 0 | gSocketTransportService->SetNotTrustedMitmDetected(); |
662 | 0 | } |
663 | 0 | return true; |
664 | 0 | } |
665 | | |
666 | | void |
667 | | nsHttpConnection::OnTunnelNudged(TLSFilterTransaction *trans) |
668 | 0 | { |
669 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
670 | 0 | LOG(("nsHttpConnection::OnTunnelNudged %p\n", this)); |
671 | 0 | if (trans != mTLSFilter) { |
672 | 0 | return; |
673 | 0 | } |
674 | 0 | LOG(("nsHttpConnection::OnTunnelNudged %p Calling OnSocketWritable\n", this)); |
675 | 0 | Unused << OnSocketWritable(); |
676 | 0 | } |
677 | | |
678 | | // called on the socket thread |
679 | | nsresult |
680 | | nsHttpConnection::Activate(nsAHttpTransaction *trans, uint32_t caps, int32_t pri) |
681 | 0 | { |
682 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
683 | 0 | LOG(("nsHttpConnection::Activate [this=%p trans=%p caps=%x]\n", |
684 | 0 | this, trans, caps)); |
685 | 0 |
|
686 | 0 | if (!mExperienced && !trans->IsNullTransaction()) { |
687 | 0 | if (!mFastOpen) { |
688 | 0 | mExperienced = true; |
689 | 0 | } |
690 | 0 | if (mBootstrappedTimingsSet) { |
691 | 0 | mBootstrappedTimingsSet = false; |
692 | 0 | nsHttpTransaction *hTrans = trans->QueryHttpTransaction(); |
693 | 0 | if (hTrans) { |
694 | 0 | hTrans->BootstrapTimings(mBootstrappedTimings); |
695 | 0 | SetUrgentStartPreferred(hTrans->ClassOfService() & nsIClassOfService::UrgentStart); |
696 | 0 | } |
697 | 0 | } |
698 | 0 | mBootstrappedTimings = TimingStruct(); |
699 | 0 | } |
700 | 0 |
|
701 | 0 | if (caps & NS_HTTP_LARGE_KEEPALIVE) { |
702 | 0 | mDefaultTimeoutFactor = 10; // don't ever lower |
703 | 0 | } |
704 | 0 |
|
705 | 0 | mTransactionCaps = caps; |
706 | 0 | mPriority = pri; |
707 | 0 | if (mTransaction && (mUsingSpdyVersion != SpdyVersion::NONE)) { |
708 | 0 | return AddTransaction(trans, pri); |
709 | 0 | } |
710 | 0 | |
711 | 0 | NS_ENSURE_ARG_POINTER(trans); |
712 | 0 | NS_ENSURE_TRUE(!mTransaction, NS_ERROR_IN_PROGRESS); |
713 | 0 |
|
714 | 0 | // If TCP fast Open has been used and conection was idle for some time |
715 | 0 | // we will be cautious and watch out for bug 1395494. |
716 | 0 | if (mNPNComplete && (mFastOpenStatus == TFO_DATA_SENT) && |
717 | 0 | gHttpHandler->CheckIfConnectionIsStalledOnlyIfIdleForThisAmountOfSeconds() && |
718 | 0 | IdleTime() >= gHttpHandler->CheckIfConnectionIsStalledOnlyIfIdleForThisAmountOfSeconds()) { |
719 | 0 | // If a connection was using the TCP FastOpen and it was idle for a |
720 | 0 | // long time we should check for stalls like bug 1395494. |
721 | 0 | mCheckNetworkStallsWithTFO = true; |
722 | 0 | // Also reset last write. We should start measuring a stall time only |
723 | 0 | // after we really write a request to the network. |
724 | 0 | mLastRequestBytesSentTime = 0; |
725 | 0 | } |
726 | 0 | // reset the read timers to wash away any idle time |
727 | 0 | mLastWriteTime = mLastReadTime = PR_IntervalNow(); |
728 | 0 |
|
729 | 0 | // Connection failures are Activated() just like regular transacions. |
730 | 0 | // If we don't have a confirmation of a connected socket then test it |
731 | 0 | // with a write() to get relevant error code. |
732 | 0 | if (!mConnectedTransport) { |
733 | 0 | uint32_t count; |
734 | 0 | mSocketOutCondition = NS_ERROR_FAILURE; |
735 | 0 | if (mSocketOut) { |
736 | 0 | mSocketOutCondition = mSocketOut->Write("", 0, &count); |
737 | 0 | } |
738 | 0 | if (NS_FAILED(mSocketOutCondition) && |
739 | 0 | mSocketOutCondition != NS_BASE_STREAM_WOULD_BLOCK) { |
740 | 0 | LOG(("nsHttpConnection::Activate [this=%p] Bad Socket %" PRIx32 "\n", |
741 | 0 | this, static_cast<uint32_t>(mSocketOutCondition))); |
742 | 0 | mSocketOut->AsyncWait(nullptr, 0, 0, nullptr); |
743 | 0 | mTransaction = trans; |
744 | 0 | CloseTransaction(mTransaction, mSocketOutCondition); |
745 | 0 | return mSocketOutCondition; |
746 | 0 | } |
747 | 0 | } |
748 | 0 |
|
749 | 0 | // Update security callbacks |
750 | 0 | nsCOMPtr<nsIInterfaceRequestor> callbacks; |
751 | 0 | trans->GetSecurityCallbacks(getter_AddRefs(callbacks)); |
752 | 0 | SetSecurityCallbacks(callbacks); |
753 | 0 | SetupSSL(); |
754 | 0 |
|
755 | 0 | // take ownership of the transaction |
756 | 0 | mTransaction = trans; |
757 | 0 |
|
758 | 0 | MOZ_ASSERT(!mIdleMonitoring, "Activating a connection with an Idle Monitor"); |
759 | 0 | mIdleMonitoring = false; |
760 | 0 |
|
761 | 0 | // set mKeepAlive according to what will be requested |
762 | 0 | mKeepAliveMask = mKeepAlive = (caps & NS_HTTP_ALLOW_KEEPALIVE); |
763 | 0 |
|
764 | 0 | // need to handle HTTP CONNECT tunnels if this is the first time if |
765 | 0 | // we are tunneling through a proxy |
766 | 0 | nsresult rv = NS_OK; |
767 | 0 | if (mTransaction->ConnectionInfo()->UsingConnect() && !mCompletedProxyConnect) { |
768 | 0 | rv = SetupProxyConnect(); |
769 | 0 | if (NS_FAILED(rv)) |
770 | 0 | goto failed_activation; |
771 | 0 | mProxyConnectInProgress = true; |
772 | 0 | } |
773 | 0 |
|
774 | 0 | // Clear the per activation counter |
775 | 0 | mCurrentBytesRead = 0; |
776 | 0 |
|
777 | 0 | // The overflow state is not needed between activations |
778 | 0 | mInputOverflow = nullptr; |
779 | 0 |
|
780 | 0 | mResponseTimeoutEnabled = gHttpHandler->ResponseTimeoutEnabled() && |
781 | 0 | mTransaction->ResponseTimeout() > 0 && |
782 | 0 | mTransaction->ResponseTimeoutEnabled(); |
783 | 0 |
|
784 | 0 | rv = StartShortLivedTCPKeepalives(); |
785 | 0 | if (NS_FAILED(rv)) { |
786 | 0 | LOG(("nsHttpConnection::Activate [%p] " |
787 | 0 | "StartShortLivedTCPKeepalives failed rv[0x%" PRIx32 "]", |
788 | 0 | this, static_cast<uint32_t>(rv))); |
789 | 0 | } |
790 | 0 |
|
791 | 0 | if (mTLSFilter) { |
792 | 0 | rv = mTLSFilter->SetProxiedTransaction(trans); |
793 | 0 | NS_ENSURE_SUCCESS(rv, rv); |
794 | 0 | mTransaction = mTLSFilter; |
795 | 0 | } |
796 | 0 |
|
797 | 0 | trans->OnActivated(); |
798 | 0 |
|
799 | 0 | rv = OnOutputStreamReady(mSocketOut); |
800 | 0 |
|
801 | 0 | failed_activation: |
802 | 0 | if (NS_FAILED(rv)) { |
803 | 0 | mTransaction = nullptr; |
804 | 0 | } |
805 | 0 |
|
806 | 0 | return rv; |
807 | 0 | } |
808 | | |
809 | | void |
810 | | nsHttpConnection::SetupSSL() |
811 | 0 | { |
812 | 0 | LOG(("nsHttpConnection::SetupSSL %p caps=0x%X %s\n", |
813 | 0 | this, mTransactionCaps, mConnInfo->HashKey().get())); |
814 | 0 |
|
815 | 0 | if (mSetupSSLCalled) // do only once |
816 | 0 | return; |
817 | 0 | mSetupSSLCalled = true; |
818 | 0 |
|
819 | 0 | if (mNPNComplete) |
820 | 0 | return; |
821 | 0 | |
822 | 0 | // we flip this back to false if SetNPNList succeeds at the end |
823 | 0 | // of this function |
824 | 0 | mNPNComplete = true; |
825 | 0 |
|
826 | 0 | if (!mConnInfo->FirstHopSSL() || mForcePlainText) { |
827 | 0 | return; |
828 | 0 | } |
829 | 0 | |
830 | 0 | // if we are connected to the proxy with TLS, start the TLS |
831 | 0 | // flow immediately without waiting for a CONNECT sequence. |
832 | 0 | DebugOnly<nsresult> rv; |
833 | 0 | if (mInSpdyTunnel) { |
834 | 0 | rv = InitSSLParams(false, true); |
835 | 0 | } else { |
836 | 0 | bool usingHttpsProxy = mConnInfo->UsingHttpsProxy(); |
837 | 0 | rv = InitSSLParams(usingHttpsProxy, usingHttpsProxy); |
838 | 0 | } |
839 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
840 | 0 | } |
841 | | |
842 | | // The naming of NPN is historical - this function creates the basic |
843 | | // offer list for both NPN and ALPN. ALPN validation callbacks are made |
844 | | // now before the handshake is complete, and NPN validation callbacks |
845 | | // are made during the handshake. |
846 | | nsresult |
847 | | nsHttpConnection::SetupNPNList(nsISSLSocketControl *ssl, uint32_t caps) |
848 | 0 | { |
849 | 0 | nsTArray<nsCString> protocolArray; |
850 | 0 |
|
851 | 0 | nsCString npnToken = mConnInfo->GetNPNToken(); |
852 | 0 | if (npnToken.IsEmpty()) { |
853 | 0 | // The first protocol is used as the fallback if none of the |
854 | 0 | // protocols supported overlap with the server's list. |
855 | 0 | // When using ALPN the advertised preferences are protocolArray indicies |
856 | 0 | // {1, .., N, 0} in decreasing order. |
857 | 0 | // For NPN, In the case of overlap, matching priority is driven by |
858 | 0 | // the order of the server's advertisement - with index 0 used when |
859 | 0 | // there is no match. |
860 | 0 | protocolArray.AppendElement(NS_LITERAL_CSTRING("http/1.1")); |
861 | 0 |
|
862 | 0 | if (gHttpHandler->IsSpdyEnabled() && |
863 | 0 | !(caps & NS_HTTP_DISALLOW_SPDY)) { |
864 | 0 | LOG(("nsHttpConnection::SetupSSL Allow SPDY NPN selection")); |
865 | 0 | const SpdyInformation *info = gHttpHandler->SpdyInfo(); |
866 | 0 | for (uint32_t index = SpdyInformation::kCount; index > 0; --index) { |
867 | 0 | if (info->ProtocolEnabled(index - 1) && |
868 | 0 | info->ALPNCallbacks[index - 1](ssl)) { |
869 | 0 | protocolArray.AppendElement(info->VersionString[index - 1]); |
870 | 0 | } |
871 | 0 | } |
872 | 0 | } |
873 | 0 | } else { |
874 | 0 | LOG(("nsHttpConnection::SetupSSL limiting NPN selection to %s", |
875 | 0 | npnToken.get())); |
876 | 0 | protocolArray.AppendElement(npnToken); |
877 | 0 | } |
878 | 0 |
|
879 | 0 | nsresult rv = ssl->SetNPNList(protocolArray); |
880 | 0 | LOG(("nsHttpConnection::SetupNPNList %p %" PRIx32 "\n", |
881 | 0 | this, static_cast<uint32_t>(rv))); |
882 | 0 | return rv; |
883 | 0 | } |
884 | | |
885 | | nsresult |
886 | | nsHttpConnection::AddTransaction(nsAHttpTransaction *httpTransaction, |
887 | | int32_t priority) |
888 | 0 | { |
889 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
890 | 0 | MOZ_ASSERT(mSpdySession && (mUsingSpdyVersion != SpdyVersion::NONE), |
891 | 0 | "AddTransaction to live http connection without spdy"); |
892 | 0 |
|
893 | 0 | // If this is a wild card nshttpconnection (i.e. a spdy proxy) then |
894 | 0 | // it is important to start the stream using the specific connection |
895 | 0 | // info of the transaction to ensure it is routed on the right tunnel |
896 | 0 |
|
897 | 0 | nsHttpConnectionInfo *transCI = httpTransaction->ConnectionInfo(); |
898 | 0 |
|
899 | 0 | bool needTunnel = transCI->UsingHttpsProxy(); |
900 | 0 | needTunnel = needTunnel && !mTLSFilter; |
901 | 0 | needTunnel = needTunnel && transCI->UsingConnect(); |
902 | 0 | needTunnel = needTunnel && httpTransaction->QueryHttpTransaction(); |
903 | 0 |
|
904 | 0 | LOG(("nsHttpConnection::AddTransaction for SPDY%s", |
905 | 0 | needTunnel ? " over tunnel" : "")); |
906 | 0 |
|
907 | 0 | if (!mSpdySession->AddStream(httpTransaction, priority, |
908 | 0 | needTunnel, mCallbacks)) { |
909 | 0 | MOZ_ASSERT(false); // this cannot happen! |
910 | 0 | httpTransaction->Close(NS_ERROR_ABORT); |
911 | 0 | return NS_ERROR_FAILURE; |
912 | 0 | } |
913 | 0 |
|
914 | 0 | Unused << ResumeSend(); |
915 | 0 | return NS_OK; |
916 | 0 | } |
917 | | |
918 | | void |
919 | | nsHttpConnection::Close(nsresult reason, bool aIsShutdown) |
920 | 0 | { |
921 | 0 | LOG(("nsHttpConnection::Close [this=%p reason=%" PRIx32 "]\n", |
922 | 0 | this, static_cast<uint32_t>(reason))); |
923 | 0 |
|
924 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
925 | 0 |
|
926 | 0 | // Ensure TCP keepalive timer is stopped. |
927 | 0 | if (mTCPKeepaliveTransitionTimer) { |
928 | 0 | mTCPKeepaliveTransitionTimer->Cancel(); |
929 | 0 | mTCPKeepaliveTransitionTimer = nullptr; |
930 | 0 | } |
931 | 0 | if (mForceSendTimer) { |
932 | 0 | mForceSendTimer->Cancel(); |
933 | 0 | mForceSendTimer = nullptr; |
934 | 0 | } |
935 | 0 |
|
936 | 0 | if (NS_FAILED(reason)) { |
937 | 0 | if (mIdleMonitoring) |
938 | 0 | EndIdleMonitoring(); |
939 | 0 |
|
940 | 0 | mTLSFilter = nullptr; |
941 | 0 |
|
942 | 0 | // The connection and security errors clear out alt-svc mappings |
943 | 0 | // in case any previously validated ones are now invalid |
944 | 0 | if (((reason == NS_ERROR_NET_RESET) || |
945 | 0 | (NS_ERROR_GET_MODULE(reason) == NS_ERROR_MODULE_SECURITY)) |
946 | 0 | && mConnInfo && !(mTransactionCaps & NS_HTTP_ERROR_SOFTLY)) { |
947 | 0 | gHttpHandler->ConnMgr()->ClearHostMapping(mConnInfo); |
948 | 0 | } |
949 | 0 |
|
950 | 0 | if (mSocketTransport) { |
951 | 0 | mSocketTransport->SetEventSink(nullptr, nullptr); |
952 | 0 |
|
953 | 0 | // If there are bytes sitting in the input queue then read them |
954 | 0 | // into a junk buffer to avoid generating a tcp rst by closing a |
955 | 0 | // socket with data pending. TLS is a classic case of this where |
956 | 0 | // a Alert record might be superfulous to a clean HTTP/SPDY shutdown. |
957 | 0 | // Never block to do this and limit it to a small amount of data. |
958 | 0 | // During shutdown just be fast! |
959 | 0 | if (mSocketIn && !aIsShutdown) { |
960 | 0 | char buffer[4000]; |
961 | 0 | uint32_t count, total = 0; |
962 | 0 | nsresult rv; |
963 | 0 | do { |
964 | 0 | rv = mSocketIn->Read(buffer, 4000, &count); |
965 | 0 | if (NS_SUCCEEDED(rv)) |
966 | 0 | total += count; |
967 | 0 | } |
968 | 0 | while (NS_SUCCEEDED(rv) && count > 0 && total < 64000); |
969 | 0 | LOG(("nsHttpConnection::Close drained %d bytes\n", total)); |
970 | 0 | } |
971 | 0 |
|
972 | 0 | mSocketTransport->SetSecurityCallbacks(nullptr); |
973 | 0 | mSocketTransport->Close(reason); |
974 | 0 | if (mSocketOut) |
975 | 0 | mSocketOut->AsyncWait(nullptr, 0, 0, nullptr); |
976 | 0 | } |
977 | 0 | mKeepAlive = false; |
978 | 0 | } |
979 | 0 | } |
980 | | |
981 | | // called on the socket thread |
982 | | nsresult |
983 | | nsHttpConnection::InitSSLParams(bool connectingToProxy, bool proxyStartSSL) |
984 | 0 | { |
985 | 0 | LOG(("nsHttpConnection::InitSSLParams [this=%p] connectingToProxy=%d\n", |
986 | 0 | this, connectingToProxy)); |
987 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
988 | 0 |
|
989 | 0 | nsresult rv; |
990 | 0 | nsCOMPtr<nsISupports> securityInfo; |
991 | 0 | GetSecurityInfo(getter_AddRefs(securityInfo)); |
992 | 0 | if (!securityInfo) { |
993 | 0 | return NS_ERROR_FAILURE; |
994 | 0 | } |
995 | 0 | |
996 | 0 | nsCOMPtr<nsISSLSocketControl> ssl = do_QueryInterface(securityInfo, &rv); |
997 | 0 | if (NS_FAILED(rv)){ |
998 | 0 | return rv; |
999 | 0 | } |
1000 | 0 | |
1001 | 0 | if (proxyStartSSL) { |
1002 | 0 | rv = ssl->ProxyStartSSL(); |
1003 | 0 | if (NS_FAILED(rv)){ |
1004 | 0 | return rv; |
1005 | 0 | } |
1006 | 0 | } |
1007 | 0 | |
1008 | 0 | if (NS_SUCCEEDED(SetupNPNList(ssl, mTransactionCaps))) { |
1009 | 0 | LOG(("InitSSLParams Setting up SPDY Negotiation OK")); |
1010 | 0 | mNPNComplete = false; |
1011 | 0 | } |
1012 | 0 |
|
1013 | 0 | return NS_OK; |
1014 | 0 | } |
1015 | | |
1016 | | void |
1017 | | nsHttpConnection::DontReuse() |
1018 | 0 | { |
1019 | 0 | LOG(("nsHttpConnection::DontReuse %p spdysession=%p\n", this, mSpdySession.get())); |
1020 | 0 | mKeepAliveMask = false; |
1021 | 0 | mKeepAlive = false; |
1022 | 0 | mDontReuse = true; |
1023 | 0 | mIdleTimeout = 0; |
1024 | 0 | if (mSpdySession) |
1025 | 0 | mSpdySession->DontReuse(); |
1026 | 0 | } |
1027 | | |
1028 | | bool |
1029 | | nsHttpConnection::TestJoinConnection(const nsACString &hostname, int32_t port) |
1030 | 0 | { |
1031 | 0 | if (mSpdySession && CanDirectlyActivate()) { |
1032 | 0 | return mSpdySession->TestJoinConnection(hostname, port); |
1033 | 0 | } |
1034 | 0 | return false; |
1035 | 0 | } |
1036 | | |
1037 | | bool |
1038 | | nsHttpConnection::JoinConnection(const nsACString &hostname, int32_t port) |
1039 | 0 | { |
1040 | 0 | if (mSpdySession && CanDirectlyActivate()) { |
1041 | 0 | return mSpdySession->JoinConnection(hostname, port); |
1042 | 0 | } |
1043 | 0 | return false; |
1044 | 0 | } |
1045 | | |
1046 | | bool |
1047 | | nsHttpConnection::CanReuse() |
1048 | 0 | { |
1049 | 0 | if (mDontReuse || !mRemainingConnectionUses) { |
1050 | 0 | return false; |
1051 | 0 | } |
1052 | 0 | |
1053 | 0 | if ((mTransaction ? (mTransaction->IsDone() ? 0U : 1U) : 0U) >= |
1054 | 0 | mRemainingConnectionUses) { |
1055 | 0 | return false; |
1056 | 0 | } |
1057 | 0 | |
1058 | 0 | bool canReuse; |
1059 | 0 | if (mSpdySession) { |
1060 | 0 | canReuse = mSpdySession->CanReuse(); |
1061 | 0 | } else { |
1062 | 0 | canReuse = IsKeepAlive(); |
1063 | 0 | } |
1064 | 0 | canReuse = canReuse && (IdleTime() < mIdleTimeout) && IsAlive(); |
1065 | 0 |
|
1066 | 0 | // An idle persistent connection should not have data waiting to be read |
1067 | 0 | // before a request is sent. Data here is likely a 408 timeout response |
1068 | 0 | // which we would deal with later on through the restart logic, but that |
1069 | 0 | // path is more expensive than just closing the socket now. |
1070 | 0 |
|
1071 | 0 | uint64_t dataSize; |
1072 | 0 | if (canReuse && mSocketIn && (mUsingSpdyVersion == SpdyVersion::NONE) && |
1073 | 0 | mHttp1xTransactionCount && |
1074 | 0 | NS_SUCCEEDED(mSocketIn->Available(&dataSize)) && dataSize) { |
1075 | 0 | LOG(("nsHttpConnection::CanReuse %p %s" |
1076 | 0 | "Socket not reusable because read data pending (%" PRIu64 ") on it.\n", |
1077 | 0 | this, mConnInfo->Origin(), dataSize)); |
1078 | 0 | canReuse = false; |
1079 | 0 | } |
1080 | 0 | return canReuse; |
1081 | 0 | } |
1082 | | |
1083 | | bool |
1084 | | nsHttpConnection::CanDirectlyActivate() |
1085 | 0 | { |
1086 | 0 | // return true if a new transaction can be addded to ths connection at any |
1087 | 0 | // time through Activate(). In practice this means this is a healthy SPDY |
1088 | 0 | // connection with room for more concurrent streams. |
1089 | 0 |
|
1090 | 0 | return UsingSpdy() && CanReuse() && |
1091 | 0 | mSpdySession && mSpdySession->RoomForMoreStreams(); |
1092 | 0 | } |
1093 | | |
1094 | | PRIntervalTime |
1095 | | nsHttpConnection::IdleTime() |
1096 | 0 | { |
1097 | 0 | return mSpdySession ? |
1098 | 0 | mSpdySession->IdleTime() : (PR_IntervalNow() - mLastReadTime); |
1099 | 0 | } |
1100 | | |
1101 | | // returns the number of seconds left before the allowable idle period |
1102 | | // expires, or 0 if the period has already expied. |
1103 | | uint32_t |
1104 | | nsHttpConnection::TimeToLive() |
1105 | 0 | { |
1106 | 0 | LOG(("nsHttpConnection::TTL: %p %s idle %d timeout %d\n", |
1107 | 0 | this, mConnInfo->Origin(), IdleTime(), mIdleTimeout)); |
1108 | 0 |
|
1109 | 0 | if (IdleTime() >= mIdleTimeout) { |
1110 | 0 | return 0; |
1111 | 0 | } |
1112 | 0 | |
1113 | 0 | uint32_t timeToLive = PR_IntervalToSeconds(mIdleTimeout - IdleTime()); |
1114 | 0 |
|
1115 | 0 | // a positive amount of time can be rounded to 0. Because 0 is used |
1116 | 0 | // as the expiration signal, round all values from 0 to 1 up to 1. |
1117 | 0 | if (!timeToLive) { |
1118 | 0 | timeToLive = 1; |
1119 | 0 | } |
1120 | 0 | return timeToLive; |
1121 | 0 | } |
1122 | | |
1123 | | bool |
1124 | | nsHttpConnection::IsAlive() |
1125 | 0 | { |
1126 | 0 | if (!mSocketTransport || !mConnectedTransport) |
1127 | 0 | return false; |
1128 | 0 | |
1129 | 0 | // SocketTransport::IsAlive can run the SSL state machine, so make sure |
1130 | 0 | // the NPN options are set before that happens. |
1131 | 0 | SetupSSL(); |
1132 | 0 |
|
1133 | 0 | bool alive; |
1134 | 0 | nsresult rv = mSocketTransport->IsAlive(&alive); |
1135 | 0 | if (NS_FAILED(rv)) |
1136 | 0 | alive = false; |
1137 | 0 |
|
1138 | 0 | //#define TEST_RESTART_LOGIC |
1139 | | #ifdef TEST_RESTART_LOGIC |
1140 | | if (!alive) { |
1141 | | LOG(("pretending socket is still alive to test restart logic\n")); |
1142 | | alive = true; |
1143 | | } |
1144 | | #endif |
1145 | |
|
1146 | 0 | return alive; |
1147 | 0 | } |
1148 | | |
1149 | | void |
1150 | | nsHttpConnection::SetUrgentStartPreferred(bool urgent) |
1151 | 0 | { |
1152 | 0 | if (mExperienced && !mUrgentStartPreferredKnown) { |
1153 | 0 | // Set only according the first ever dispatched non-null transaction |
1154 | 0 | mUrgentStartPreferredKnown = true; |
1155 | 0 | mUrgentStartPreferred = urgent; |
1156 | 0 | LOG(("nsHttpConnection::SetUrgentStartPreferred [this=%p urgent=%d]", this, urgent)); |
1157 | 0 | } |
1158 | 0 | } |
1159 | | |
1160 | | //---------------------------------------------------------------------------- |
1161 | | // nsHttpConnection::nsAHttpConnection compatible methods |
1162 | | //---------------------------------------------------------------------------- |
1163 | | |
1164 | | nsresult |
1165 | | nsHttpConnection::OnHeadersAvailable(nsAHttpTransaction *trans, |
1166 | | nsHttpRequestHead *requestHead, |
1167 | | nsHttpResponseHead *responseHead, |
1168 | | bool *reset) |
1169 | 0 | { |
1170 | 0 | LOG(("nsHttpConnection::OnHeadersAvailable [this=%p trans=%p response-head=%p]\n", |
1171 | 0 | this, trans, responseHead)); |
1172 | 0 |
|
1173 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1174 | 0 | NS_ENSURE_ARG_POINTER(trans); |
1175 | 0 | MOZ_ASSERT(responseHead, "No response head?"); |
1176 | 0 |
|
1177 | 0 | if (mInSpdyTunnel) { |
1178 | 0 | DebugOnly<nsresult> rv = |
1179 | 0 | responseHead->SetHeader(nsHttp::X_Firefox_Spdy_Proxy, |
1180 | 0 | NS_LITERAL_CSTRING("true")); |
1181 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
1182 | 0 | } |
1183 | 0 |
|
1184 | 0 | // we won't change our keep-alive policy unless the server has explicitly |
1185 | 0 | // told us to do so. |
1186 | 0 |
|
1187 | 0 | // inspect the connection headers for keep-alive info provided the |
1188 | 0 | // transaction completed successfully. In the case of a non-sensical close |
1189 | 0 | // and keep-alive favor the close out of conservatism. |
1190 | 0 |
|
1191 | 0 | bool explicitKeepAlive = false; |
1192 | 0 | bool explicitClose = responseHead->HasHeaderValue(nsHttp::Connection, "close") || |
1193 | 0 | responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "close"); |
1194 | 0 | if (!explicitClose) |
1195 | 0 | explicitKeepAlive = responseHead->HasHeaderValue(nsHttp::Connection, "keep-alive") || |
1196 | 0 | responseHead->HasHeaderValue(nsHttp::Proxy_Connection, "keep-alive"); |
1197 | 0 |
|
1198 | 0 | // deal with 408 Server Timeouts |
1199 | 0 | uint16_t responseStatus = responseHead->Status(); |
1200 | 0 | static const PRIntervalTime k1000ms = PR_MillisecondsToInterval(1000); |
1201 | 0 | if (responseStatus == 408) { |
1202 | 0 | // If this error could be due to a persistent connection reuse then |
1203 | 0 | // we pass an error code of NS_ERROR_NET_RESET to |
1204 | 0 | // trigger the transaction 'restart' mechanism. We tell it to reset its |
1205 | 0 | // response headers so that it will be ready to receive the new response. |
1206 | 0 | if (mIsReused && ((PR_IntervalNow() - mLastWriteTime) < k1000ms)) { |
1207 | 0 | Close(NS_ERROR_NET_RESET); |
1208 | 0 | *reset = true; |
1209 | 0 | return NS_OK; |
1210 | 0 | } |
1211 | 0 | |
1212 | 0 | // timeouts that are not caused by persistent connection reuse should |
1213 | 0 | // not be retried for browser compatibility reasons. bug 907800. The |
1214 | 0 | // server driven close is implicit in the 408. |
1215 | 0 | explicitClose = true; |
1216 | 0 | explicitKeepAlive = false; |
1217 | 0 | } |
1218 | 0 |
|
1219 | 0 | if ((responseHead->Version() < HttpVersion::v1_1) || |
1220 | 0 | (requestHead->Version() < HttpVersion::v1_1)) { |
1221 | 0 | // HTTP/1.0 connections are by default NOT persistent |
1222 | 0 | if (explicitKeepAlive) |
1223 | 0 | mKeepAlive = true; |
1224 | 0 | else |
1225 | 0 | mKeepAlive = false; |
1226 | 0 | } |
1227 | 0 | else { |
1228 | 0 | // HTTP/1.1 connections are by default persistent |
1229 | 0 | mKeepAlive = !explicitClose; |
1230 | 0 | } |
1231 | 0 | mKeepAliveMask = mKeepAlive; |
1232 | 0 |
|
1233 | 0 | // if this connection is persistent, then the server may send a "Keep-Alive" |
1234 | 0 | // header specifying the maximum number of times the connection can be |
1235 | 0 | // reused as well as the maximum amount of time the connection can be idle |
1236 | 0 | // before the server will close it. we ignore the max reuse count, because |
1237 | 0 | // a "keep-alive" connection is by definition capable of being reused, and |
1238 | 0 | // we only care about being able to reuse it once. if a timeout is not |
1239 | 0 | // specified then we use our advertized timeout value. |
1240 | 0 | bool foundKeepAliveMax = false; |
1241 | 0 | if (mKeepAlive) { |
1242 | 0 | nsAutoCString keepAlive; |
1243 | 0 | Unused << responseHead->GetHeader(nsHttp::Keep_Alive, keepAlive); |
1244 | 0 |
|
1245 | 0 | if (mUsingSpdyVersion == SpdyVersion::NONE) { |
1246 | 0 | const char *cp = PL_strcasestr(keepAlive.get(), "timeout="); |
1247 | 0 | if (cp) |
1248 | 0 | mIdleTimeout = PR_SecondsToInterval((uint32_t) atoi(cp + 8)); |
1249 | 0 | else |
1250 | 0 | mIdleTimeout = gHttpHandler->IdleTimeout() * mDefaultTimeoutFactor; |
1251 | 0 |
|
1252 | 0 | cp = PL_strcasestr(keepAlive.get(), "max="); |
1253 | 0 | if (cp) { |
1254 | 0 | int maxUses = atoi(cp + 4); |
1255 | 0 | if (maxUses > 0) { |
1256 | 0 | foundKeepAliveMax = true; |
1257 | 0 | mRemainingConnectionUses = static_cast<uint32_t>(maxUses); |
1258 | 0 | } |
1259 | 0 | } |
1260 | 0 | } |
1261 | 0 |
|
1262 | 0 | LOG(("Connection can be reused [this=%p idle-timeout=%usec]\n", |
1263 | 0 | this, PR_IntervalToSeconds(mIdleTimeout))); |
1264 | 0 | } |
1265 | 0 |
|
1266 | 0 | if (!foundKeepAliveMax && mRemainingConnectionUses && (mUsingSpdyVersion == SpdyVersion::NONE)) |
1267 | 0 | --mRemainingConnectionUses; |
1268 | 0 |
|
1269 | 0 | // If we're doing a proxy connect, we need to check whether or not |
1270 | 0 | // it was successful. If so, we have to reset the transaction and step-up |
1271 | 0 | // the socket connection if using SSL. Finally, we have to wake up the |
1272 | 0 | // socket write request. |
1273 | 0 | if (mProxyConnectStream) { |
1274 | 0 | MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE, |
1275 | 0 | "SPDY NPN Complete while using proxy connect stream"); |
1276 | 0 | mProxyConnectStream = nullptr; |
1277 | 0 | bool isHttps = |
1278 | 0 | mTransaction ? mTransaction->ConnectionInfo()->EndToEndSSL() : |
1279 | 0 | mConnInfo->EndToEndSSL(); |
1280 | 0 |
|
1281 | 0 | if (responseStatus == 200) { |
1282 | 0 | LOG(("proxy CONNECT succeeded! endtoendssl=%d\n", isHttps)); |
1283 | 0 | *reset = true; |
1284 | 0 | nsresult rv; |
1285 | 0 | if (isHttps) { |
1286 | 0 | if (mConnInfo->UsingHttpsProxy()) { |
1287 | 0 | LOG(("%p new TLSFilterTransaction %s %d\n", |
1288 | 0 | this, mConnInfo->Origin(), mConnInfo->OriginPort())); |
1289 | 0 | SetupSecondaryTLS(); |
1290 | 0 | } |
1291 | 0 |
|
1292 | 0 | rv = InitSSLParams(false, true); |
1293 | 0 | LOG(("InitSSLParams [rv=%" PRIx32 "]\n", static_cast<uint32_t>(rv))); |
1294 | 0 | } |
1295 | 0 | mCompletedProxyConnect = true; |
1296 | 0 | mProxyConnectInProgress = false; |
1297 | 0 | rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); |
1298 | 0 | // XXX what if this fails -- need to handle this error |
1299 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv), "mSocketOut->AsyncWait failed"); |
1300 | 0 | } |
1301 | 0 | else { |
1302 | 0 | LOG(("proxy CONNECT failed! endtoendssl=%d\n", isHttps)); |
1303 | 0 | mTransaction->SetProxyConnectFailed(); |
1304 | 0 | } |
1305 | 0 | } |
1306 | 0 |
|
1307 | 0 | nsAutoCString upgradeReq; |
1308 | 0 | bool hasUpgradeReq = NS_SUCCEEDED(requestHead->GetHeader(nsHttp::Upgrade, |
1309 | 0 | upgradeReq)); |
1310 | 0 | // Don't use persistent connection for Upgrade unless there's an auth failure: |
1311 | 0 | // some proxies expect to see auth response on persistent connection. |
1312 | 0 | if (hasUpgradeReq && responseStatus != 401 && responseStatus != 407) { |
1313 | 0 | LOG(("HTTP Upgrade in play - disable keepalive\n")); |
1314 | 0 | DontReuse(); |
1315 | 0 | } |
1316 | 0 |
|
1317 | 0 | if (responseStatus == 101) { |
1318 | 0 | nsAutoCString upgradeResp; |
1319 | 0 | bool hasUpgradeResp = NS_SUCCEEDED(responseHead->GetHeader( |
1320 | 0 | nsHttp::Upgrade, |
1321 | 0 | upgradeResp)); |
1322 | 0 | if (!hasUpgradeReq || !hasUpgradeResp || |
1323 | 0 | !nsHttp::FindToken(upgradeResp.get(), upgradeReq.get(), |
1324 | 0 | HTTP_HEADER_VALUE_SEPS)) { |
1325 | 0 | LOG(("HTTP 101 Upgrade header mismatch req = %s, resp = %s\n", |
1326 | 0 | upgradeReq.get(), |
1327 | 0 | !upgradeResp.IsEmpty() ? upgradeResp.get() : |
1328 | 0 | "RESPONSE's nsHttp::Upgrade is empty")); |
1329 | 0 | Close(NS_ERROR_ABORT); |
1330 | 0 | } |
1331 | 0 | else { |
1332 | 0 | LOG(("HTTP Upgrade Response to %s\n", upgradeResp.get())); |
1333 | 0 | } |
1334 | 0 | } |
1335 | 0 |
|
1336 | 0 | mLastHttpResponseVersion = responseHead->Version(); |
1337 | 0 |
|
1338 | 0 | return NS_OK; |
1339 | 0 | } |
1340 | | |
1341 | | bool |
1342 | | nsHttpConnection::IsReused() |
1343 | 0 | { |
1344 | 0 | if (mIsReused) |
1345 | 0 | return true; |
1346 | 0 | if (!mConsiderReusedAfterInterval) |
1347 | 0 | return false; |
1348 | 0 | |
1349 | 0 | // ReusedAfter allows a socket to be consider reused only after a certain |
1350 | 0 | // interval of time has passed |
1351 | 0 | return (PR_IntervalNow() - mConsiderReusedAfterEpoch) >= |
1352 | 0 | mConsiderReusedAfterInterval; |
1353 | 0 | } |
1354 | | |
1355 | | void |
1356 | | nsHttpConnection::SetIsReusedAfter(uint32_t afterMilliseconds) |
1357 | 0 | { |
1358 | 0 | mConsiderReusedAfterEpoch = PR_IntervalNow(); |
1359 | 0 | mConsiderReusedAfterInterval = PR_MillisecondsToInterval(afterMilliseconds); |
1360 | 0 | } |
1361 | | |
1362 | | nsresult |
1363 | | nsHttpConnection::TakeTransport(nsISocketTransport **aTransport, |
1364 | | nsIAsyncInputStream **aInputStream, |
1365 | | nsIAsyncOutputStream **aOutputStream) |
1366 | 0 | { |
1367 | 0 | if (mUsingSpdyVersion != SpdyVersion::NONE) |
1368 | 0 | return NS_ERROR_FAILURE; |
1369 | 0 | if (mTransaction && !mTransaction->IsDone()) |
1370 | 0 | return NS_ERROR_IN_PROGRESS; |
1371 | 0 | if (!(mSocketTransport && mSocketIn && mSocketOut)) |
1372 | 0 | return NS_ERROR_NOT_INITIALIZED; |
1373 | 0 | |
1374 | 0 | if (mInputOverflow) |
1375 | 0 | mSocketIn = mInputOverflow.forget(); |
1376 | 0 |
|
1377 | 0 | // Change TCP Keepalive frequency to long-lived if currently short-lived. |
1378 | 0 | if (mTCPKeepaliveConfig == kTCPKeepaliveShortLivedConfig) { |
1379 | 0 | if (mTCPKeepaliveTransitionTimer) { |
1380 | 0 | mTCPKeepaliveTransitionTimer->Cancel(); |
1381 | 0 | mTCPKeepaliveTransitionTimer = nullptr; |
1382 | 0 | } |
1383 | 0 | nsresult rv = StartLongLivedTCPKeepalives(); |
1384 | 0 | LOG(("nsHttpConnection::TakeTransport [%p] calling " |
1385 | 0 | "StartLongLivedTCPKeepalives", this)); |
1386 | 0 | if (NS_FAILED(rv)) { |
1387 | 0 | LOG(("nsHttpConnection::TakeTransport [%p] " |
1388 | 0 | "StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]", |
1389 | 0 | this, static_cast<uint32_t>(rv))); |
1390 | 0 | } |
1391 | 0 | } |
1392 | 0 |
|
1393 | 0 | mSocketTransport->SetSecurityCallbacks(nullptr); |
1394 | 0 | mSocketTransport->SetEventSink(nullptr, nullptr); |
1395 | 0 |
|
1396 | 0 | // The nsHttpConnection will go away soon, so if there is a TLS Filter |
1397 | 0 | // being used (e.g. for wss CONNECT tunnel from a proxy connected to |
1398 | 0 | // via https) that filter needs to take direct control of the |
1399 | 0 | // streams |
1400 | 0 | if (mTLSFilter) { |
1401 | 0 | nsCOMPtr<nsIAsyncInputStream> ref1(mSocketIn); |
1402 | 0 | nsCOMPtr<nsIAsyncOutputStream> ref2(mSocketOut); |
1403 | 0 | mTLSFilter->newIODriver(ref1, ref2, |
1404 | 0 | getter_AddRefs(mSocketIn), |
1405 | 0 | getter_AddRefs(mSocketOut)); |
1406 | 0 | mTLSFilter = nullptr; |
1407 | 0 | } |
1408 | 0 |
|
1409 | 0 | mSocketTransport.forget(aTransport); |
1410 | 0 | mSocketIn.forget(aInputStream); |
1411 | 0 | mSocketOut.forget(aOutputStream); |
1412 | 0 |
|
1413 | 0 | return NS_OK; |
1414 | 0 | } |
1415 | | |
1416 | | uint32_t |
1417 | | nsHttpConnection::ReadTimeoutTick(PRIntervalTime now) |
1418 | 0 | { |
1419 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1420 | 0 |
|
1421 | 0 | // make sure timer didn't tick before Activate() |
1422 | 0 | if (!mTransaction) |
1423 | 0 | return UINT32_MAX; |
1424 | 0 | |
1425 | 0 | // Spdy implements some timeout handling using the SPDY ping frame. |
1426 | 0 | if (mSpdySession) { |
1427 | 0 | return mSpdySession->ReadTimeoutTick(now); |
1428 | 0 | } |
1429 | 0 | |
1430 | 0 | uint32_t nextTickAfter = UINT32_MAX; |
1431 | 0 | // Timeout if the response is taking too long to arrive. |
1432 | 0 | if (mResponseTimeoutEnabled) { |
1433 | 0 | NS_WARNING_ASSERTION( |
1434 | 0 | gHttpHandler->ResponseTimeoutEnabled(), |
1435 | 0 | "Timing out a response, but response timeout is disabled!"); |
1436 | 0 |
|
1437 | 0 | PRIntervalTime initialResponseDelta = now - mLastWriteTime; |
1438 | 0 |
|
1439 | 0 | if (initialResponseDelta > mTransaction->ResponseTimeout()) { |
1440 | 0 | LOG(("canceling transaction: no response for %ums: timeout is %dms\n", |
1441 | 0 | PR_IntervalToMilliseconds(initialResponseDelta), |
1442 | 0 | PR_IntervalToMilliseconds(mTransaction->ResponseTimeout()))); |
1443 | 0 |
|
1444 | 0 | mResponseTimeoutEnabled = false; |
1445 | 0 |
|
1446 | 0 | // This will also close the connection |
1447 | 0 | CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT); |
1448 | 0 | return UINT32_MAX; |
1449 | 0 | } |
1450 | 0 | nextTickAfter = PR_IntervalToSeconds(mTransaction->ResponseTimeout()) - |
1451 | 0 | PR_IntervalToSeconds(initialResponseDelta); |
1452 | 0 | nextTickAfter = std::max(nextTickAfter, 1U); |
1453 | 0 | } |
1454 | 0 |
|
1455 | 0 | // Check for the TCP Fast Open related stalls. |
1456 | 0 | if (mCheckNetworkStallsWithTFO && mLastRequestBytesSentTime) { |
1457 | 0 | PRIntervalTime initialResponseDelta = now - mLastRequestBytesSentTime; |
1458 | 0 | if (initialResponseDelta >= gHttpHandler->FastOpenStallsTimeout()) { |
1459 | 0 | gHttpHandler->IncrementFastOpenStallsCounter(); |
1460 | 0 | mCheckNetworkStallsWithTFO = false; |
1461 | 0 | } else { |
1462 | 0 | uint32_t next = PR_IntervalToSeconds(gHttpHandler->FastOpenStallsTimeout()) - |
1463 | 0 | PR_IntervalToSeconds(initialResponseDelta); |
1464 | 0 | nextTickAfter = std::min(nextTickAfter, next); |
1465 | 0 | } |
1466 | 0 | } |
1467 | 0 |
|
1468 | 0 | if (!mNPNComplete) { |
1469 | 0 | // We can reuse mLastWriteTime here, because it is set when the |
1470 | 0 | // connection is activated and only change when a transaction |
1471 | 0 | // succesfullu write to the socket and this can only happen after |
1472 | 0 | // the TLS handshake is done. |
1473 | 0 | PRIntervalTime initialTLSDelta = now - mLastWriteTime; |
1474 | 0 | if (initialTLSDelta > PR_MillisecondsToInterval(gHttpHandler->TLSHandshakeTimeout())) { |
1475 | 0 | LOG(("canceling transaction: tls handshake takes too long: tls handshake " |
1476 | 0 | "last %ums, timeout is %dms.", |
1477 | 0 | PR_IntervalToMilliseconds(initialTLSDelta), |
1478 | 0 | gHttpHandler->TLSHandshakeTimeout())); |
1479 | 0 |
|
1480 | 0 | // This will also close the connection |
1481 | 0 | CloseTransaction(mTransaction, NS_ERROR_NET_TIMEOUT); |
1482 | 0 | return UINT32_MAX; |
1483 | 0 | } |
1484 | 0 | } |
1485 | 0 |
|
1486 | 0 | return nextTickAfter; |
1487 | 0 | } |
1488 | | |
1489 | | void |
1490 | | nsHttpConnection::UpdateTCPKeepalive(nsITimer *aTimer, void *aClosure) |
1491 | 0 | { |
1492 | 0 | MOZ_ASSERT(aTimer); |
1493 | 0 | MOZ_ASSERT(aClosure); |
1494 | 0 |
|
1495 | 0 | nsHttpConnection *self = static_cast<nsHttpConnection*>(aClosure); |
1496 | 0 |
|
1497 | 0 | if (NS_WARN_IF(self->mUsingSpdyVersion != SpdyVersion::NONE)) { |
1498 | 0 | return; |
1499 | 0 | } |
1500 | 0 | |
1501 | 0 | // Do not reduce keepalive probe frequency for idle connections. |
1502 | 0 | if (self->mIdleMonitoring) { |
1503 | 0 | return; |
1504 | 0 | } |
1505 | 0 | |
1506 | 0 | nsresult rv = self->StartLongLivedTCPKeepalives(); |
1507 | 0 | if (NS_FAILED(rv)) { |
1508 | 0 | LOG(("nsHttpConnection::UpdateTCPKeepalive [%p] " |
1509 | 0 | "StartLongLivedTCPKeepalives failed rv[0x%" PRIx32 "]", |
1510 | 0 | self, static_cast<uint32_t>(rv))); |
1511 | 0 | } |
1512 | 0 | } |
1513 | | |
1514 | | void |
1515 | | nsHttpConnection::GetSecurityInfo(nsISupports **secinfo) |
1516 | 0 | { |
1517 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1518 | 0 | LOG(("nsHttpConnection::GetSecurityInfo trans=%p tlsfilter=%p socket=%p\n", |
1519 | 0 | mTransaction.get(), mTLSFilter.get(), mSocketTransport.get())); |
1520 | 0 |
|
1521 | 0 | if (mTransaction && |
1522 | 0 | NS_SUCCEEDED(mTransaction->GetTransactionSecurityInfo(secinfo))) { |
1523 | 0 | return; |
1524 | 0 | } |
1525 | 0 | |
1526 | 0 | if (mTLSFilter && |
1527 | 0 | NS_SUCCEEDED(mTLSFilter->GetTransactionSecurityInfo(secinfo))) { |
1528 | 0 | return; |
1529 | 0 | } |
1530 | 0 | |
1531 | 0 | if (mSocketTransport && |
1532 | 0 | NS_SUCCEEDED(mSocketTransport->GetSecurityInfo(secinfo))) { |
1533 | 0 | return; |
1534 | 0 | } |
1535 | 0 | |
1536 | 0 | *secinfo = nullptr; |
1537 | 0 | } |
1538 | | |
1539 | | void |
1540 | | nsHttpConnection::SetSecurityCallbacks(nsIInterfaceRequestor* aCallbacks) |
1541 | 0 | { |
1542 | 0 | MutexAutoLock lock(mCallbacksLock); |
1543 | 0 | // This is called both on and off the main thread. For JS-implemented |
1544 | 0 | // callbacks, we requires that the call happen on the main thread, but |
1545 | 0 | // for C++-implemented callbacks we don't care. Use a pointer holder with |
1546 | 0 | // strict checking disabled. |
1547 | 0 | mCallbacks = new nsMainThreadPtrHolder<nsIInterfaceRequestor>( |
1548 | 0 | "nsHttpConnection::mCallbacks", aCallbacks, false); |
1549 | 0 | } |
1550 | | |
1551 | | nsresult |
1552 | | nsHttpConnection::PushBack(const char *data, uint32_t length) |
1553 | 0 | { |
1554 | 0 | LOG(("nsHttpConnection::PushBack [this=%p, length=%d]\n", this, length)); |
1555 | 0 |
|
1556 | 0 | if (mInputOverflow) { |
1557 | 0 | NS_ERROR("nsHttpConnection::PushBack only one buffer supported"); |
1558 | 0 | return NS_ERROR_UNEXPECTED; |
1559 | 0 | } |
1560 | 0 |
|
1561 | 0 | mInputOverflow = new nsPreloadedStream(mSocketIn, data, length); |
1562 | 0 | return NS_OK; |
1563 | 0 | } |
1564 | | |
1565 | | class HttpConnectionForceIO : public Runnable |
1566 | | { |
1567 | | public: |
1568 | | HttpConnectionForceIO(nsHttpConnection* aConn, |
1569 | | bool doRecv, |
1570 | | bool isFastOpenForce) |
1571 | | : Runnable("net::HttpConnectionForceIO") |
1572 | | , mConn(aConn) |
1573 | | , mDoRecv(doRecv) |
1574 | | , mIsFastOpenForce(isFastOpenForce) |
1575 | 0 | { |
1576 | 0 | } |
1577 | | |
1578 | | NS_IMETHOD Run() override |
1579 | 0 | { |
1580 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1581 | 0 |
|
1582 | 0 | if (mDoRecv) { |
1583 | 0 | if (!mConn->mSocketIn) |
1584 | 0 | return NS_OK; |
1585 | 0 | return mConn->OnInputStreamReady(mConn->mSocketIn); |
1586 | 0 | } |
1587 | 0 | |
1588 | 0 | // This runnable will be called when the ForceIO timer expires |
1589 | 0 | // (mIsFastOpenForce==false) or during the TCP Fast Open to force |
1590 | 0 | // writes (mIsFastOpenForce==true). |
1591 | 0 | if (mIsFastOpenForce && !mConn->mWaitingFor0RTTResponse) { |
1592 | 0 | // If we have exit the TCP Fast Open in the meantime we can skip |
1593 | 0 | // this. |
1594 | 0 | return NS_OK; |
1595 | 0 | } |
1596 | 0 | if (!mIsFastOpenForce) { |
1597 | 0 | MOZ_ASSERT(mConn->mForceSendPending); |
1598 | 0 | mConn->mForceSendPending = false; |
1599 | 0 | } |
1600 | 0 |
|
1601 | 0 | if (!mConn->mSocketOut) { |
1602 | 0 | return NS_OK; |
1603 | 0 | } |
1604 | 0 | return mConn->OnOutputStreamReady(mConn->mSocketOut); |
1605 | 0 | } |
1606 | | private: |
1607 | | RefPtr<nsHttpConnection> mConn; |
1608 | | bool mDoRecv; |
1609 | | bool mIsFastOpenForce; |
1610 | | }; |
1611 | | |
1612 | | nsresult |
1613 | | nsHttpConnection::ResumeSend() |
1614 | 0 | { |
1615 | 0 | LOG(("nsHttpConnection::ResumeSend [this=%p]\n", this)); |
1616 | 0 |
|
1617 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1618 | 0 |
|
1619 | 0 | if (mSocketOut) { |
1620 | 0 | nsresult rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); |
1621 | 0 | LOG(("nsHttpConnection::ResumeSend [this=%p] " |
1622 | 0 | "mWaitingFor0RTTResponse=%d mForceSendDuringFastOpenPending=%d " |
1623 | 0 | "mReceivedSocketWouldBlockDuringFastOpen=%d\n", |
1624 | 0 | this, mWaitingFor0RTTResponse, mForceSendDuringFastOpenPending, |
1625 | 0 | mReceivedSocketWouldBlockDuringFastOpen)); |
1626 | 0 | if (mWaitingFor0RTTResponse && !mForceSendDuringFastOpenPending && |
1627 | 0 | !mReceivedSocketWouldBlockDuringFastOpen && |
1628 | 0 | NS_SUCCEEDED(rv)) { |
1629 | 0 | // During TCP Fast Open, poll does not work properly so we will |
1630 | 0 | // trigger writes manually. |
1631 | 0 | mForceSendDuringFastOpenPending = true; |
1632 | 0 | NS_DispatchToCurrentThread(new HttpConnectionForceIO(this, false, true)); |
1633 | 0 | } |
1634 | 0 | return rv; |
1635 | 0 | } |
1636 | 0 |
|
1637 | 0 | MOZ_ASSERT_UNREACHABLE("no socket output stream"); |
1638 | 0 | return NS_ERROR_UNEXPECTED; |
1639 | 0 | } |
1640 | | |
1641 | | nsresult |
1642 | | nsHttpConnection::ResumeRecv() |
1643 | 0 | { |
1644 | 0 | LOG(("nsHttpConnection::ResumeRecv [this=%p]\n", this)); |
1645 | 0 |
|
1646 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1647 | 0 |
|
1648 | 0 | if (mFastOpen) { |
1649 | 0 | LOG(("nsHttpConnection::ResumeRecv - do not waiting for read during " |
1650 | 0 | "fast open! [this=%p]\n", this)); |
1651 | 0 | return NS_OK; |
1652 | 0 | } |
1653 | 0 |
|
1654 | 0 | // the mLastReadTime timestamp is used for finding slowish readers |
1655 | 0 | // and can be pretty sensitive. For that reason we actually reset it |
1656 | 0 | // when we ask to read (resume recv()) so that when we get called back |
1657 | 0 | // with actual read data in OnSocketReadable() we are only measuring |
1658 | 0 | // the latency between those two acts and not all the processing that |
1659 | 0 | // may get done before the ResumeRecv() call |
1660 | 0 | mLastReadTime = PR_IntervalNow(); |
1661 | 0 |
|
1662 | 0 | if (mSocketIn) |
1663 | 0 | return mSocketIn->AsyncWait(this, 0, 0, nullptr); |
1664 | 0 | |
1665 | 0 | MOZ_ASSERT_UNREACHABLE("no socket input stream"); |
1666 | 0 | return NS_ERROR_UNEXPECTED; |
1667 | 0 | } |
1668 | | |
1669 | | void |
1670 | | nsHttpConnection::ForceSendIO(nsITimer *aTimer, void *aClosure) |
1671 | 0 | { |
1672 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1673 | 0 | nsHttpConnection *self = static_cast<nsHttpConnection *>(aClosure); |
1674 | 0 | MOZ_ASSERT(aTimer == self->mForceSendTimer); |
1675 | 0 | self->mForceSendTimer = nullptr; |
1676 | 0 | NS_DispatchToCurrentThread(new HttpConnectionForceIO(self, false, false)); |
1677 | 0 | } |
1678 | | |
1679 | | nsresult |
1680 | | nsHttpConnection::MaybeForceSendIO() |
1681 | 0 | { |
1682 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1683 | 0 | // due to bug 1213084 sometimes real I/O events do not get serviced when |
1684 | 0 | // NSPR derived I/O events are ready and this can cause a deadlock with |
1685 | 0 | // https over https proxying. Normally we would expect the write callback to |
1686 | 0 | // be invoked before this timer goes off, but set it at the old windows |
1687 | 0 | // tick interval (kForceDelay) as a backup for those circumstances. |
1688 | 0 | static const uint32_t kForceDelay = 17; //ms |
1689 | 0 |
|
1690 | 0 | if (mForceSendPending) { |
1691 | 0 | return NS_OK; |
1692 | 0 | } |
1693 | 0 | MOZ_ASSERT(!mForceSendTimer); |
1694 | 0 | mForceSendPending = true; |
1695 | 0 | return NS_NewTimerWithFuncCallback( |
1696 | 0 | getter_AddRefs(mForceSendTimer), |
1697 | 0 | nsHttpConnection::ForceSendIO, |
1698 | 0 | this, |
1699 | 0 | kForceDelay, |
1700 | 0 | nsITimer::TYPE_ONE_SHOT, |
1701 | 0 | "net::nsHttpConnection::MaybeForceSendIO"); |
1702 | 0 | } |
1703 | | |
1704 | | // trigger an asynchronous read |
1705 | | nsresult |
1706 | | nsHttpConnection::ForceRecv() |
1707 | 0 | { |
1708 | 0 | LOG(("nsHttpConnection::ForceRecv [this=%p]\n", this)); |
1709 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1710 | 0 |
|
1711 | 0 | return NS_DispatchToCurrentThread(new HttpConnectionForceIO(this, true, false)); |
1712 | 0 | } |
1713 | | |
1714 | | // trigger an asynchronous write |
1715 | | nsresult |
1716 | | nsHttpConnection::ForceSend() |
1717 | 0 | { |
1718 | 0 | LOG(("nsHttpConnection::ForceSend [this=%p]\n", this)); |
1719 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1720 | 0 |
|
1721 | 0 | if (mTLSFilter) { |
1722 | 0 | return mTLSFilter->NudgeTunnel(this); |
1723 | 0 | } |
1724 | 0 | return MaybeForceSendIO(); |
1725 | 0 | } |
1726 | | |
1727 | | void |
1728 | | nsHttpConnection::BeginIdleMonitoring() |
1729 | 0 | { |
1730 | 0 | LOG(("nsHttpConnection::BeginIdleMonitoring [this=%p]\n", this)); |
1731 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1732 | 0 | MOZ_ASSERT(!mTransaction, "BeginIdleMonitoring() while active"); |
1733 | 0 | MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE, "Idle monitoring of spdy not allowed"); |
1734 | 0 |
|
1735 | 0 | LOG(("Entering Idle Monitoring Mode [this=%p]", this)); |
1736 | 0 | mIdleMonitoring = true; |
1737 | 0 | if (mSocketIn) |
1738 | 0 | mSocketIn->AsyncWait(this, 0, 0, nullptr); |
1739 | 0 | } |
1740 | | |
1741 | | void |
1742 | | nsHttpConnection::EndIdleMonitoring() |
1743 | 0 | { |
1744 | 0 | LOG(("nsHttpConnection::EndIdleMonitoring [this=%p]\n", this)); |
1745 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1746 | 0 | MOZ_ASSERT(!mTransaction, "EndIdleMonitoring() while active"); |
1747 | 0 |
|
1748 | 0 | if (mIdleMonitoring) { |
1749 | 0 | LOG(("Leaving Idle Monitoring Mode [this=%p]", this)); |
1750 | 0 | mIdleMonitoring = false; |
1751 | 0 | if (mSocketIn) |
1752 | 0 | mSocketIn->AsyncWait(nullptr, 0, 0, nullptr); |
1753 | 0 | } |
1754 | 0 | } |
1755 | | |
1756 | | HttpVersion |
1757 | | nsHttpConnection::Version() |
1758 | 0 | { |
1759 | 0 | if (mUsingSpdyVersion != SpdyVersion::NONE) { |
1760 | 0 | return nsHttp::GetHttpVersionFromSpdy(mUsingSpdyVersion); |
1761 | 0 | } |
1762 | 0 | return mLastHttpResponseVersion; |
1763 | 0 | } |
1764 | | |
1765 | | //----------------------------------------------------------------------------- |
1766 | | // nsHttpConnection <private> |
1767 | | //----------------------------------------------------------------------------- |
1768 | | |
1769 | | void |
1770 | | nsHttpConnection::CloseTransaction(nsAHttpTransaction *trans, nsresult reason, |
1771 | | bool aIsShutdown) |
1772 | 0 | { |
1773 | 0 | LOG(("nsHttpConnection::CloseTransaction[this=%p trans=%p reason=%" PRIx32 "]\n", |
1774 | 0 | this, trans, static_cast<uint32_t>(reason))); |
1775 | 0 |
|
1776 | 0 | MOZ_ASSERT((trans == mTransaction) || |
1777 | 0 | (mTLSFilter && mTLSFilter->Transaction() == trans)); |
1778 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
1779 | 0 |
|
1780 | 0 | if (mCurrentBytesRead > mMaxBytesRead) |
1781 | 0 | mMaxBytesRead = mCurrentBytesRead; |
1782 | 0 |
|
1783 | 0 | // mask this error code because its not a real error. |
1784 | 0 | if (reason == NS_BASE_STREAM_CLOSED) |
1785 | 0 | reason = NS_OK; |
1786 | 0 |
|
1787 | 0 | if (mUsingSpdyVersion != SpdyVersion::NONE) { |
1788 | 0 | DontReuse(); |
1789 | 0 | // if !mSpdySession then mUsingSpdyVersion must be false for canreuse() |
1790 | 0 | mUsingSpdyVersion = SpdyVersion::NONE; |
1791 | 0 | mSpdySession = nullptr; |
1792 | 0 | } |
1793 | 0 |
|
1794 | 0 | if (mTransaction) { |
1795 | 0 | mHttp1xTransactionCount += mTransaction->Http1xTransactionCount(); |
1796 | 0 |
|
1797 | 0 | mTransaction->Close(reason); |
1798 | 0 | mTransaction = nullptr; |
1799 | 0 | } |
1800 | 0 |
|
1801 | 0 | { |
1802 | 0 | MutexAutoLock lock(mCallbacksLock); |
1803 | 0 | mCallbacks = nullptr; |
1804 | 0 | } |
1805 | 0 |
|
1806 | 0 | if (NS_FAILED(reason) && (reason != NS_BINDING_RETARGETED)) { |
1807 | 0 | Close(reason, aIsShutdown); |
1808 | 0 | } |
1809 | 0 |
|
1810 | 0 | // flag the connection as reused here for convenience sake. certainly |
1811 | 0 | // it might be going away instead ;-) |
1812 | 0 | mIsReused = true; |
1813 | 0 | } |
1814 | | |
1815 | | nsresult |
1816 | | nsHttpConnection::ReadFromStream(nsIInputStream *input, |
1817 | | void *closure, |
1818 | | const char *buf, |
1819 | | uint32_t offset, |
1820 | | uint32_t count, |
1821 | | uint32_t *countRead) |
1822 | 0 | { |
1823 | 0 | // thunk for nsIInputStream instance |
1824 | 0 | nsHttpConnection *conn = (nsHttpConnection *) closure; |
1825 | 0 | return conn->OnReadSegment(buf, count, countRead); |
1826 | 0 | } |
1827 | | |
1828 | | nsresult |
1829 | | nsHttpConnection::OnReadSegment(const char *buf, |
1830 | | uint32_t count, |
1831 | | uint32_t *countRead) |
1832 | 0 | { |
1833 | 0 | if (count == 0) { |
1834 | 0 | // some ReadSegments implementations will erroneously call the writer |
1835 | 0 | // to consume 0 bytes worth of data. we must protect against this case |
1836 | 0 | // or else we'd end up closing the socket prematurely. |
1837 | 0 | NS_ERROR("bad ReadSegments implementation"); |
1838 | 0 | return NS_ERROR_FAILURE; // stop iterating |
1839 | 0 | } |
1840 | 0 |
|
1841 | 0 | nsresult rv = mSocketOut->Write(buf, count, countRead); |
1842 | 0 | if (NS_FAILED(rv)) |
1843 | 0 | mSocketOutCondition = rv; |
1844 | 0 | else if (*countRead == 0) |
1845 | 0 | mSocketOutCondition = NS_BASE_STREAM_CLOSED; |
1846 | 0 | else { |
1847 | 0 | mLastWriteTime = PR_IntervalNow(); |
1848 | 0 | mSocketOutCondition = NS_OK; // reset condition |
1849 | 0 | if (!mProxyConnectInProgress) |
1850 | 0 | mTotalBytesWritten += *countRead; |
1851 | 0 | } |
1852 | 0 |
|
1853 | 0 | return mSocketOutCondition; |
1854 | 0 | } |
1855 | | |
1856 | | nsresult |
1857 | | nsHttpConnection::OnSocketWritable() |
1858 | 0 | { |
1859 | 0 | LOG(("nsHttpConnection::OnSocketWritable [this=%p] host=%s\n", |
1860 | 0 | this, mConnInfo->Origin())); |
1861 | 0 |
|
1862 | 0 | nsresult rv; |
1863 | 0 | uint32_t transactionBytes; |
1864 | 0 | bool again = true; |
1865 | 0 |
|
1866 | 0 | // Prevent STS thread from being blocked by single OnOutputStreamReady callback. |
1867 | 0 | const uint32_t maxWriteAttempts = 128; |
1868 | 0 | uint32_t writeAttempts = 0; |
1869 | 0 |
|
1870 | 0 | mForceSendDuringFastOpenPending = false; |
1871 | 0 |
|
1872 | 0 | do { |
1873 | 0 | ++writeAttempts; |
1874 | 0 | rv = mSocketOutCondition = NS_OK; |
1875 | 0 | transactionBytes = 0; |
1876 | 0 |
|
1877 | 0 | // The SSL handshake must be completed before the transaction->readsegments() |
1878 | 0 | // processing can proceed because we need to know how to format the |
1879 | 0 | // request differently for http/1, http/2, spdy, etc.. and that is |
1880 | 0 | // negotiated with NPN/ALPN in the SSL handshake. |
1881 | 0 |
|
1882 | 0 | if (mConnInfo->UsingHttpsProxy() && |
1883 | 0 | !EnsureNPNComplete(rv, transactionBytes)) { |
1884 | 0 | MOZ_ASSERT(!transactionBytes); |
1885 | 0 | mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK; |
1886 | 0 | } else if (mProxyConnectStream) { |
1887 | 0 | // If we're need an HTTP/1 CONNECT tunnel through a proxy |
1888 | 0 | // send it before doing the SSL handshake |
1889 | 0 | LOG((" writing CONNECT request stream\n")); |
1890 | 0 | rv = mProxyConnectStream->ReadSegments(ReadFromStream, this, |
1891 | 0 | nsIOService::gDefaultSegmentSize, |
1892 | 0 | &transactionBytes); |
1893 | 0 | } else if (!EnsureNPNComplete(rv, transactionBytes)) { |
1894 | 0 | if (NS_SUCCEEDED(rv) && !transactionBytes && |
1895 | 0 | NS_SUCCEEDED(mSocketOutCondition)) { |
1896 | 0 | mSocketOutCondition = NS_BASE_STREAM_WOULD_BLOCK; |
1897 | 0 | } |
1898 | 0 | } else if (!mTransaction) { |
1899 | 0 | rv = NS_ERROR_FAILURE; |
1900 | 0 | LOG((" No Transaction In OnSocketWritable\n")); |
1901 | 0 | } else if (NS_SUCCEEDED(rv)) { |
1902 | 0 |
|
1903 | 0 | // for non spdy sessions let the connection manager know |
1904 | 0 | if (!mReportedSpdy) { |
1905 | 0 | mReportedSpdy = true; |
1906 | 0 | MOZ_ASSERT(!mEverUsedSpdy); |
1907 | 0 | gHttpHandler->ConnMgr()->ReportSpdyConnection(this, false); |
1908 | 0 | } |
1909 | 0 |
|
1910 | 0 | LOG((" writing transaction request stream\n")); |
1911 | 0 | mProxyConnectInProgress = false; |
1912 | 0 | rv = mTransaction->ReadSegmentsAgain(this, nsIOService::gDefaultSegmentSize, |
1913 | 0 | &transactionBytes, &again); |
1914 | 0 | mContentBytesWritten += transactionBytes; |
1915 | 0 | } |
1916 | 0 |
|
1917 | 0 | LOG(("nsHttpConnection::OnSocketWritable %p " |
1918 | 0 | "ReadSegments returned [rv=%" PRIx32 " read=%u " |
1919 | 0 | "sock-cond=%" PRIx32 " again=%d]\n", |
1920 | 0 | this, static_cast<uint32_t>(rv), transactionBytes, |
1921 | 0 | static_cast<uint32_t>(mSocketOutCondition), again)); |
1922 | 0 |
|
1923 | 0 | // XXX some streams return NS_BASE_STREAM_CLOSED to indicate EOF. |
1924 | 0 | if (rv == NS_BASE_STREAM_CLOSED && !mTransaction->IsDone()) { |
1925 | 0 | rv = NS_OK; |
1926 | 0 | transactionBytes = 0; |
1927 | 0 | } |
1928 | 0 |
|
1929 | 0 | if (!again && (mFastOpen || mWaitingFor0RTTResponse)) { |
1930 | 0 | // Continue waiting; |
1931 | 0 | rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); |
1932 | 0 | } |
1933 | 0 | if (NS_FAILED(rv)) { |
1934 | 0 | // if the transaction didn't want to write any more data, then |
1935 | 0 | // wait for the transaction to call ResumeSend. |
1936 | 0 | if (rv == NS_BASE_STREAM_WOULD_BLOCK) { |
1937 | 0 | rv = NS_OK; |
1938 | 0 | if (mFastOpen || mWaitingFor0RTTResponse) { |
1939 | 0 | // Continue waiting; |
1940 | 0 | rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); |
1941 | 0 | } |
1942 | 0 | } |
1943 | 0 | again = false; |
1944 | 0 | } else if (NS_FAILED(mSocketOutCondition)) { |
1945 | 0 | if (mSocketOutCondition == NS_BASE_STREAM_WOULD_BLOCK) { |
1946 | 0 | if (mTLSFilter) { |
1947 | 0 | LOG((" blocked tunnel (handshake?)\n")); |
1948 | 0 | rv = mTLSFilter->NudgeTunnel(this); |
1949 | 0 | } else { |
1950 | 0 | rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing |
1951 | 0 | } |
1952 | 0 | } else { |
1953 | 0 | rv = mSocketOutCondition; |
1954 | 0 | } |
1955 | 0 | again = false; |
1956 | 0 | } else if (!transactionBytes) { |
1957 | 0 | rv = NS_OK; |
1958 | 0 |
|
1959 | 0 | if (mWaitingFor0RTTResponse || mFastOpen) { |
1960 | 0 | // Wait for tls handshake to finish or waiting for connect. |
1961 | 0 | rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); |
1962 | 0 | } else if (mTransaction) { // in case the ReadSegments stack called CloseTransaction() |
1963 | 0 | // |
1964 | 0 | // at this point we've written out the entire transaction, and now we |
1965 | 0 | // must wait for the server's response. we manufacture a status message |
1966 | 0 | // here to reflect the fact that we are waiting. this message will be |
1967 | 0 | // trumped (overwritten) if the server responds quickly. |
1968 | 0 | // |
1969 | 0 | mTransaction->OnTransportStatus(mSocketTransport, |
1970 | 0 | NS_NET_STATUS_WAITING_FOR, |
1971 | 0 | 0); |
1972 | 0 | if (mCheckNetworkStallsWithTFO) { |
1973 | 0 | mLastRequestBytesSentTime = PR_IntervalNow(); |
1974 | 0 | } |
1975 | 0 |
|
1976 | 0 | rv = ResumeRecv(); // start reading |
1977 | 0 | } |
1978 | 0 | again = false; |
1979 | 0 | } else if (writeAttempts >= maxWriteAttempts) { |
1980 | 0 | LOG((" yield for other transactions\n")); |
1981 | 0 | rv = mSocketOut->AsyncWait(this, 0, 0, nullptr); // continue writing |
1982 | 0 | again = false; |
1983 | 0 | } |
1984 | 0 | // write more to the socket until error or end-of-request... |
1985 | 0 | } while (again && gHttpHandler->Active()); |
1986 | 0 |
|
1987 | 0 | return rv; |
1988 | 0 | } |
1989 | | |
1990 | | nsresult |
1991 | | nsHttpConnection::OnWriteSegment(char *buf, |
1992 | | uint32_t count, |
1993 | | uint32_t *countWritten) |
1994 | 0 | { |
1995 | 0 | if (count == 0) { |
1996 | 0 | // some WriteSegments implementations will erroneously call the reader |
1997 | 0 | // to provide 0 bytes worth of data. we must protect against this case |
1998 | 0 | // or else we'd end up closing the socket prematurely. |
1999 | 0 | NS_ERROR("bad WriteSegments implementation"); |
2000 | 0 | return NS_ERROR_FAILURE; // stop iterating |
2001 | 0 | } |
2002 | 0 |
|
2003 | 0 | if (ChaosMode::isActive(ChaosFeature::IOAmounts) && |
2004 | 0 | ChaosMode::randomUint32LessThan(2)) { |
2005 | 0 | // read 1...count bytes |
2006 | 0 | count = ChaosMode::randomUint32LessThan(count) + 1; |
2007 | 0 | } |
2008 | 0 |
|
2009 | 0 | nsresult rv = mSocketIn->Read(buf, count, countWritten); |
2010 | 0 | if (NS_FAILED(rv)) |
2011 | 0 | mSocketInCondition = rv; |
2012 | 0 | else if (*countWritten == 0) |
2013 | 0 | mSocketInCondition = NS_BASE_STREAM_CLOSED; |
2014 | 0 | else |
2015 | 0 | mSocketInCondition = NS_OK; // reset condition |
2016 | 0 |
|
2017 | 0 | mCheckNetworkStallsWithTFO = false; |
2018 | 0 |
|
2019 | 0 | return mSocketInCondition; |
2020 | 0 | } |
2021 | | |
2022 | | nsresult |
2023 | | nsHttpConnection::OnSocketReadable() |
2024 | 0 | { |
2025 | 0 | LOG(("nsHttpConnection::OnSocketReadable [this=%p]\n", this)); |
2026 | 0 |
|
2027 | 0 | PRIntervalTime now = PR_IntervalNow(); |
2028 | 0 | PRIntervalTime delta = now - mLastReadTime; |
2029 | 0 |
|
2030 | 0 | // Reset mResponseTimeoutEnabled to stop response timeout checks. |
2031 | 0 | mResponseTimeoutEnabled = false; |
2032 | 0 |
|
2033 | 0 | if (mKeepAliveMask && (delta >= mMaxHangTime)) { |
2034 | 0 | LOG(("max hang time exceeded!\n")); |
2035 | 0 | // give the handler a chance to create a new persistent connection to |
2036 | 0 | // this host if we've been busy for too long. |
2037 | 0 | mKeepAliveMask = false; |
2038 | 0 | Unused << gHttpHandler->ProcessPendingQ(mConnInfo); |
2039 | 0 | } |
2040 | 0 |
|
2041 | 0 | // Reduce the estimate of the time since last read by up to 1 RTT to |
2042 | 0 | // accommodate exhausted sender TCP congestion windows or minor I/O delays. |
2043 | 0 | mLastReadTime = now; |
2044 | 0 |
|
2045 | 0 | nsresult rv; |
2046 | 0 | uint32_t n; |
2047 | 0 | bool again = true; |
2048 | 0 |
|
2049 | 0 | do { |
2050 | 0 | if (!mProxyConnectInProgress && !mNPNComplete) { |
2051 | 0 | // Unless we are setting up a tunnel via CONNECT, prevent reading |
2052 | 0 | // from the socket until the results of NPN |
2053 | 0 | // negotiation are known (which is determined from the write path). |
2054 | 0 | // If the server speaks SPDY it is likely the readable data here is |
2055 | 0 | // a spdy settings frame and without NPN it would be misinterpreted |
2056 | 0 | // as HTTP/* |
2057 | 0 |
|
2058 | 0 | LOG(("nsHttpConnection::OnSocketReadable %p return due to inactive " |
2059 | 0 | "tunnel setup but incomplete NPN state\n", this)); |
2060 | 0 | rv = NS_OK; |
2061 | 0 | break; |
2062 | 0 | } |
2063 | 0 |
|
2064 | 0 | mSocketInCondition = NS_OK; |
2065 | 0 | rv = mTransaction-> |
2066 | 0 | WriteSegmentsAgain(this, nsIOService::gDefaultSegmentSize, &n, &again); |
2067 | 0 | LOG(("nsHttpConnection::OnSocketReadable %p trans->ws rv=%" PRIx32 |
2068 | 0 | " n=%d socketin=%" PRIx32 "\n", |
2069 | 0 | this, static_cast<uint32_t>(rv), n, static_cast<uint32_t>(mSocketInCondition))); |
2070 | 0 | if (NS_FAILED(rv)) { |
2071 | 0 | // if the transaction didn't want to take any more data, then |
2072 | 0 | // wait for the transaction to call ResumeRecv. |
2073 | 0 | if (rv == NS_BASE_STREAM_WOULD_BLOCK) { |
2074 | 0 | rv = NS_OK; |
2075 | 0 | } |
2076 | 0 | again = false; |
2077 | 0 | } else { |
2078 | 0 | mCurrentBytesRead += n; |
2079 | 0 | mTotalBytesRead += n; |
2080 | 0 | if (NS_FAILED(mSocketInCondition)) { |
2081 | 0 | // continue waiting for the socket if necessary... |
2082 | 0 | if (mSocketInCondition == NS_BASE_STREAM_WOULD_BLOCK) { |
2083 | 0 | rv = ResumeRecv(); |
2084 | 0 | } else { |
2085 | 0 | rv = mSocketInCondition; |
2086 | 0 | } |
2087 | 0 | again = false; |
2088 | 0 | } |
2089 | 0 | } |
2090 | 0 | // read more from the socket until error... |
2091 | 0 | } while (again && gHttpHandler->Active()); |
2092 | 0 |
|
2093 | 0 | return rv; |
2094 | 0 | } |
2095 | | |
2096 | | void |
2097 | | nsHttpConnection::SetupSecondaryTLS() |
2098 | 0 | { |
2099 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
2100 | 0 | MOZ_ASSERT(!mTLSFilter); |
2101 | 0 | LOG(("nsHttpConnection %p SetupSecondaryTLS %s %d\n", |
2102 | 0 | this, mConnInfo->Origin(), mConnInfo->OriginPort())); |
2103 | 0 |
|
2104 | 0 | nsHttpConnectionInfo *ci = nullptr; |
2105 | 0 | if (mTransaction) { |
2106 | 0 | ci = mTransaction->ConnectionInfo(); |
2107 | 0 | } |
2108 | 0 | if (!ci) { |
2109 | 0 | ci = mConnInfo; |
2110 | 0 | } |
2111 | 0 | MOZ_ASSERT(ci); |
2112 | 0 |
|
2113 | 0 | mTLSFilter = new TLSFilterTransaction(mTransaction, |
2114 | 0 | ci->Origin(), ci->OriginPort(), this, this); |
2115 | 0 |
|
2116 | 0 | if (mTransaction) { |
2117 | 0 | mTransaction = mTLSFilter; |
2118 | 0 | } |
2119 | 0 | } |
2120 | | |
2121 | | void |
2122 | | nsHttpConnection::SetInSpdyTunnel(bool arg) |
2123 | 0 | { |
2124 | 0 | MOZ_ASSERT(mTLSFilter); |
2125 | 0 | mInSpdyTunnel = arg; |
2126 | 0 |
|
2127 | 0 | // don't setup another tunnel :) |
2128 | 0 | mProxyConnectStream = nullptr; |
2129 | 0 | mCompletedProxyConnect = true; |
2130 | 0 | mProxyConnectInProgress = false; |
2131 | 0 | } |
2132 | | |
2133 | | nsresult |
2134 | | nsHttpConnection::MakeConnectString(nsAHttpTransaction *trans, |
2135 | | nsHttpRequestHead *request, |
2136 | | nsACString &result) |
2137 | 0 | { |
2138 | 0 | result.Truncate(); |
2139 | 0 | if (!trans->ConnectionInfo()) { |
2140 | 0 | return NS_ERROR_NOT_INITIALIZED; |
2141 | 0 | } |
2142 | 0 | |
2143 | 0 | DebugOnly<nsresult> rv; |
2144 | 0 |
|
2145 | 0 | rv = nsHttpHandler::GenerateHostPort( |
2146 | 0 | nsDependentCString(trans->ConnectionInfo()->Origin()), |
2147 | 0 | trans->ConnectionInfo()->OriginPort(), result); |
2148 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
2149 | 0 |
|
2150 | 0 | // CONNECT host:port HTTP/1.1 |
2151 | 0 | request->SetMethod(NS_LITERAL_CSTRING("CONNECT")); |
2152 | 0 | request->SetVersion(gHttpHandler->HttpVersion()); |
2153 | 0 | request->SetRequestURI(result); |
2154 | 0 | rv = request->SetHeader(nsHttp::User_Agent, gHttpHandler->UserAgent()); |
2155 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
2156 | 0 |
|
2157 | 0 | // a CONNECT is always persistent |
2158 | 0 | rv = request->SetHeader(nsHttp::Proxy_Connection, NS_LITERAL_CSTRING("keep-alive")); |
2159 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
2160 | 0 | rv = request->SetHeader(nsHttp::Connection, NS_LITERAL_CSTRING("keep-alive")); |
2161 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
2162 | 0 |
|
2163 | 0 | // all HTTP/1.1 requests must include a Host header (even though it |
2164 | 0 | // may seem redundant in this case; see bug 82388). |
2165 | 0 | rv = request->SetHeader(nsHttp::Host, result); |
2166 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
2167 | 0 |
|
2168 | 0 | nsAutoCString val; |
2169 | 0 | if (NS_SUCCEEDED(trans->RequestHead()->GetHeader( |
2170 | 0 | nsHttp::Proxy_Authorization, |
2171 | 0 | val))) { |
2172 | 0 | // we don't know for sure if this authorization is intended for the |
2173 | 0 | // SSL proxy, so we add it just in case. |
2174 | 0 | rv = request->SetHeader(nsHttp::Proxy_Authorization, val); |
2175 | 0 | MOZ_ASSERT(NS_SUCCEEDED(rv)); |
2176 | 0 | } |
2177 | 0 |
|
2178 | 0 | result.Truncate(); |
2179 | 0 | request->Flatten(result, false); |
2180 | 0 | result.AppendLiteral("\r\n"); |
2181 | 0 | return NS_OK; |
2182 | 0 | } |
2183 | | |
2184 | | nsresult |
2185 | | nsHttpConnection::SetupProxyConnect() |
2186 | 0 | { |
2187 | 0 | LOG(("nsHttpConnection::SetupProxyConnect [this=%p]\n", this)); |
2188 | 0 | NS_ENSURE_TRUE(!mProxyConnectStream, NS_ERROR_ALREADY_INITIALIZED); |
2189 | 0 | MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE, |
2190 | 0 | "SPDY NPN Complete while using proxy connect stream"); |
2191 | 0 |
|
2192 | 0 | nsAutoCString buf; |
2193 | 0 | nsHttpRequestHead request; |
2194 | 0 | nsresult rv = MakeConnectString(mTransaction, &request, buf); |
2195 | 0 | if (NS_FAILED(rv)) { |
2196 | 0 | return rv; |
2197 | 0 | } |
2198 | 0 | return NS_NewCStringInputStream(getter_AddRefs(mProxyConnectStream), std::move(buf)); |
2199 | 0 | } |
2200 | | |
2201 | | nsresult |
2202 | | nsHttpConnection::StartShortLivedTCPKeepalives() |
2203 | 0 | { |
2204 | 0 | if (mUsingSpdyVersion != SpdyVersion::NONE) { |
2205 | 0 | return NS_OK; |
2206 | 0 | } |
2207 | 0 | MOZ_ASSERT(mSocketTransport); |
2208 | 0 | if (!mSocketTransport) { |
2209 | 0 | return NS_ERROR_NOT_INITIALIZED; |
2210 | 0 | } |
2211 | 0 | |
2212 | 0 | nsresult rv = NS_OK; |
2213 | 0 | int32_t idleTimeS = -1; |
2214 | 0 | int32_t retryIntervalS = -1; |
2215 | 0 | if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) { |
2216 | 0 | // Set the idle time. |
2217 | 0 | idleTimeS = gHttpHandler->GetTCPKeepaliveShortLivedIdleTime(); |
2218 | 0 | LOG(("nsHttpConnection::StartShortLivedTCPKeepalives[%p] " |
2219 | 0 | "idle time[%ds].", this, idleTimeS)); |
2220 | 0 |
|
2221 | 0 | retryIntervalS = |
2222 | 0 | std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1); |
2223 | 0 | rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS); |
2224 | 0 | if (NS_FAILED(rv)) { |
2225 | 0 | return rv; |
2226 | 0 | } |
2227 | 0 | rv = mSocketTransport->SetKeepaliveEnabled(true); |
2228 | 0 | mTCPKeepaliveConfig = kTCPKeepaliveShortLivedConfig; |
2229 | 0 | } else { |
2230 | 0 | rv = mSocketTransport->SetKeepaliveEnabled(false); |
2231 | 0 | mTCPKeepaliveConfig = kTCPKeepaliveDisabled; |
2232 | 0 | } |
2233 | 0 | if (NS_FAILED(rv)) { |
2234 | 0 | return rv; |
2235 | 0 | } |
2236 | 0 | |
2237 | 0 | // Start a timer to move to long-lived keepalive config. |
2238 | 0 | if(!mTCPKeepaliveTransitionTimer) { |
2239 | 0 | mTCPKeepaliveTransitionTimer = |
2240 | 0 | NS_NewTimer(); |
2241 | 0 | } |
2242 | 0 |
|
2243 | 0 | if (mTCPKeepaliveTransitionTimer) { |
2244 | 0 | int32_t time = gHttpHandler->GetTCPKeepaliveShortLivedTime(); |
2245 | 0 |
|
2246 | 0 | // Adjust |time| to ensure a full set of keepalive probes can be sent |
2247 | 0 | // at the end of the short-lived phase. |
2248 | 0 | if (gHttpHandler->TCPKeepaliveEnabledForShortLivedConns()) { |
2249 | 0 | if (NS_WARN_IF(!gSocketTransportService)) { |
2250 | 0 | return NS_ERROR_NOT_INITIALIZED; |
2251 | 0 | } |
2252 | 0 | int32_t probeCount = -1; |
2253 | 0 | rv = gSocketTransportService->GetKeepaliveProbeCount(&probeCount); |
2254 | 0 | if (NS_WARN_IF(NS_FAILED(rv))) { |
2255 | 0 | return rv; |
2256 | 0 | } |
2257 | 0 | if (NS_WARN_IF(probeCount <= 0)) { |
2258 | 0 | return NS_ERROR_UNEXPECTED; |
2259 | 0 | } |
2260 | 0 | // Add time for final keepalive probes, and 2 seconds for a buffer. |
2261 | 0 | time += ((probeCount) * retryIntervalS) - (time % idleTimeS) + 2; |
2262 | 0 | } |
2263 | 0 | mTCPKeepaliveTransitionTimer->InitWithNamedFuncCallback( |
2264 | 0 | nsHttpConnection::UpdateTCPKeepalive, |
2265 | 0 | this, |
2266 | 0 | (uint32_t)time * 1000, |
2267 | 0 | nsITimer::TYPE_ONE_SHOT, |
2268 | 0 | "net::nsHttpConnection::StartShortLivedTCPKeepalives"); |
2269 | 0 | } else { |
2270 | 0 | NS_WARNING("nsHttpConnection::StartShortLivedTCPKeepalives failed to " |
2271 | 0 | "create timer."); |
2272 | 0 | } |
2273 | 0 |
|
2274 | 0 | return NS_OK; |
2275 | 0 | } |
2276 | | |
2277 | | nsresult |
2278 | | nsHttpConnection::StartLongLivedTCPKeepalives() |
2279 | 0 | { |
2280 | 0 | MOZ_ASSERT(mUsingSpdyVersion == SpdyVersion::NONE, "Don't use TCP Keepalive with SPDY!"); |
2281 | 0 | if (NS_WARN_IF(mUsingSpdyVersion != SpdyVersion::NONE)) { |
2282 | 0 | return NS_OK; |
2283 | 0 | } |
2284 | 0 | MOZ_ASSERT(mSocketTransport); |
2285 | 0 | if (!mSocketTransport) { |
2286 | 0 | return NS_ERROR_NOT_INITIALIZED; |
2287 | 0 | } |
2288 | 0 | |
2289 | 0 | nsresult rv = NS_OK; |
2290 | 0 | if (gHttpHandler->TCPKeepaliveEnabledForLongLivedConns()) { |
2291 | 0 | // Increase the idle time. |
2292 | 0 | int32_t idleTimeS = gHttpHandler->GetTCPKeepaliveLongLivedIdleTime(); |
2293 | 0 | LOG(("nsHttpConnection::StartLongLivedTCPKeepalives[%p] idle time[%ds]", |
2294 | 0 | this, idleTimeS)); |
2295 | 0 |
|
2296 | 0 | int32_t retryIntervalS = |
2297 | 0 | std::max<int32_t>((int32_t)PR_IntervalToSeconds(mRtt), 1); |
2298 | 0 | rv = mSocketTransport->SetKeepaliveVals(idleTimeS, retryIntervalS); |
2299 | 0 | if (NS_FAILED(rv)) { |
2300 | 0 | return rv; |
2301 | 0 | } |
2302 | 0 | |
2303 | 0 | // Ensure keepalive is enabled, if current status is disabled. |
2304 | 0 | if (mTCPKeepaliveConfig == kTCPKeepaliveDisabled) { |
2305 | 0 | rv = mSocketTransport->SetKeepaliveEnabled(true); |
2306 | 0 | if (NS_FAILED(rv)) { |
2307 | 0 | return rv; |
2308 | 0 | } |
2309 | 0 | } |
2310 | 0 | mTCPKeepaliveConfig = kTCPKeepaliveLongLivedConfig; |
2311 | 0 | } else { |
2312 | 0 | rv = mSocketTransport->SetKeepaliveEnabled(false); |
2313 | 0 | mTCPKeepaliveConfig = kTCPKeepaliveDisabled; |
2314 | 0 | } |
2315 | 0 |
|
2316 | 0 | if (NS_FAILED(rv)) { |
2317 | 0 | return rv; |
2318 | 0 | } |
2319 | 0 | return NS_OK; |
2320 | 0 | } |
2321 | | |
2322 | | nsresult |
2323 | | nsHttpConnection::DisableTCPKeepalives() |
2324 | 0 | { |
2325 | 0 | MOZ_ASSERT(mSocketTransport); |
2326 | 0 | if (!mSocketTransport) { |
2327 | 0 | return NS_ERROR_NOT_INITIALIZED; |
2328 | 0 | } |
2329 | 0 | |
2330 | 0 | LOG(("nsHttpConnection::DisableTCPKeepalives [%p]", this)); |
2331 | 0 | if (mTCPKeepaliveConfig != kTCPKeepaliveDisabled) { |
2332 | 0 | nsresult rv = mSocketTransport->SetKeepaliveEnabled(false); |
2333 | 0 | if (NS_FAILED(rv)) { |
2334 | 0 | return rv; |
2335 | 0 | } |
2336 | 0 | mTCPKeepaliveConfig = kTCPKeepaliveDisabled; |
2337 | 0 | } |
2338 | 0 | if (mTCPKeepaliveTransitionTimer) { |
2339 | 0 | mTCPKeepaliveTransitionTimer->Cancel(); |
2340 | 0 | mTCPKeepaliveTransitionTimer = nullptr; |
2341 | 0 | } |
2342 | 0 | return NS_OK; |
2343 | 0 | } |
2344 | | |
2345 | | //----------------------------------------------------------------------------- |
2346 | | // nsHttpConnection::nsISupports |
2347 | | //----------------------------------------------------------------------------- |
2348 | | |
2349 | | NS_IMPL_ADDREF(nsHttpConnection) |
2350 | | NS_IMPL_RELEASE(nsHttpConnection) |
2351 | | |
2352 | 0 | NS_INTERFACE_MAP_BEGIN(nsHttpConnection) |
2353 | 0 | NS_INTERFACE_MAP_ENTRY(nsISupportsWeakReference) |
2354 | 0 | NS_INTERFACE_MAP_ENTRY(nsIInputStreamCallback) |
2355 | 0 | NS_INTERFACE_MAP_ENTRY(nsIOutputStreamCallback) |
2356 | 0 | NS_INTERFACE_MAP_ENTRY(nsITransportEventSink) |
2357 | 0 | NS_INTERFACE_MAP_ENTRY(nsIInterfaceRequestor) |
2358 | 0 | NS_INTERFACE_MAP_ENTRY_CONCRETE(nsHttpConnection) |
2359 | 0 | NS_INTERFACE_MAP_END |
2360 | | |
2361 | | //----------------------------------------------------------------------------- |
2362 | | // nsHttpConnection::nsIInputStreamCallback |
2363 | | //----------------------------------------------------------------------------- |
2364 | | |
2365 | | // called on the socket transport thread |
2366 | | NS_IMETHODIMP |
2367 | | nsHttpConnection::OnInputStreamReady(nsIAsyncInputStream *in) |
2368 | 0 | { |
2369 | 0 | MOZ_ASSERT(in == mSocketIn, "unexpected stream"); |
2370 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
2371 | 0 |
|
2372 | 0 | if (mIdleMonitoring) { |
2373 | 0 | MOZ_ASSERT(!mTransaction, "Idle Input Event While Active"); |
2374 | 0 |
|
2375 | 0 | // The only read event that is protocol compliant for an idle connection |
2376 | 0 | // is an EOF, which we check for with CanReuse(). If the data is |
2377 | 0 | // something else then just ignore it and suspend checking for EOF - |
2378 | 0 | // our normal timers or protocol stack are the place to deal with |
2379 | 0 | // any exception logic. |
2380 | 0 |
|
2381 | 0 | if (!CanReuse()) { |
2382 | 0 | LOG(("Server initiated close of idle conn %p\n", this)); |
2383 | 0 | Unused << gHttpHandler->ConnMgr()->CloseIdleConnection(this); |
2384 | 0 | return NS_OK; |
2385 | 0 | } |
2386 | 0 |
|
2387 | 0 | LOG(("Input data on idle conn %p, but not closing yet\n", this)); |
2388 | 0 | return NS_OK; |
2389 | 0 | } |
2390 | 0 | |
2391 | 0 | // if the transaction was dropped... |
2392 | 0 | if (!mTransaction) { |
2393 | 0 | LOG((" no transaction; ignoring event\n")); |
2394 | 0 | return NS_OK; |
2395 | 0 | } |
2396 | 0 |
|
2397 | 0 | nsresult rv = OnSocketReadable(); |
2398 | 0 | if (NS_FAILED(rv)) |
2399 | 0 | CloseTransaction(mTransaction, rv); |
2400 | 0 |
|
2401 | 0 | return NS_OK; |
2402 | 0 | } |
2403 | | |
2404 | | //----------------------------------------------------------------------------- |
2405 | | // nsHttpConnection::nsIOutputStreamCallback |
2406 | | //----------------------------------------------------------------------------- |
2407 | | |
2408 | | NS_IMETHODIMP |
2409 | | nsHttpConnection::OnOutputStreamReady(nsIAsyncOutputStream *out) |
2410 | 0 | { |
2411 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
2412 | 0 | MOZ_ASSERT(out == mSocketOut, "unexpected socket"); |
2413 | 0 | // if the transaction was dropped... |
2414 | 0 | if (!mTransaction) { |
2415 | 0 | LOG((" no transaction; ignoring event\n")); |
2416 | 0 | return NS_OK; |
2417 | 0 | } |
2418 | 0 |
|
2419 | 0 | nsresult rv = OnSocketWritable(); |
2420 | 0 | if (NS_FAILED(rv)) |
2421 | 0 | CloseTransaction(mTransaction, rv); |
2422 | 0 |
|
2423 | 0 | return NS_OK; |
2424 | 0 | } |
2425 | | |
2426 | | //----------------------------------------------------------------------------- |
2427 | | // nsHttpConnection::nsITransportEventSink |
2428 | | //----------------------------------------------------------------------------- |
2429 | | |
2430 | | NS_IMETHODIMP |
2431 | | nsHttpConnection::OnTransportStatus(nsITransport *trans, |
2432 | | nsresult status, |
2433 | | int64_t progress, |
2434 | | int64_t progressMax) |
2435 | 0 | { |
2436 | 0 | if (mTransaction) |
2437 | 0 | mTransaction->OnTransportStatus(trans, status, progress); |
2438 | 0 | return NS_OK; |
2439 | 0 | } |
2440 | | |
2441 | | //----------------------------------------------------------------------------- |
2442 | | // nsHttpConnection::nsIInterfaceRequestor |
2443 | | //----------------------------------------------------------------------------- |
2444 | | |
2445 | | // not called on the socket transport thread |
2446 | | NS_IMETHODIMP |
2447 | | nsHttpConnection::GetInterface(const nsIID &iid, void **result) |
2448 | 0 | { |
2449 | 0 | // NOTE: This function is only called on the UI thread via sync proxy from |
2450 | 0 | // the socket transport thread. If that weren't the case, then we'd |
2451 | 0 | // have to worry about the possibility of mTransaction going away |
2452 | 0 | // part-way through this function call. See CloseTransaction. |
2453 | 0 |
|
2454 | 0 | // NOTE - there is a bug here, the call to getinterface is proxied off the |
2455 | 0 | // nss thread, not the ui thread as the above comment says. So there is |
2456 | 0 | // indeed a chance of mTransaction going away. bug 615342 |
2457 | 0 |
|
2458 | 0 | MOZ_ASSERT(!OnSocketThread(), "on socket thread"); |
2459 | 0 |
|
2460 | 0 | nsCOMPtr<nsIInterfaceRequestor> callbacks; |
2461 | 0 | { |
2462 | 0 | MutexAutoLock lock(mCallbacksLock); |
2463 | 0 | callbacks = mCallbacks; |
2464 | 0 | } |
2465 | 0 | if (callbacks) |
2466 | 0 | return callbacks->GetInterface(iid, result); |
2467 | 0 | return NS_ERROR_NO_INTERFACE; |
2468 | 0 | } |
2469 | | |
2470 | | void |
2471 | | nsHttpConnection::CheckForTraffic(bool check) |
2472 | 0 | { |
2473 | 0 | if (check) { |
2474 | 0 | LOG((" CheckForTraffic conn %p\n", this)); |
2475 | 0 | if (mSpdySession) { |
2476 | 0 | if (PR_IntervalToMilliseconds(IdleTime()) >= 500) { |
2477 | 0 | // Send a ping to verify it is still alive if it has been idle |
2478 | 0 | // more than half a second, the network changed events are |
2479 | 0 | // rate-limited to one per 1000 ms. |
2480 | 0 | LOG((" SendPing\n")); |
2481 | 0 | mSpdySession->SendPing(); |
2482 | 0 | } else { |
2483 | 0 | LOG((" SendPing skipped due to network activity\n")); |
2484 | 0 | } |
2485 | 0 | } else { |
2486 | 0 | // If not SPDY, Store snapshot amount of data right now |
2487 | 0 | mTrafficCount = mTotalBytesWritten + mTotalBytesRead; |
2488 | 0 | mTrafficStamp = true; |
2489 | 0 | } |
2490 | 0 | } else { |
2491 | 0 | // mark it as not checked |
2492 | 0 | mTrafficStamp = false; |
2493 | 0 | } |
2494 | 0 | } |
2495 | | |
2496 | | nsAHttpTransaction * |
2497 | | nsHttpConnection::CloseConnectionFastOpenTakesTooLongOrError(bool aCloseSocketTransport) |
2498 | 0 | { |
2499 | 0 | MOZ_ASSERT(!mCurrentBytesRead); |
2500 | 0 | MOZ_ASSERT(OnSocketThread(), "not on socket thread"); |
2501 | 0 |
|
2502 | 0 | mFastOpenStatus = TFO_FAILED; |
2503 | 0 | RefPtr<nsAHttpTransaction> trans; |
2504 | 0 |
|
2505 | 0 | DontReuse(); |
2506 | 0 |
|
2507 | 0 | if (mUsingSpdyVersion != SpdyVersion::NONE) { |
2508 | 0 | // If we have a http2 connection just restart it as if 0rtt failed. |
2509 | 0 | // For http2 we do not need to do similar thing as for http1 because |
2510 | 0 | // backup connection will pick immediately all this transaction anyway. |
2511 | 0 | mUsingSpdyVersion = SpdyVersion::NONE; |
2512 | 0 | if (mSpdySession) { |
2513 | 0 | mTransaction->SetFastOpenStatus(TFO_FAILED); |
2514 | 0 | Unused << mSpdySession->Finish0RTT(true, true); |
2515 | 0 | } |
2516 | 0 | mSpdySession = nullptr; |
2517 | 0 | } else { |
2518 | 0 | // For http1 we want to make this transaction an absolute priority to |
2519 | 0 | // get the backup connection so we will return it from here. |
2520 | 0 | if (NS_SUCCEEDED(mTransaction->RestartOnFastOpenError())) { |
2521 | 0 | trans = mTransaction; |
2522 | 0 | } |
2523 | 0 | mTransaction->SetConnection(nullptr); |
2524 | 0 | } |
2525 | 0 |
|
2526 | 0 | { |
2527 | 0 | MutexAutoLock lock(mCallbacksLock); |
2528 | 0 | mCallbacks = nullptr; |
2529 | 0 | } |
2530 | 0 |
|
2531 | 0 | if (mSocketIn) { |
2532 | 0 | mSocketIn->AsyncWait(nullptr, 0, 0, nullptr); |
2533 | 0 | } |
2534 | 0 |
|
2535 | 0 | mTransaction = nullptr; |
2536 | 0 | if (!aCloseSocketTransport) { |
2537 | 0 | if (mSocketOut) { |
2538 | 0 | mSocketOut->AsyncWait(nullptr, 0, 0, nullptr); |
2539 | 0 | } |
2540 | 0 | mSocketTransport->SetEventSink(nullptr, nullptr); |
2541 | 0 | mSocketTransport->SetSecurityCallbacks(nullptr); |
2542 | 0 | mSocketTransport = nullptr; |
2543 | 0 | } |
2544 | 0 | Close(NS_ERROR_NET_RESET); |
2545 | 0 | return trans; |
2546 | 0 | } |
2547 | | |
2548 | | void |
2549 | | nsHttpConnection::SetFastOpen(bool aFastOpen) |
2550 | 0 | { |
2551 | 0 | mFastOpen = aFastOpen; |
2552 | 0 | if (!mFastOpen && |
2553 | 0 | mTransaction && |
2554 | 0 | !mTransaction->IsNullTransaction()) { |
2555 | 0 |
|
2556 | 0 | mExperienced = true; |
2557 | 0 |
|
2558 | 0 | nsHttpTransaction *hTrans = mTransaction->QueryHttpTransaction(); |
2559 | 0 | if (hTrans) { |
2560 | 0 | SetUrgentStartPreferred(hTrans->ClassOfService() & nsIClassOfService::UrgentStart); |
2561 | 0 | } |
2562 | 0 | } |
2563 | 0 | } |
2564 | | |
2565 | | void |
2566 | 0 | nsHttpConnection::SetFastOpenStatus(uint8_t tfoStatus) { |
2567 | 0 | mFastOpenStatus = tfoStatus; |
2568 | 0 | if ((mFastOpenStatus >= TFO_FAILED_CONNECTION_REFUSED) && |
2569 | 0 | (mFastOpenStatus <= TFO_FAILED_BACKUP_CONNECTION_TFO_DATA_COOKIE_NOT_ACCEPTED) && |
2570 | 0 | mSocketTransport) { |
2571 | 0 | nsresult firstRetryError; |
2572 | 0 | if (NS_SUCCEEDED(mSocketTransport->GetFirstRetryError(&firstRetryError)) && |
2573 | 0 | (NS_FAILED(firstRetryError))) { |
2574 | 0 | if ((mFastOpenStatus >= TFO_FAILED_BACKUP_CONNECTION_TFO_NOT_TRIED) && |
2575 | 0 | (mFastOpenStatus <= TFO_FAILED_BACKUP_CONNECTION_TFO_DATA_COOKIE_NOT_ACCEPTED)) { |
2576 | 0 | mFastOpenStatus = TFO_FAILED_BACKUP_CONNECTION_NO_TFO_FAILED_TOO; |
2577 | 0 | } else { |
2578 | 0 | // We add +7 to tranform TFO_FAILED_CONNECTION_REFUSED into |
2579 | 0 | // TFO_FAILED_CONNECTION_REFUSED_NO_TFO_FAILED_TOO, etc. |
2580 | 0 | // If the list in TCPFastOpenLayer.h changes please addapt +7. |
2581 | 0 | mFastOpenStatus = tfoStatus + 7; |
2582 | 0 | } |
2583 | 0 | } |
2584 | 0 | } |
2585 | 0 | } |
2586 | | |
2587 | | void |
2588 | | nsHttpConnection::BootstrapTimings(TimingStruct times) |
2589 | 0 | { |
2590 | 0 | mBootstrappedTimingsSet = true; |
2591 | 0 | mBootstrappedTimings = times; |
2592 | 0 | } |
2593 | | |
2594 | | void |
2595 | | nsHttpConnection::SetEvent(nsresult aStatus) |
2596 | 0 | { |
2597 | 0 | switch (aStatus) { |
2598 | 0 | case NS_NET_STATUS_RESOLVING_HOST: |
2599 | 0 | mBootstrappedTimings.domainLookupStart = TimeStamp::Now(); |
2600 | 0 | break; |
2601 | 0 | case NS_NET_STATUS_RESOLVED_HOST: |
2602 | 0 | mBootstrappedTimings.domainLookupEnd = TimeStamp::Now(); |
2603 | 0 | break; |
2604 | 0 | case NS_NET_STATUS_CONNECTING_TO: |
2605 | 0 | mBootstrappedTimings.connectStart = TimeStamp::Now(); |
2606 | 0 | break; |
2607 | 0 | case NS_NET_STATUS_CONNECTED_TO: |
2608 | 0 | { |
2609 | 0 | TimeStamp tnow = TimeStamp::Now(); |
2610 | 0 | mBootstrappedTimings.tcpConnectEnd = tnow; |
2611 | 0 | mBootstrappedTimings.connectEnd = tnow; |
2612 | 0 | if ((mFastOpenStatus != TFO_DATA_SENT) && |
2613 | 0 | !mBootstrappedTimings.secureConnectionStart.IsNull()) { |
2614 | 0 | mBootstrappedTimings.secureConnectionStart = tnow; |
2615 | 0 | } |
2616 | 0 | break; |
2617 | 0 | } |
2618 | 0 | case NS_NET_STATUS_TLS_HANDSHAKE_STARTING: |
2619 | 0 | mBootstrappedTimings.secureConnectionStart = TimeStamp::Now(); |
2620 | 0 | break; |
2621 | 0 | case NS_NET_STATUS_TLS_HANDSHAKE_ENDED: |
2622 | 0 | mBootstrappedTimings.connectEnd = TimeStamp::Now(); |
2623 | 0 | break; |
2624 | 0 | default: |
2625 | 0 | break; |
2626 | 0 | } |
2627 | 0 | } |
2628 | | |
2629 | | bool |
2630 | | nsHttpConnection::NoClientCertAuth() const |
2631 | 0 | { |
2632 | 0 | if (!mSocketTransport) { |
2633 | 0 | return false; |
2634 | 0 | } |
2635 | 0 | |
2636 | 0 | nsCOMPtr<nsISupports> secInfo; |
2637 | 0 | mSocketTransport->GetSecurityInfo(getter_AddRefs(secInfo)); |
2638 | 0 | if (!secInfo) { |
2639 | 0 | return false; |
2640 | 0 | } |
2641 | 0 | |
2642 | 0 | nsCOMPtr<nsISSLSocketControl> ssc(do_QueryInterface(secInfo)); |
2643 | 0 | if (!ssc) { |
2644 | 0 | return false; |
2645 | 0 | } |
2646 | 0 | |
2647 | 0 | return !ssc->GetClientCertSent(); |
2648 | 0 | } |
2649 | | |
2650 | | } // namespace net |
2651 | | } // namespace mozilla |