/src/mozilla-central/security/nss/lib/freebl/mpi/mpmontg.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | |
5 | | /* This file implements moduluar exponentiation using Montgomery's |
6 | | * method for modular reduction. This file implements the method |
7 | | * described as "Improvement 2" in the paper "A Cryptogrpahic Library for |
8 | | * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr. |
9 | | * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90" |
10 | | * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244, |
11 | | * published by Springer Verlag. |
12 | | */ |
13 | | |
14 | | #define MP_USING_CACHE_SAFE_MOD_EXP 1 |
15 | | #include <string.h> |
16 | | #include "mpi-priv.h" |
17 | | #include "mplogic.h" |
18 | | #include "mpprime.h" |
19 | | #ifdef MP_USING_MONT_MULF |
20 | | #include "montmulf.h" |
21 | | #endif |
22 | | #include <stddef.h> /* ptrdiff_t */ |
23 | | #include <assert.h> |
24 | | |
25 | | #define STATIC |
26 | | |
27 | 0 | #define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */ |
28 | | |
29 | | /*! computes T = REDC(T), 2^b == R |
30 | | \param T < RN |
31 | | */ |
32 | | mp_err |
33 | | s_mp_redc(mp_int *T, mp_mont_modulus *mmm) |
34 | 0 | { |
35 | 0 | mp_err res; |
36 | 0 | mp_size i; |
37 | 0 |
|
38 | 0 | i = (MP_USED(&mmm->N) << 1) + 1; |
39 | 0 | MP_CHECKOK(s_mp_pad(T, i)); |
40 | 0 | for (i = 0; i < MP_USED(&mmm->N); ++i) { |
41 | 0 | mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime; |
42 | 0 | /* T += N * m_i * (MP_RADIX ** i); */ |
43 | 0 | s_mp_mul_d_add_offset(&mmm->N, m_i, T, i); |
44 | 0 | } |
45 | 0 | s_mp_clamp(T); |
46 | 0 |
|
47 | 0 | /* T /= R */ |
48 | 0 | s_mp_rshd(T, MP_USED(&mmm->N)); |
49 | 0 |
|
50 | 0 | if ((res = s_mp_cmp(T, &mmm->N)) >= 0) { |
51 | 0 | /* T = T - N */ |
52 | 0 | MP_CHECKOK(s_mp_sub(T, &mmm->N)); |
53 | | #ifdef DEBUG |
54 | | if ((res = mp_cmp(T, &mmm->N)) >= 0) { |
55 | | res = MP_UNDEF; |
56 | | goto CLEANUP; |
57 | | } |
58 | | #endif |
59 | | } |
60 | 0 | res = MP_OKAY; |
61 | 0 | CLEANUP: |
62 | 0 | return res; |
63 | 0 | } |
64 | | |
65 | | #if !defined(MP_MONT_USE_MP_MUL) |
66 | | |
67 | | /*! c <- REDC( a * b ) mod N |
68 | | \param a < N i.e. "reduced" |
69 | | \param b < N i.e. "reduced" |
70 | | \param mmm modulus N and n0' of N |
71 | | */ |
72 | | mp_err |
73 | | s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, |
74 | | mp_mont_modulus *mmm) |
75 | 0 | { |
76 | 0 | mp_digit *pb; |
77 | 0 | mp_digit m_i; |
78 | 0 | mp_err res; |
79 | 0 | mp_size ib; /* "index b": index of current digit of B */ |
80 | 0 | mp_size useda, usedb; |
81 | 0 |
|
82 | 0 | ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); |
83 | 0 |
|
84 | 0 | if (MP_USED(a) < MP_USED(b)) { |
85 | 0 | const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ |
86 | 0 | b = a; |
87 | 0 | a = xch; |
88 | 0 | } |
89 | 0 |
|
90 | 0 | MP_USED(c) = 1; |
91 | 0 | MP_DIGIT(c, 0) = 0; |
92 | 0 | ib = (MP_USED(&mmm->N) << 1) + 1; |
93 | 0 | if ((res = s_mp_pad(c, ib)) != MP_OKAY) |
94 | 0 | goto CLEANUP; |
95 | 0 | |
96 | 0 | useda = MP_USED(a); |
97 | 0 | pb = MP_DIGITS(b); |
98 | 0 | s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c)); |
99 | 0 | s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1)); |
100 | 0 | m_i = MP_DIGIT(c, 0) * mmm->n0prime; |
101 | 0 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0); |
102 | 0 |
|
103 | 0 | /* Outer loop: Digits of b */ |
104 | 0 | usedb = MP_USED(b); |
105 | 0 | for (ib = 1; ib < usedb; ib++) { |
106 | 0 | mp_digit b_i = *pb++; |
107 | 0 |
|
108 | 0 | /* Inner product: Digits of a */ |
109 | 0 | if (b_i) |
110 | 0 | s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); |
111 | 0 | m_i = MP_DIGIT(c, ib) * mmm->n0prime; |
112 | 0 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); |
113 | 0 | } |
114 | 0 | if (usedb < MP_USED(&mmm->N)) { |
115 | 0 | for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib) { |
116 | 0 | m_i = MP_DIGIT(c, ib) * mmm->n0prime; |
117 | 0 | s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); |
118 | 0 | } |
119 | 0 | } |
120 | 0 | s_mp_clamp(c); |
121 | 0 | s_mp_rshd(c, MP_USED(&mmm->N)); /* c /= R */ |
122 | 0 | if (s_mp_cmp(c, &mmm->N) >= 0) { |
123 | 0 | MP_CHECKOK(s_mp_sub(c, &mmm->N)); |
124 | 0 | } |
125 | 0 | res = MP_OKAY; |
126 | 0 |
|
127 | 0 | CLEANUP: |
128 | 0 | return res; |
129 | 0 | } |
130 | | #endif |
131 | | |
132 | | STATIC |
133 | | mp_err |
134 | | s_mp_to_mont(const mp_int *x, mp_mont_modulus *mmm, mp_int *xMont) |
135 | 0 | { |
136 | 0 | mp_err res; |
137 | 0 |
|
138 | 0 | /* xMont = x * R mod N where N is modulus */ |
139 | 0 | MP_CHECKOK(mp_copy(x, xMont)); |
140 | 0 | MP_CHECKOK(s_mp_lshd(xMont, MP_USED(&mmm->N))); /* xMont = x << b */ |
141 | 0 | MP_CHECKOK(mp_div(xMont, &mmm->N, 0, xMont)); /* mod N */ |
142 | 0 | CLEANUP: |
143 | 0 | return res; |
144 | 0 | } |
145 | | |
146 | | #ifdef MP_USING_MONT_MULF |
147 | | |
148 | | /* the floating point multiply is already cache safe, |
149 | | * don't turn on cache safe unless we specifically |
150 | | * force it */ |
151 | | #ifndef MP_FORCE_CACHE_SAFE |
152 | | #undef MP_USING_CACHE_SAFE_MOD_EXP |
153 | | #endif |
154 | | |
155 | | unsigned int mp_using_mont_mulf = 1; |
156 | | |
157 | | /* computes montgomery square of the integer in mResult */ |
158 | | #define SQR \ |
159 | | conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \ |
160 | | mont_mulf_noconv(mResult, dm1, d16Tmp, \ |
161 | | dTmp, dn, MP_DIGITS(modulus), nLen, dn0) |
162 | | |
163 | | /* computes montgomery product of x and the integer in mResult */ |
164 | | #define MUL(x) \ |
165 | | conv_i32_to_d32(dm1, mResult, nLen); \ |
166 | | mont_mulf_noconv(mResult, dm1, oddPowers[x], \ |
167 | | dTmp, dn, MP_DIGITS(modulus), nLen, dn0) |
168 | | |
169 | | /* Do modular exponentiation using floating point multiply code. */ |
170 | | mp_err |
171 | | mp_exptmod_f(const mp_int *montBase, |
172 | | const mp_int *exponent, |
173 | | const mp_int *modulus, |
174 | | mp_int *result, |
175 | | mp_mont_modulus *mmm, |
176 | | int nLen, |
177 | | mp_size bits_in_exponent, |
178 | | mp_size window_bits, |
179 | | mp_size odd_ints) |
180 | | { |
181 | | mp_digit *mResult; |
182 | | double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp; |
183 | | double dn0; |
184 | | mp_size i; |
185 | | mp_err res; |
186 | | int expOff; |
187 | | int dSize = 0, oddPowSize, dTmpSize; |
188 | | mp_int accum1; |
189 | | double *oddPowers[MAX_ODD_INTS]; |
190 | | |
191 | | /* function for computing n0prime only works if n0 is odd */ |
192 | | |
193 | | MP_DIGITS(&accum1) = 0; |
194 | | |
195 | | for (i = 0; i < MAX_ODD_INTS; ++i) |
196 | | oddPowers[i] = 0; |
197 | | |
198 | | MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2)); |
199 | | |
200 | | mp_set(&accum1, 1); |
201 | | MP_CHECKOK(s_mp_to_mont(&accum1, mmm, &accum1)); |
202 | | MP_CHECKOK(s_mp_pad(&accum1, nLen)); |
203 | | |
204 | | oddPowSize = 2 * nLen + 1; |
205 | | dTmpSize = 2 * oddPowSize; |
206 | | dSize = sizeof(double) * (nLen * 4 + 1 + |
207 | | ((odd_ints + 1) * oddPowSize) + dTmpSize); |
208 | | dBuf = malloc(dSize); |
209 | | if (!dBuf) { |
210 | | res = MP_MEM; |
211 | | goto CLEANUP; |
212 | | } |
213 | | dm1 = dBuf; /* array of d32 */ |
214 | | dn = dBuf + nLen; /* array of d32 */ |
215 | | dSqr = dn + nLen; /* array of d32 */ |
216 | | d16Tmp = dSqr + nLen; /* array of d16 */ |
217 | | dTmp = d16Tmp + oddPowSize; |
218 | | |
219 | | for (i = 0; i < odd_ints; ++i) { |
220 | | oddPowers[i] = dTmp; |
221 | | dTmp += oddPowSize; |
222 | | } |
223 | | mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */ |
224 | | |
225 | | /* Make dn and dn0 */ |
226 | | conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen); |
227 | | dn0 = (double)(mmm->n0prime & 0xffff); |
228 | | |
229 | | /* Make dSqr */ |
230 | | conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen); |
231 | | mont_mulf_noconv(mResult, dm1, oddPowers[0], |
232 | | dTmp, dn, MP_DIGITS(modulus), nLen, dn0); |
233 | | conv_i32_to_d32(dSqr, mResult, nLen); |
234 | | |
235 | | for (i = 1; i < odd_ints; ++i) { |
236 | | mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1], |
237 | | dTmp, dn, MP_DIGITS(modulus), nLen, dn0); |
238 | | conv_i32_to_d16(oddPowers[i], mResult, nLen); |
239 | | } |
240 | | |
241 | | s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */ |
242 | | |
243 | | for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
244 | | mp_size smallExp; |
245 | | MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits)); |
246 | | smallExp = (mp_size)res; |
247 | | |
248 | | if (window_bits == 1) { |
249 | | if (!smallExp) { |
250 | | SQR; |
251 | | } else if (smallExp & 1) { |
252 | | SQR; |
253 | | MUL(0); |
254 | | } else { |
255 | | abort(); |
256 | | } |
257 | | } else if (window_bits == 4) { |
258 | | if (!smallExp) { |
259 | | SQR; |
260 | | SQR; |
261 | | SQR; |
262 | | SQR; |
263 | | } else if (smallExp & 1) { |
264 | | SQR; |
265 | | SQR; |
266 | | SQR; |
267 | | SQR; |
268 | | MUL(smallExp / 2); |
269 | | } else if (smallExp & 2) { |
270 | | SQR; |
271 | | SQR; |
272 | | SQR; |
273 | | MUL(smallExp / 4); |
274 | | SQR; |
275 | | } else if (smallExp & 4) { |
276 | | SQR; |
277 | | SQR; |
278 | | MUL(smallExp / 8); |
279 | | SQR; |
280 | | SQR; |
281 | | } else if (smallExp & 8) { |
282 | | SQR; |
283 | | MUL(smallExp / 16); |
284 | | SQR; |
285 | | SQR; |
286 | | SQR; |
287 | | } else { |
288 | | abort(); |
289 | | } |
290 | | } else if (window_bits == 5) { |
291 | | if (!smallExp) { |
292 | | SQR; |
293 | | SQR; |
294 | | SQR; |
295 | | SQR; |
296 | | SQR; |
297 | | } else if (smallExp & 1) { |
298 | | SQR; |
299 | | SQR; |
300 | | SQR; |
301 | | SQR; |
302 | | SQR; |
303 | | MUL(smallExp / 2); |
304 | | } else if (smallExp & 2) { |
305 | | SQR; |
306 | | SQR; |
307 | | SQR; |
308 | | SQR; |
309 | | MUL(smallExp / 4); |
310 | | SQR; |
311 | | } else if (smallExp & 4) { |
312 | | SQR; |
313 | | SQR; |
314 | | SQR; |
315 | | MUL(smallExp / 8); |
316 | | SQR; |
317 | | SQR; |
318 | | } else if (smallExp & 8) { |
319 | | SQR; |
320 | | SQR; |
321 | | MUL(smallExp / 16); |
322 | | SQR; |
323 | | SQR; |
324 | | SQR; |
325 | | } else if (smallExp & 0x10) { |
326 | | SQR; |
327 | | MUL(smallExp / 32); |
328 | | SQR; |
329 | | SQR; |
330 | | SQR; |
331 | | SQR; |
332 | | } else { |
333 | | abort(); |
334 | | } |
335 | | } else if (window_bits == 6) { |
336 | | if (!smallExp) { |
337 | | SQR; |
338 | | SQR; |
339 | | SQR; |
340 | | SQR; |
341 | | SQR; |
342 | | SQR; |
343 | | } else if (smallExp & 1) { |
344 | | SQR; |
345 | | SQR; |
346 | | SQR; |
347 | | SQR; |
348 | | SQR; |
349 | | SQR; |
350 | | MUL(smallExp / 2); |
351 | | } else if (smallExp & 2) { |
352 | | SQR; |
353 | | SQR; |
354 | | SQR; |
355 | | SQR; |
356 | | SQR; |
357 | | MUL(smallExp / 4); |
358 | | SQR; |
359 | | } else if (smallExp & 4) { |
360 | | SQR; |
361 | | SQR; |
362 | | SQR; |
363 | | SQR; |
364 | | MUL(smallExp / 8); |
365 | | SQR; |
366 | | SQR; |
367 | | } else if (smallExp & 8) { |
368 | | SQR; |
369 | | SQR; |
370 | | SQR; |
371 | | MUL(smallExp / 16); |
372 | | SQR; |
373 | | SQR; |
374 | | SQR; |
375 | | } else if (smallExp & 0x10) { |
376 | | SQR; |
377 | | SQR; |
378 | | MUL(smallExp / 32); |
379 | | SQR; |
380 | | SQR; |
381 | | SQR; |
382 | | SQR; |
383 | | } else if (smallExp & 0x20) { |
384 | | SQR; |
385 | | MUL(smallExp / 64); |
386 | | SQR; |
387 | | SQR; |
388 | | SQR; |
389 | | SQR; |
390 | | SQR; |
391 | | } else { |
392 | | abort(); |
393 | | } |
394 | | } else { |
395 | | abort(); |
396 | | } |
397 | | } |
398 | | |
399 | | s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */ |
400 | | |
401 | | res = s_mp_redc(&accum1, mmm); |
402 | | mp_exch(&accum1, result); |
403 | | |
404 | | CLEANUP: |
405 | | mp_clear(&accum1); |
406 | | if (dBuf) { |
407 | | if (dSize) |
408 | | memset(dBuf, 0, dSize); |
409 | | free(dBuf); |
410 | | } |
411 | | |
412 | | return res; |
413 | | } |
414 | | #undef SQR |
415 | | #undef MUL |
416 | | #endif |
417 | | |
418 | | #define SQR(a, b) \ |
419 | 0 | MP_CHECKOK(mp_sqr(a, b)); \ |
420 | 0 | MP_CHECKOK(s_mp_redc(b, mmm)) |
421 | | |
422 | | #if defined(MP_MONT_USE_MP_MUL) |
423 | | #define MUL(x, a, b) \ |
424 | | MP_CHECKOK(mp_mul(a, oddPowers + (x), b)); \ |
425 | | MP_CHECKOK(s_mp_redc(b, mmm)) |
426 | | #else |
427 | | #define MUL(x, a, b) \ |
428 | 0 | MP_CHECKOK(s_mp_mul_mont(a, oddPowers + (x), b, mmm)) |
429 | | #endif |
430 | | |
431 | | #define SWAPPA \ |
432 | 0 | ptmp = pa1; \ |
433 | 0 | pa1 = pa2; \ |
434 | 0 | pa2 = ptmp |
435 | | |
436 | | /* Do modular exponentiation using integer multiply code. */ |
437 | | mp_err |
438 | | mp_exptmod_i(const mp_int *montBase, |
439 | | const mp_int *exponent, |
440 | | const mp_int *modulus, |
441 | | mp_int *result, |
442 | | mp_mont_modulus *mmm, |
443 | | int nLen, |
444 | | mp_size bits_in_exponent, |
445 | | mp_size window_bits, |
446 | | mp_size odd_ints) |
447 | 0 | { |
448 | 0 | mp_int *pa1, *pa2, *ptmp; |
449 | 0 | mp_size i; |
450 | 0 | mp_err res; |
451 | 0 | int expOff; |
452 | 0 | mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS]; |
453 | 0 |
|
454 | 0 | /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */ |
455 | 0 | /* oddPowers[i] = base ** (2*i + 1); */ |
456 | 0 |
|
457 | 0 | MP_DIGITS(&accum1) = 0; |
458 | 0 | MP_DIGITS(&accum2) = 0; |
459 | 0 | MP_DIGITS(&power2) = 0; |
460 | 0 | for (i = 0; i < MAX_ODD_INTS; ++i) { |
461 | 0 | MP_DIGITS(oddPowers + i) = 0; |
462 | 0 | } |
463 | 0 |
|
464 | 0 | MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2)); |
465 | 0 | MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2)); |
466 | 0 |
|
467 | 0 | MP_CHECKOK(mp_init_copy(&oddPowers[0], montBase)); |
468 | 0 |
|
469 | 0 | MP_CHECKOK(mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2)); |
470 | 0 | MP_CHECKOK(mp_sqr(montBase, &power2)); /* power2 = montBase ** 2 */ |
471 | 0 | MP_CHECKOK(s_mp_redc(&power2, mmm)); |
472 | 0 |
|
473 | 0 | for (i = 1; i < odd_ints; ++i) { |
474 | 0 | MP_CHECKOK(mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2)); |
475 | 0 | MP_CHECKOK(mp_mul(oddPowers + (i - 1), &power2, oddPowers + i)); |
476 | 0 | MP_CHECKOK(s_mp_redc(oddPowers + i, mmm)); |
477 | 0 | } |
478 | 0 |
|
479 | 0 | /* set accumulator to montgomery residue of 1 */ |
480 | 0 | mp_set(&accum1, 1); |
481 | 0 | MP_CHECKOK(s_mp_to_mont(&accum1, mmm, &accum1)); |
482 | 0 | pa1 = &accum1; |
483 | 0 | pa2 = &accum2; |
484 | 0 |
|
485 | 0 | for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { |
486 | 0 | mp_size smallExp; |
487 | 0 | MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits)); |
488 | 0 | smallExp = (mp_size)res; |
489 | 0 |
|
490 | 0 | if (window_bits == 1) { |
491 | 0 | if (!smallExp) { |
492 | 0 | SQR(pa1, pa2); |
493 | 0 | SWAPPA; |
494 | 0 | } else if (smallExp & 1) { |
495 | 0 | SQR(pa1, pa2); |
496 | 0 | MUL(0, pa2, pa1); |
497 | 0 | } else { |
498 | 0 | abort(); |
499 | 0 | } |
500 | 0 | } else if (window_bits == 4) { |
501 | 0 | if (!smallExp) { |
502 | 0 | SQR(pa1, pa2); |
503 | 0 | SQR(pa2, pa1); |
504 | 0 | SQR(pa1, pa2); |
505 | 0 | SQR(pa2, pa1); |
506 | 0 | } else if (smallExp & 1) { |
507 | 0 | SQR(pa1, pa2); |
508 | 0 | SQR(pa2, pa1); |
509 | 0 | SQR(pa1, pa2); |
510 | 0 | SQR(pa2, pa1); |
511 | 0 | MUL(smallExp / 2, pa1, pa2); |
512 | 0 | SWAPPA; |
513 | 0 | } else if (smallExp & 2) { |
514 | 0 | SQR(pa1, pa2); |
515 | 0 | SQR(pa2, pa1); |
516 | 0 | SQR(pa1, pa2); |
517 | 0 | MUL(smallExp / 4, pa2, pa1); |
518 | 0 | SQR(pa1, pa2); |
519 | 0 | SWAPPA; |
520 | 0 | } else if (smallExp & 4) { |
521 | 0 | SQR(pa1, pa2); |
522 | 0 | SQR(pa2, pa1); |
523 | 0 | MUL(smallExp / 8, pa1, pa2); |
524 | 0 | SQR(pa2, pa1); |
525 | 0 | SQR(pa1, pa2); |
526 | 0 | SWAPPA; |
527 | 0 | } else if (smallExp & 8) { |
528 | 0 | SQR(pa1, pa2); |
529 | 0 | MUL(smallExp / 16, pa2, pa1); |
530 | 0 | SQR(pa1, pa2); |
531 | 0 | SQR(pa2, pa1); |
532 | 0 | SQR(pa1, pa2); |
533 | 0 | SWAPPA; |
534 | 0 | } else { |
535 | 0 | abort(); |
536 | 0 | } |
537 | 0 | } else if (window_bits == 5) { |
538 | 0 | if (!smallExp) { |
539 | 0 | SQR(pa1, pa2); |
540 | 0 | SQR(pa2, pa1); |
541 | 0 | SQR(pa1, pa2); |
542 | 0 | SQR(pa2, pa1); |
543 | 0 | SQR(pa1, pa2); |
544 | 0 | SWAPPA; |
545 | 0 | } else if (smallExp & 1) { |
546 | 0 | SQR(pa1, pa2); |
547 | 0 | SQR(pa2, pa1); |
548 | 0 | SQR(pa1, pa2); |
549 | 0 | SQR(pa2, pa1); |
550 | 0 | SQR(pa1, pa2); |
551 | 0 | MUL(smallExp / 2, pa2, pa1); |
552 | 0 | } else if (smallExp & 2) { |
553 | 0 | SQR(pa1, pa2); |
554 | 0 | SQR(pa2, pa1); |
555 | 0 | SQR(pa1, pa2); |
556 | 0 | SQR(pa2, pa1); |
557 | 0 | MUL(smallExp / 4, pa1, pa2); |
558 | 0 | SQR(pa2, pa1); |
559 | 0 | } else if (smallExp & 4) { |
560 | 0 | SQR(pa1, pa2); |
561 | 0 | SQR(pa2, pa1); |
562 | 0 | SQR(pa1, pa2); |
563 | 0 | MUL(smallExp / 8, pa2, pa1); |
564 | 0 | SQR(pa1, pa2); |
565 | 0 | SQR(pa2, pa1); |
566 | 0 | } else if (smallExp & 8) { |
567 | 0 | SQR(pa1, pa2); |
568 | 0 | SQR(pa2, pa1); |
569 | 0 | MUL(smallExp / 16, pa1, pa2); |
570 | 0 | SQR(pa2, pa1); |
571 | 0 | SQR(pa1, pa2); |
572 | 0 | SQR(pa2, pa1); |
573 | 0 | } else if (smallExp & 0x10) { |
574 | 0 | SQR(pa1, pa2); |
575 | 0 | MUL(smallExp / 32, pa2, pa1); |
576 | 0 | SQR(pa1, pa2); |
577 | 0 | SQR(pa2, pa1); |
578 | 0 | SQR(pa1, pa2); |
579 | 0 | SQR(pa2, pa1); |
580 | 0 | } else { |
581 | 0 | abort(); |
582 | 0 | } |
583 | 0 | } else if (window_bits == 6) { |
584 | 0 | if (!smallExp) { |
585 | 0 | SQR(pa1, pa2); |
586 | 0 | SQR(pa2, pa1); |
587 | 0 | SQR(pa1, pa2); |
588 | 0 | SQR(pa2, pa1); |
589 | 0 | SQR(pa1, pa2); |
590 | 0 | SQR(pa2, pa1); |
591 | 0 | } else if (smallExp & 1) { |
592 | 0 | SQR(pa1, pa2); |
593 | 0 | SQR(pa2, pa1); |
594 | 0 | SQR(pa1, pa2); |
595 | 0 | SQR(pa2, pa1); |
596 | 0 | SQR(pa1, pa2); |
597 | 0 | SQR(pa2, pa1); |
598 | 0 | MUL(smallExp / 2, pa1, pa2); |
599 | 0 | SWAPPA; |
600 | 0 | } else if (smallExp & 2) { |
601 | 0 | SQR(pa1, pa2); |
602 | 0 | SQR(pa2, pa1); |
603 | 0 | SQR(pa1, pa2); |
604 | 0 | SQR(pa2, pa1); |
605 | 0 | SQR(pa1, pa2); |
606 | 0 | MUL(smallExp / 4, pa2, pa1); |
607 | 0 | SQR(pa1, pa2); |
608 | 0 | SWAPPA; |
609 | 0 | } else if (smallExp & 4) { |
610 | 0 | SQR(pa1, pa2); |
611 | 0 | SQR(pa2, pa1); |
612 | 0 | SQR(pa1, pa2); |
613 | 0 | SQR(pa2, pa1); |
614 | 0 | MUL(smallExp / 8, pa1, pa2); |
615 | 0 | SQR(pa2, pa1); |
616 | 0 | SQR(pa1, pa2); |
617 | 0 | SWAPPA; |
618 | 0 | } else if (smallExp & 8) { |
619 | 0 | SQR(pa1, pa2); |
620 | 0 | SQR(pa2, pa1); |
621 | 0 | SQR(pa1, pa2); |
622 | 0 | MUL(smallExp / 16, pa2, pa1); |
623 | 0 | SQR(pa1, pa2); |
624 | 0 | SQR(pa2, pa1); |
625 | 0 | SQR(pa1, pa2); |
626 | 0 | SWAPPA; |
627 | 0 | } else if (smallExp & 0x10) { |
628 | 0 | SQR(pa1, pa2); |
629 | 0 | SQR(pa2, pa1); |
630 | 0 | MUL(smallExp / 32, pa1, pa2); |
631 | 0 | SQR(pa2, pa1); |
632 | 0 | SQR(pa1, pa2); |
633 | 0 | SQR(pa2, pa1); |
634 | 0 | SQR(pa1, pa2); |
635 | 0 | SWAPPA; |
636 | 0 | } else if (smallExp & 0x20) { |
637 | 0 | SQR(pa1, pa2); |
638 | 0 | MUL(smallExp / 64, pa2, pa1); |
639 | 0 | SQR(pa1, pa2); |
640 | 0 | SQR(pa2, pa1); |
641 | 0 | SQR(pa1, pa2); |
642 | 0 | SQR(pa2, pa1); |
643 | 0 | SQR(pa1, pa2); |
644 | 0 | SWAPPA; |
645 | 0 | } else { |
646 | 0 | abort(); |
647 | 0 | } |
648 | 0 | } else { |
649 | 0 | abort(); |
650 | 0 | } |
651 | 0 | } |
652 | 0 |
|
653 | 0 | res = s_mp_redc(pa1, mmm); |
654 | 0 | mp_exch(pa1, result); |
655 | 0 |
|
656 | 0 | CLEANUP: |
657 | 0 | mp_clear(&accum1); |
658 | 0 | mp_clear(&accum2); |
659 | 0 | mp_clear(&power2); |
660 | 0 | for (i = 0; i < odd_ints; ++i) { |
661 | 0 | mp_clear(oddPowers + i); |
662 | 0 | } |
663 | 0 | return res; |
664 | 0 | } |
665 | | #undef SQR |
666 | | #undef MUL |
667 | | |
668 | | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
669 | | unsigned int mp_using_cache_safe_exp = 1; |
670 | | #endif |
671 | | |
672 | | mp_err |
673 | | mp_set_safe_modexp(int value) |
674 | 0 | { |
675 | 0 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
676 | 0 | mp_using_cache_safe_exp = value; |
677 | 0 | return MP_OKAY; |
678 | | #else |
679 | | if (value == 0) { |
680 | | return MP_OKAY; |
681 | | } |
682 | | return MP_BADARG; |
683 | | #endif |
684 | | } |
685 | | |
686 | | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
687 | 0 | #define WEAVE_WORD_SIZE 4 |
688 | | |
689 | | /* |
690 | | * mpi_to_weave takes an array of bignums, a matrix in which each bignum |
691 | | * occupies all the columns of a row, and transposes it into a matrix in |
692 | | * which each bignum occupies a column of every row. The first row of the |
693 | | * input matrix becomes the first column of the output matrix. The n'th |
694 | | * row of input becomes the n'th column of output. The input data is said |
695 | | * to be "interleaved" or "woven" into the output matrix. |
696 | | * |
697 | | * The array of bignums is left in this woven form. Each time a single |
698 | | * bignum value is needed, it is recreated by fetching the n'th column, |
699 | | * forming a single row which is the new bignum. |
700 | | * |
701 | | * The purpose of this interleaving is make it impossible to determine which |
702 | | * of the bignums is being used in any one operation by examining the pattern |
703 | | * of cache misses. |
704 | | * |
705 | | * The weaving function does not transpose the entire input matrix in one call. |
706 | | * It transposes 4 rows of mp_ints into their respective columns of output. |
707 | | * |
708 | | * This implementation treats each mp_int bignum as an array of mp_digits, |
709 | | * It stores those bytes as a column of mp_digits in the output matrix. It |
710 | | * doesn't care if the machine uses big-endian or little-endian byte ordering |
711 | | * within mp_digits. |
712 | | * |
713 | | * "bignums" is an array of mp_ints. |
714 | | * It points to four rows, four mp_ints, a subset of a larger array of mp_ints. |
715 | | * |
716 | | * "weaved" is the weaved output matrix. |
717 | | * The first byte of bignums[0] is stored in weaved[0]. |
718 | | * |
719 | | * "nBignums" is the total number of bignums in the array of which "bignums" |
720 | | * is a part. |
721 | | * |
722 | | * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array. |
723 | | * mp_ints that use less than nDigits digits are logically padded with zeros |
724 | | * while being stored in the weaved array. |
725 | | */ |
726 | | mp_err mpi_to_weave(const mp_int *bignums, |
727 | | mp_digit *weaved, |
728 | | mp_size nDigits, /* in each mp_int of input */ |
729 | | mp_size nBignums) /* in the entire source array */ |
730 | 0 | { |
731 | 0 | mp_size i; |
732 | 0 | mp_digit *endDest = weaved + (nDigits * nBignums); |
733 | 0 |
|
734 | 0 | for (i = 0; i < WEAVE_WORD_SIZE; i++) { |
735 | 0 | mp_size used = MP_USED(&bignums[i]); |
736 | 0 | mp_digit *pSrc = MP_DIGITS(&bignums[i]); |
737 | 0 | mp_digit *endSrc = pSrc + used; |
738 | 0 | mp_digit *pDest = weaved + i; |
739 | 0 |
|
740 | 0 | ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG); |
741 | 0 | ARGCHK(used <= nDigits, MP_BADARG); |
742 | 0 |
|
743 | 0 | for (; pSrc < endSrc; pSrc++) { |
744 | 0 | *pDest = *pSrc; |
745 | 0 | pDest += nBignums; |
746 | 0 | } |
747 | 0 | while (pDest < endDest) { |
748 | 0 | *pDest = 0; |
749 | 0 | pDest += nBignums; |
750 | 0 | } |
751 | 0 | } |
752 | 0 |
|
753 | 0 | return MP_OKAY; |
754 | 0 | } |
755 | | |
756 | | /* |
757 | | * These functions return 0xffffffff if the output is true, and 0 otherwise. |
758 | | */ |
759 | 0 | #define CONST_TIME_MSB(x) (0L - ((x) >> (8 * sizeof(x) - 1))) |
760 | 0 | #define CONST_TIME_EQ_Z(x) CONST_TIME_MSB(~(x) & ((x)-1)) |
761 | 0 | #define CONST_TIME_EQ(a, b) CONST_TIME_EQ_Z((a) ^ (b)) |
762 | | |
763 | | /* Reverse the operation above for one mp_int. |
764 | | * Reconstruct one mp_int from its column in the weaved array. |
765 | | * Every read accesses every element of the weaved array, in order to |
766 | | * avoid timing attacks based on patterns of memory accesses. |
767 | | */ |
768 | | mp_err weave_to_mpi(mp_int *a, /* out, result */ |
769 | | const mp_digit *weaved, /* in, byte matrix */ |
770 | | mp_size index, /* which column to read */ |
771 | | mp_size nDigits, /* number of mp_digits in each bignum */ |
772 | | mp_size nBignums) /* width of the matrix */ |
773 | 0 | { |
774 | 0 | /* these are indices, but need to be the same size as mp_digit |
775 | 0 | * because of the CONST_TIME operations */ |
776 | 0 | mp_digit i, j; |
777 | 0 | mp_digit d; |
778 | 0 | mp_digit *pDest = MP_DIGITS(a); |
779 | 0 |
|
780 | 0 | MP_SIGN(a) = MP_ZPOS; |
781 | 0 | MP_USED(a) = nDigits; |
782 | 0 |
|
783 | 0 | assert(weaved != NULL); |
784 | 0 |
|
785 | 0 | /* Fetch the proper column in constant time, indexing over the whole array */ |
786 | 0 | for (i = 0; i < nDigits; ++i) { |
787 | 0 | d = 0; |
788 | 0 | for (j = 0; j < nBignums; ++j) { |
789 | 0 | d |= weaved[i * nBignums + j] & CONST_TIME_EQ(j, index); |
790 | 0 | } |
791 | 0 | pDest[i] = d; |
792 | 0 | } |
793 | 0 |
|
794 | 0 | s_mp_clamp(a); |
795 | 0 | return MP_OKAY; |
796 | 0 | } |
797 | | |
798 | | #define SQR(a, b) \ |
799 | 0 | MP_CHECKOK(mp_sqr(a, b)); \ |
800 | 0 | MP_CHECKOK(s_mp_redc(b, mmm)) |
801 | | |
802 | | #if defined(MP_MONT_USE_MP_MUL) |
803 | | #define MUL_NOWEAVE(x, a, b) \ |
804 | | MP_CHECKOK(mp_mul(a, x, b)); \ |
805 | | MP_CHECKOK(s_mp_redc(b, mmm)) |
806 | | #else |
807 | | #define MUL_NOWEAVE(x, a, b) \ |
808 | 0 | MP_CHECKOK(s_mp_mul_mont(a, x, b, mmm)) |
809 | | #endif |
810 | | |
811 | | #define MUL(x, a, b) \ |
812 | 0 | MP_CHECKOK(weave_to_mpi(&tmp, powers, (x), nLen, num_powers)); \ |
813 | 0 | MUL_NOWEAVE(&tmp, a, b) |
814 | | |
815 | | #define SWAPPA \ |
816 | 0 | ptmp = pa1; \ |
817 | 0 | pa1 = pa2; \ |
818 | 0 | pa2 = ptmp |
819 | 0 | #define MP_ALIGN(x, y) ((((ptrdiff_t)(x)) + ((y)-1)) & (((ptrdiff_t)0) - (y))) |
820 | | |
821 | | /* Do modular exponentiation using integer multiply code. */ |
822 | | mp_err |
823 | | mp_exptmod_safe_i(const mp_int *montBase, |
824 | | const mp_int *exponent, |
825 | | const mp_int *modulus, |
826 | | mp_int *result, |
827 | | mp_mont_modulus *mmm, |
828 | | int nLen, |
829 | | mp_size bits_in_exponent, |
830 | | mp_size window_bits, |
831 | | mp_size num_powers) |
832 | 0 | { |
833 | 0 | mp_int *pa1, *pa2, *ptmp; |
834 | 0 | mp_size i; |
835 | 0 | mp_size first_window; |
836 | 0 | mp_err res; |
837 | 0 | int expOff; |
838 | 0 | mp_int accum1, accum2, accum[WEAVE_WORD_SIZE]; |
839 | 0 | mp_int tmp; |
840 | 0 | mp_digit *powersArray = NULL; |
841 | 0 | mp_digit *powers = NULL; |
842 | 0 |
|
843 | 0 | MP_DIGITS(&accum1) = 0; |
844 | 0 | MP_DIGITS(&accum2) = 0; |
845 | 0 | MP_DIGITS(&accum[0]) = 0; |
846 | 0 | MP_DIGITS(&accum[1]) = 0; |
847 | 0 | MP_DIGITS(&accum[2]) = 0; |
848 | 0 | MP_DIGITS(&accum[3]) = 0; |
849 | 0 | MP_DIGITS(&tmp) = 0; |
850 | 0 |
|
851 | 0 | /* grab the first window value. This allows us to preload accumulator1 |
852 | 0 | * and save a conversion, some squares and a multiple*/ |
853 | 0 | MP_CHECKOK(mpl_get_bits(exponent, |
854 | 0 | bits_in_exponent - window_bits, window_bits)); |
855 | 0 | first_window = (mp_size)res; |
856 | 0 |
|
857 | 0 | MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2)); |
858 | 0 | MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2)); |
859 | 0 |
|
860 | 0 | /* build the first WEAVE_WORD powers inline */ |
861 | 0 | /* if WEAVE_WORD_SIZE is not 4, this code will have to change */ |
862 | 0 | if (num_powers > 2) { |
863 | 0 | MP_CHECKOK(mp_init_size(&accum[0], 3 * nLen + 2)); |
864 | 0 | MP_CHECKOK(mp_init_size(&accum[1], 3 * nLen + 2)); |
865 | 0 | MP_CHECKOK(mp_init_size(&accum[2], 3 * nLen + 2)); |
866 | 0 | MP_CHECKOK(mp_init_size(&accum[3], 3 * nLen + 2)); |
867 | 0 | mp_set(&accum[0], 1); |
868 | 0 | MP_CHECKOK(s_mp_to_mont(&accum[0], mmm, &accum[0])); |
869 | 0 | MP_CHECKOK(mp_copy(montBase, &accum[1])); |
870 | 0 | SQR(montBase, &accum[2]); |
871 | 0 | MUL_NOWEAVE(montBase, &accum[2], &accum[3]); |
872 | 0 | powersArray = (mp_digit *)malloc(num_powers * (nLen * sizeof(mp_digit) + 1)); |
873 | 0 | if (!powersArray) { |
874 | 0 | res = MP_MEM; |
875 | 0 | goto CLEANUP; |
876 | 0 | } |
877 | 0 | /* powers[i] = base ** (i); */ |
878 | 0 | powers = (mp_digit *)MP_ALIGN(powersArray, num_powers); |
879 | 0 | MP_CHECKOK(mpi_to_weave(accum, powers, nLen, num_powers)); |
880 | 0 | if (first_window < 4) { |
881 | 0 | MP_CHECKOK(mp_copy(&accum[first_window], &accum1)); |
882 | 0 | first_window = num_powers; |
883 | 0 | } |
884 | 0 | } else { |
885 | 0 | if (first_window == 0) { |
886 | 0 | mp_set(&accum1, 1); |
887 | 0 | MP_CHECKOK(s_mp_to_mont(&accum1, mmm, &accum1)); |
888 | 0 | } else { |
889 | 0 | /* assert first_window == 1? */ |
890 | 0 | MP_CHECKOK(mp_copy(montBase, &accum1)); |
891 | 0 | } |
892 | 0 | } |
893 | 0 |
|
894 | 0 | /* |
895 | 0 | * calculate all the powers in the powers array. |
896 | 0 | * this adds 2**(k-1)-2 square operations over just calculating the |
897 | 0 | * odd powers where k is the window size in the two other mp_modexpt |
898 | 0 | * implementations in this file. We will get some of that |
899 | 0 | * back by not needing the first 'k' squares and one multiply for the |
900 | 0 | * first window. |
901 | 0 | * Given the value of 4 for WEAVE_WORD_SIZE, this loop will only execute if |
902 | 0 | * num_powers > 2, in which case powers will have been allocated. |
903 | 0 | */ |
904 | 0 | for (i = WEAVE_WORD_SIZE; i < num_powers; i++) { |
905 | 0 | int acc_index = i & (WEAVE_WORD_SIZE - 1); /* i % WEAVE_WORD_SIZE */ |
906 | 0 | if (i & 1) { |
907 | 0 | MUL_NOWEAVE(montBase, &accum[acc_index - 1], &accum[acc_index]); |
908 | 0 | /* we've filled the array do our 'per array' processing */ |
909 | 0 | if (acc_index == (WEAVE_WORD_SIZE - 1)) { |
910 | 0 | MP_CHECKOK(mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE - 1), |
911 | 0 | nLen, num_powers)); |
912 | 0 |
|
913 | 0 | if (first_window <= i) { |
914 | 0 | MP_CHECKOK(mp_copy(&accum[first_window & (WEAVE_WORD_SIZE - 1)], |
915 | 0 | &accum1)); |
916 | 0 | first_window = num_powers; |
917 | 0 | } |
918 | 0 | } |
919 | 0 | } else { |
920 | 0 | /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source |
921 | 0 | * and target are the same so we need to copy.. After that, the |
922 | 0 | * value is overwritten, so we need to fetch it from the stored |
923 | 0 | * weave array */ |
924 | 0 | if (i > 2 * WEAVE_WORD_SIZE) { |
925 | 0 | MP_CHECKOK(weave_to_mpi(&accum2, powers, i / 2, nLen, num_powers)); |
926 | 0 | SQR(&accum2, &accum[acc_index]); |
927 | 0 | } else { |
928 | 0 | int half_power_index = (i / 2) & (WEAVE_WORD_SIZE - 1); |
929 | 0 | if (half_power_index == acc_index) { |
930 | 0 | /* copy is cheaper than weave_to_mpi */ |
931 | 0 | MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2)); |
932 | 0 | SQR(&accum2, &accum[acc_index]); |
933 | 0 | } else { |
934 | 0 | SQR(&accum[half_power_index], &accum[acc_index]); |
935 | 0 | } |
936 | 0 | } |
937 | 0 | } |
938 | 0 | } |
939 | 0 | /* if the accum1 isn't set, Then there is something wrong with our logic |
940 | 0 | * above and is an internal programming error. |
941 | 0 | */ |
942 | | #if MP_ARGCHK == 2 |
943 | | assert(MP_USED(&accum1) != 0); |
944 | | #endif |
945 | |
|
946 | 0 | /* set accumulator to montgomery residue of 1 */ |
947 | 0 | pa1 = &accum1; |
948 | 0 | pa2 = &accum2; |
949 | 0 |
|
950 | 0 | /* tmp is not used if window_bits == 1. */ |
951 | 0 | if (window_bits != 1) { |
952 | 0 | MP_CHECKOK(mp_init_size(&tmp, 3 * nLen + 2)); |
953 | 0 | } |
954 | 0 |
|
955 | 0 | for (expOff = bits_in_exponent - window_bits * 2; expOff >= 0; expOff -= window_bits) { |
956 | 0 | mp_size smallExp; |
957 | 0 | MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits)); |
958 | 0 | smallExp = (mp_size)res; |
959 | 0 |
|
960 | 0 | /* handle unroll the loops */ |
961 | 0 | switch (window_bits) { |
962 | 0 | case 1: |
963 | 0 | if (!smallExp) { |
964 | 0 | SQR(pa1, pa2); |
965 | 0 | SWAPPA; |
966 | 0 | } else if (smallExp & 1) { |
967 | 0 | SQR(pa1, pa2); |
968 | 0 | MUL_NOWEAVE(montBase, pa2, pa1); |
969 | 0 | } else { |
970 | 0 | abort(); |
971 | 0 | } |
972 | 0 | break; |
973 | 0 | case 6: |
974 | 0 | SQR(pa1, pa2); |
975 | 0 | SQR(pa2, pa1); |
976 | 0 | /* fall through */ |
977 | 0 | case 4: |
978 | 0 | SQR(pa1, pa2); |
979 | 0 | SQR(pa2, pa1); |
980 | 0 | SQR(pa1, pa2); |
981 | 0 | SQR(pa2, pa1); |
982 | 0 | MUL(smallExp, pa1, pa2); |
983 | 0 | SWAPPA; |
984 | 0 | break; |
985 | 0 | case 5: |
986 | 0 | SQR(pa1, pa2); |
987 | 0 | SQR(pa2, pa1); |
988 | 0 | SQR(pa1, pa2); |
989 | 0 | SQR(pa2, pa1); |
990 | 0 | SQR(pa1, pa2); |
991 | 0 | MUL(smallExp, pa2, pa1); |
992 | 0 | break; |
993 | 0 | default: |
994 | 0 | abort(); /* could do a loop? */ |
995 | 0 | } |
996 | 0 | } |
997 | 0 |
|
998 | 0 | res = s_mp_redc(pa1, mmm); |
999 | 0 | mp_exch(pa1, result); |
1000 | 0 |
|
1001 | 0 | CLEANUP: |
1002 | 0 | mp_clear(&accum1); |
1003 | 0 | mp_clear(&accum2); |
1004 | 0 | mp_clear(&accum[0]); |
1005 | 0 | mp_clear(&accum[1]); |
1006 | 0 | mp_clear(&accum[2]); |
1007 | 0 | mp_clear(&accum[3]); |
1008 | 0 | mp_clear(&tmp); |
1009 | 0 | /* PORT_Memset(powers,0,num_powers*nLen*sizeof(mp_digit)); */ |
1010 | 0 | free(powersArray); |
1011 | 0 | return res; |
1012 | 0 | } |
1013 | | #undef SQR |
1014 | | #undef MUL |
1015 | | #endif |
1016 | | |
1017 | | mp_err |
1018 | | mp_exptmod(const mp_int *inBase, const mp_int *exponent, |
1019 | | const mp_int *modulus, mp_int *result) |
1020 | 0 | { |
1021 | 0 | const mp_int *base; |
1022 | 0 | mp_size bits_in_exponent, i, window_bits, odd_ints; |
1023 | 0 | mp_err res; |
1024 | 0 | int nLen; |
1025 | 0 | mp_int montBase, goodBase; |
1026 | 0 | mp_mont_modulus mmm; |
1027 | 0 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
1028 | 0 | static unsigned int max_window_bits; |
1029 | 0 | #endif |
1030 | 0 |
|
1031 | 0 | /* function for computing n0prime only works if n0 is odd */ |
1032 | 0 | if (!mp_isodd(modulus)) |
1033 | 0 | return s_mp_exptmod(inBase, exponent, modulus, result); |
1034 | 0 | |
1035 | 0 | MP_DIGITS(&montBase) = 0; |
1036 | 0 | MP_DIGITS(&goodBase) = 0; |
1037 | 0 |
|
1038 | 0 | if (mp_cmp(inBase, modulus) < 0) { |
1039 | 0 | base = inBase; |
1040 | 0 | } else { |
1041 | 0 | MP_CHECKOK(mp_init(&goodBase)); |
1042 | 0 | base = &goodBase; |
1043 | 0 | MP_CHECKOK(mp_mod(inBase, modulus, &goodBase)); |
1044 | 0 | } |
1045 | 0 |
|
1046 | 0 | nLen = MP_USED(modulus); |
1047 | 0 | MP_CHECKOK(mp_init_size(&montBase, 2 * nLen + 2)); |
1048 | 0 |
|
1049 | 0 | mmm.N = *modulus; /* a copy of the mp_int struct */ |
1050 | 0 |
|
1051 | 0 | /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX |
1052 | 0 | ** where n0 = least significant mp_digit of N, the modulus. |
1053 | 0 | */ |
1054 | 0 | mmm.n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(modulus, 0)); |
1055 | 0 |
|
1056 | 0 | MP_CHECKOK(s_mp_to_mont(base, &mmm, &montBase)); |
1057 | 0 |
|
1058 | 0 | bits_in_exponent = mpl_significant_bits(exponent); |
1059 | 0 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
1060 | 0 | if (mp_using_cache_safe_exp) { |
1061 | 0 | if (bits_in_exponent > 780) |
1062 | 0 | window_bits = 6; |
1063 | 0 | else if (bits_in_exponent > 256) |
1064 | 0 | window_bits = 5; |
1065 | 0 | else if (bits_in_exponent > 20) |
1066 | 0 | window_bits = 4; |
1067 | 0 | /* RSA public key exponents are typically under 20 bits (common values |
1068 | 0 | * are: 3, 17, 65537) and a 4-bit window is inefficient |
1069 | 0 | */ |
1070 | 0 | else |
1071 | 0 | window_bits = 1; |
1072 | 0 | } else |
1073 | 0 | #endif |
1074 | 0 | if (bits_in_exponent > 480) |
1075 | 0 | window_bits = 6; |
1076 | 0 | else if (bits_in_exponent > 160) |
1077 | 0 | window_bits = 5; |
1078 | 0 | else if (bits_in_exponent > 20) |
1079 | 0 | window_bits = 4; |
1080 | 0 | /* RSA public key exponents are typically under 20 bits (common values |
1081 | 0 | * are: 3, 17, 65537) and a 4-bit window is inefficient |
1082 | 0 | */ |
1083 | 0 | else |
1084 | 0 | window_bits = 1; |
1085 | 0 |
|
1086 | 0 | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
1087 | 0 | /* |
1088 | 0 | * clamp the window size based on |
1089 | 0 | * the cache line size. |
1090 | 0 | */ |
1091 | 0 | if (!max_window_bits) { |
1092 | 0 | unsigned long cache_size = s_mpi_getProcessorLineSize(); |
1093 | 0 | /* processor has no cache, use 'fast' code always */ |
1094 | 0 | if (cache_size == 0) { |
1095 | 0 | mp_using_cache_safe_exp = 0; |
1096 | 0 | } |
1097 | 0 | if ((cache_size == 0) || (cache_size >= 64)) { |
1098 | 0 | max_window_bits = 6; |
1099 | 0 | } else if (cache_size >= 32) { |
1100 | 0 | max_window_bits = 5; |
1101 | 0 | } else if (cache_size >= 16) { |
1102 | 0 | max_window_bits = 4; |
1103 | 0 | } else |
1104 | 0 | max_window_bits = 1; /* should this be an assert? */ |
1105 | 0 | } |
1106 | 0 |
|
1107 | 0 | /* clamp the window size down before we caclulate bits_in_exponent */ |
1108 | 0 | if (mp_using_cache_safe_exp) { |
1109 | 0 | if (window_bits > max_window_bits) { |
1110 | 0 | window_bits = max_window_bits; |
1111 | 0 | } |
1112 | 0 | } |
1113 | 0 | #endif |
1114 | 0 |
|
1115 | 0 | odd_ints = 1 << (window_bits - 1); |
1116 | 0 | i = bits_in_exponent % window_bits; |
1117 | 0 | if (i != 0) { |
1118 | 0 | bits_in_exponent += window_bits - i; |
1119 | 0 | } |
1120 | 0 |
|
1121 | | #ifdef MP_USING_MONT_MULF |
1122 | | if (mp_using_mont_mulf) { |
1123 | | MP_CHECKOK(s_mp_pad(&montBase, nLen)); |
1124 | | res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, |
1125 | | bits_in_exponent, window_bits, odd_ints); |
1126 | | } else |
1127 | | #endif |
1128 | | #ifdef MP_USING_CACHE_SAFE_MOD_EXP |
1129 | 0 | if (mp_using_cache_safe_exp) { |
1130 | 0 | res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, |
1131 | 0 | bits_in_exponent, window_bits, 1 << window_bits); |
1132 | 0 | } else |
1133 | 0 | #endif |
1134 | 0 | res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, |
1135 | 0 | bits_in_exponent, window_bits, odd_ints); |
1136 | 0 |
|
1137 | 0 | CLEANUP: |
1138 | 0 | mp_clear(&montBase); |
1139 | 0 | mp_clear(&goodBase); |
1140 | 0 | /* Don't mp_clear mmm.N because it is merely a copy of modulus. |
1141 | 0 | ** Just zap it. |
1142 | 0 | */ |
1143 | 0 | memset(&mmm, 0, sizeof mmm); |
1144 | 0 | return res; |
1145 | 0 | } |