/src/mozilla-central/security/nss/lib/freebl/mpi/mpprime.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * mpprime.c |
3 | | * |
4 | | * Utilities for finding and working with prime and pseudo-prime |
5 | | * integers |
6 | | * |
7 | | * This Source Code Form is subject to the terms of the Mozilla Public |
8 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
9 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
10 | | |
11 | | #include "mpi-priv.h" |
12 | | #include "mpprime.h" |
13 | | #include "mplogic.h" |
14 | | #include <stdlib.h> |
15 | | #include <string.h> |
16 | | |
17 | | #define SMALL_TABLE 0 /* determines size of hard-wired prime table */ |
18 | | |
19 | 0 | #define RANDOM() rand() |
20 | | |
21 | | #include "primes.c" /* pull in the prime digit table */ |
22 | | |
23 | | /* |
24 | | Test if any of a given vector of digits divides a. If not, MP_NO |
25 | | is returned; otherwise, MP_YES is returned and 'which' is set to |
26 | | the index of the integer in the vector which divided a. |
27 | | */ |
28 | | mp_err s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which); |
29 | | |
30 | | /* {{{ mpp_divis(a, b) */ |
31 | | |
32 | | /* |
33 | | mpp_divis(a, b) |
34 | | |
35 | | Returns MP_YES if a is divisible by b, or MP_NO if it is not. |
36 | | */ |
37 | | |
38 | | mp_err |
39 | | mpp_divis(mp_int *a, mp_int *b) |
40 | 0 | { |
41 | 0 | mp_err res; |
42 | 0 | mp_int rem; |
43 | 0 |
|
44 | 0 | if ((res = mp_init(&rem)) != MP_OKAY) |
45 | 0 | return res; |
46 | 0 | |
47 | 0 | if ((res = mp_mod(a, b, &rem)) != MP_OKAY) |
48 | 0 | goto CLEANUP; |
49 | 0 | |
50 | 0 | if (mp_cmp_z(&rem) == 0) |
51 | 0 | res = MP_YES; |
52 | 0 | else |
53 | 0 | res = MP_NO; |
54 | 0 |
|
55 | 0 | CLEANUP: |
56 | 0 | mp_clear(&rem); |
57 | 0 | return res; |
58 | 0 |
|
59 | 0 | } /* end mpp_divis() */ |
60 | | |
61 | | /* }}} */ |
62 | | |
63 | | /* {{{ mpp_divis_d(a, d) */ |
64 | | |
65 | | /* |
66 | | mpp_divis_d(a, d) |
67 | | |
68 | | Return MP_YES if a is divisible by d, or MP_NO if it is not. |
69 | | */ |
70 | | |
71 | | mp_err |
72 | | mpp_divis_d(mp_int *a, mp_digit d) |
73 | 0 | { |
74 | 0 | mp_err res; |
75 | 0 | mp_digit rem; |
76 | 0 |
|
77 | 0 | ARGCHK(a != NULL, MP_BADARG); |
78 | 0 |
|
79 | 0 | if (d == 0) |
80 | 0 | return MP_NO; |
81 | 0 | |
82 | 0 | if ((res = mp_mod_d(a, d, &rem)) != MP_OKAY) |
83 | 0 | return res; |
84 | 0 | |
85 | 0 | if (rem == 0) |
86 | 0 | return MP_YES; |
87 | 0 | else |
88 | 0 | return MP_NO; |
89 | 0 |
|
90 | 0 | } /* end mpp_divis_d() */ |
91 | | |
92 | | /* }}} */ |
93 | | |
94 | | /* {{{ mpp_random(a) */ |
95 | | |
96 | | /* |
97 | | mpp_random(a) |
98 | | |
99 | | Assigns a random value to a. This value is generated using the |
100 | | standard C library's rand() function, so it should not be used for |
101 | | cryptographic purposes, but it should be fine for primality testing, |
102 | | since all we really care about there is good statistical properties. |
103 | | |
104 | | As many digits as a currently has are filled with random digits. |
105 | | */ |
106 | | |
107 | | mp_err |
108 | | mpp_random(mp_int *a) |
109 | | |
110 | 0 | { |
111 | 0 | mp_digit next = 0; |
112 | 0 | unsigned int ix, jx; |
113 | 0 |
|
114 | 0 | ARGCHK(a != NULL, MP_BADARG); |
115 | 0 |
|
116 | 0 | for (ix = 0; ix < USED(a); ix++) { |
117 | 0 | for (jx = 0; jx < sizeof(mp_digit); jx++) { |
118 | 0 | next = (next << CHAR_BIT) | (RANDOM() & UCHAR_MAX); |
119 | 0 | } |
120 | 0 | DIGIT(a, ix) = next; |
121 | 0 | } |
122 | 0 |
|
123 | 0 | return MP_OKAY; |
124 | 0 |
|
125 | 0 | } /* end mpp_random() */ |
126 | | |
127 | | /* }}} */ |
128 | | |
129 | | /* {{{ mpp_random_size(a, prec) */ |
130 | | |
131 | | mp_err |
132 | | mpp_random_size(mp_int *a, mp_size prec) |
133 | 0 | { |
134 | 0 | mp_err res; |
135 | 0 |
|
136 | 0 | ARGCHK(a != NULL && prec > 0, MP_BADARG); |
137 | 0 |
|
138 | 0 | if ((res = s_mp_pad(a, prec)) != MP_OKAY) |
139 | 0 | return res; |
140 | 0 | |
141 | 0 | return mpp_random(a); |
142 | 0 |
|
143 | 0 | } /* end mpp_random_size() */ |
144 | | |
145 | | /* }}} */ |
146 | | |
147 | | /* {{{ mpp_divis_vector(a, vec, size, which) */ |
148 | | |
149 | | /* |
150 | | mpp_divis_vector(a, vec, size, which) |
151 | | |
152 | | Determines if a is divisible by any of the 'size' digits in vec. |
153 | | Returns MP_YES and sets 'which' to the index of the offending digit, |
154 | | if it is; returns MP_NO if it is not. |
155 | | */ |
156 | | |
157 | | mp_err |
158 | | mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which) |
159 | 0 | { |
160 | 0 | ARGCHK(a != NULL && vec != NULL && size > 0, MP_BADARG); |
161 | 0 |
|
162 | 0 | return s_mpp_divp(a, vec, size, which); |
163 | 0 |
|
164 | 0 | } /* end mpp_divis_vector() */ |
165 | | |
166 | | /* }}} */ |
167 | | |
168 | | /* {{{ mpp_divis_primes(a, np) */ |
169 | | |
170 | | /* |
171 | | mpp_divis_primes(a, np) |
172 | | |
173 | | Test whether a is divisible by any of the first 'np' primes. If it |
174 | | is, returns MP_YES and sets *np to the value of the digit that did |
175 | | it. If not, returns MP_NO. |
176 | | */ |
177 | | mp_err |
178 | | mpp_divis_primes(mp_int *a, mp_digit *np) |
179 | 0 | { |
180 | 0 | int size, which; |
181 | 0 | mp_err res; |
182 | 0 |
|
183 | 0 | ARGCHK(a != NULL && np != NULL, MP_BADARG); |
184 | 0 |
|
185 | 0 | size = (int)*np; |
186 | 0 | if (size > prime_tab_size) |
187 | 0 | size = prime_tab_size; |
188 | 0 |
|
189 | 0 | res = mpp_divis_vector(a, prime_tab, size, &which); |
190 | 0 | if (res == MP_YES) |
191 | 0 | *np = prime_tab[which]; |
192 | 0 |
|
193 | 0 | return res; |
194 | 0 |
|
195 | 0 | } /* end mpp_divis_primes() */ |
196 | | |
197 | | /* }}} */ |
198 | | |
199 | | /* {{{ mpp_fermat(a, w) */ |
200 | | |
201 | | /* |
202 | | Using w as a witness, try pseudo-primality testing based on Fermat's |
203 | | little theorem. If a is prime, and (w, a) = 1, then w^a == w (mod |
204 | | a). So, we compute z = w^a (mod a) and compare z to w; if they are |
205 | | equal, the test passes and we return MP_YES. Otherwise, we return |
206 | | MP_NO. |
207 | | */ |
208 | | mp_err |
209 | | mpp_fermat(mp_int *a, mp_digit w) |
210 | 0 | { |
211 | 0 | mp_int base, test; |
212 | 0 | mp_err res; |
213 | 0 |
|
214 | 0 | if ((res = mp_init(&base)) != MP_OKAY) |
215 | 0 | return res; |
216 | 0 | |
217 | 0 | mp_set(&base, w); |
218 | 0 |
|
219 | 0 | if ((res = mp_init(&test)) != MP_OKAY) |
220 | 0 | goto TEST; |
221 | 0 | |
222 | 0 | /* Compute test = base^a (mod a) */ |
223 | 0 | if ((res = mp_exptmod(&base, a, a, &test)) != MP_OKAY) |
224 | 0 | goto CLEANUP; |
225 | 0 | |
226 | 0 | if (mp_cmp(&base, &test) == 0) |
227 | 0 | res = MP_YES; |
228 | 0 | else |
229 | 0 | res = MP_NO; |
230 | 0 |
|
231 | 0 | CLEANUP: |
232 | 0 | mp_clear(&test); |
233 | 0 | TEST: |
234 | 0 | mp_clear(&base); |
235 | 0 |
|
236 | 0 | return res; |
237 | 0 |
|
238 | 0 | } /* end mpp_fermat() */ |
239 | | |
240 | | /* }}} */ |
241 | | |
242 | | /* |
243 | | Perform the fermat test on each of the primes in a list until |
244 | | a) one of them shows a is not prime, or |
245 | | b) the list is exhausted. |
246 | | Returns: MP_YES if it passes tests. |
247 | | MP_NO if fermat test reveals it is composite |
248 | | Some MP error code if some other error occurs. |
249 | | */ |
250 | | mp_err |
251 | | mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes) |
252 | 0 | { |
253 | 0 | mp_err rv = MP_YES; |
254 | 0 |
|
255 | 0 | while (nPrimes-- > 0 && rv == MP_YES) { |
256 | 0 | rv = mpp_fermat(a, *primes++); |
257 | 0 | } |
258 | 0 | return rv; |
259 | 0 | } |
260 | | |
261 | | /* {{{ mpp_pprime(a, nt) */ |
262 | | |
263 | | /* |
264 | | mpp_pprime(a, nt) |
265 | | |
266 | | Performs nt iteration of the Miller-Rabin probabilistic primality |
267 | | test on a. Returns MP_YES if the tests pass, MP_NO if one fails. |
268 | | If MP_NO is returned, the number is definitely composite. If MP_YES |
269 | | is returned, it is probably prime (but that is not guaranteed). |
270 | | */ |
271 | | |
272 | | mp_err |
273 | | mpp_pprime(mp_int *a, int nt) |
274 | 0 | { |
275 | 0 | mp_err res; |
276 | 0 | mp_int x, amo, m, z; /* "amo" = "a minus one" */ |
277 | 0 | int iter; |
278 | 0 | unsigned int jx; |
279 | 0 | mp_size b; |
280 | 0 |
|
281 | 0 | ARGCHK(a != NULL, MP_BADARG); |
282 | 0 |
|
283 | 0 | MP_DIGITS(&x) = 0; |
284 | 0 | MP_DIGITS(&amo) = 0; |
285 | 0 | MP_DIGITS(&m) = 0; |
286 | 0 | MP_DIGITS(&z) = 0; |
287 | 0 |
|
288 | 0 | /* Initialize temporaries... */ |
289 | 0 | MP_CHECKOK(mp_init(&amo)); |
290 | 0 | /* Compute amo = a - 1 for what follows... */ |
291 | 0 | MP_CHECKOK(mp_sub_d(a, 1, &amo)); |
292 | 0 |
|
293 | 0 | b = mp_trailing_zeros(&amo); |
294 | 0 | if (!b) { /* a was even ? */ |
295 | 0 | res = MP_NO; |
296 | 0 | goto CLEANUP; |
297 | 0 | } |
298 | 0 |
|
299 | 0 | MP_CHECKOK(mp_init_size(&x, MP_USED(a))); |
300 | 0 | MP_CHECKOK(mp_init(&z)); |
301 | 0 | MP_CHECKOK(mp_init(&m)); |
302 | 0 | MP_CHECKOK(mp_div_2d(&amo, b, &m, 0)); |
303 | 0 |
|
304 | 0 | /* Do the test nt times... */ |
305 | 0 | for (iter = 0; iter < nt; iter++) { |
306 | 0 |
|
307 | 0 | /* Choose a random value for 1 < x < a */ |
308 | 0 | MP_CHECKOK(s_mp_pad(&x, USED(a))); |
309 | 0 | mpp_random(&x); |
310 | 0 | MP_CHECKOK(mp_mod(&x, a, &x)); |
311 | 0 | if (mp_cmp_d(&x, 1) <= 0) { |
312 | 0 | iter--; /* don't count this iteration */ |
313 | 0 | continue; /* choose a new x */ |
314 | 0 | } |
315 | 0 | |
316 | 0 | /* Compute z = (x ** m) mod a */ |
317 | 0 | MP_CHECKOK(mp_exptmod(&x, &m, a, &z)); |
318 | 0 |
|
319 | 0 | if (mp_cmp_d(&z, 1) == 0 || mp_cmp(&z, &amo) == 0) { |
320 | 0 | res = MP_YES; |
321 | 0 | continue; |
322 | 0 | } |
323 | 0 |
|
324 | 0 | res = MP_NO; /* just in case the following for loop never executes. */ |
325 | 0 | for (jx = 1; jx < b; jx++) { |
326 | 0 | /* z = z^2 (mod a) */ |
327 | 0 | MP_CHECKOK(mp_sqrmod(&z, a, &z)); |
328 | 0 | res = MP_NO; /* previous line set res to MP_YES */ |
329 | 0 |
|
330 | 0 | if (mp_cmp_d(&z, 1) == 0) { |
331 | 0 | break; |
332 | 0 | } |
333 | 0 | if (mp_cmp(&z, &amo) == 0) { |
334 | 0 | res = MP_YES; |
335 | 0 | break; |
336 | 0 | } |
337 | 0 | } /* end testing loop */ |
338 | 0 |
|
339 | 0 | /* If the test passes, we will continue iterating, but a failed |
340 | 0 | test means the candidate is definitely NOT prime, so we will |
341 | 0 | immediately break out of this loop |
342 | 0 | */ |
343 | 0 | if (res == MP_NO) |
344 | 0 | break; |
345 | 0 |
|
346 | 0 | } /* end iterations loop */ |
347 | 0 |
|
348 | 0 | CLEANUP: |
349 | 0 | mp_clear(&m); |
350 | 0 | mp_clear(&z); |
351 | 0 | mp_clear(&x); |
352 | 0 | mp_clear(&amo); |
353 | 0 | return res; |
354 | 0 |
|
355 | 0 | } /* end mpp_pprime() */ |
356 | | |
357 | | /* }}} */ |
358 | | |
359 | | /* Produce table of composites from list of primes and trial value. |
360 | | ** trial must be odd. List of primes must not include 2. |
361 | | ** sieve should have dimension >= MAXPRIME/2, where MAXPRIME is largest |
362 | | ** prime in list of primes. After this function is finished, |
363 | | ** if sieve[i] is non-zero, then (trial + 2*i) is composite. |
364 | | ** Each prime used in the sieve costs one division of trial, and eliminates |
365 | | ** one or more values from the search space. (3 eliminates 1/3 of the values |
366 | | ** alone!) Each value left in the search space costs 1 or more modular |
367 | | ** exponentations. So, these divisions are a bargain! |
368 | | */ |
369 | | mp_err |
370 | | mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes, |
371 | | unsigned char *sieve, mp_size nSieve) |
372 | 0 | { |
373 | 0 | mp_err res; |
374 | 0 | mp_digit rem; |
375 | 0 | mp_size ix; |
376 | 0 | unsigned long offset; |
377 | 0 |
|
378 | 0 | memset(sieve, 0, nSieve); |
379 | 0 |
|
380 | 0 | for (ix = 0; ix < nPrimes; ix++) { |
381 | 0 | mp_digit prime = primes[ix]; |
382 | 0 | mp_size i; |
383 | 0 | if ((res = mp_mod_d(trial, prime, &rem)) != MP_OKAY) |
384 | 0 | return res; |
385 | 0 | |
386 | 0 | if (rem == 0) { |
387 | 0 | offset = 0; |
388 | 0 | } else { |
389 | 0 | offset = prime - rem; |
390 | 0 | } |
391 | 0 |
|
392 | 0 | for (i = offset; i < nSieve * 2; i += prime) { |
393 | 0 | if (i % 2 == 0) { |
394 | 0 | sieve[i / 2] = 1; |
395 | 0 | } |
396 | 0 | } |
397 | 0 | } |
398 | 0 |
|
399 | 0 | return MP_OKAY; |
400 | 0 | } |
401 | | |
402 | 0 | #define SIEVE_SIZE 32 * 1024 |
403 | | |
404 | | mp_err |
405 | | mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong) |
406 | 0 | { |
407 | 0 | mp_digit np; |
408 | 0 | mp_err res; |
409 | 0 | unsigned int i = 0; |
410 | 0 | mp_int trial; |
411 | 0 | mp_int q; |
412 | 0 | mp_size num_tests; |
413 | 0 | unsigned char *sieve; |
414 | 0 |
|
415 | 0 | ARGCHK(start != 0, MP_BADARG); |
416 | 0 | ARGCHK(nBits > 16, MP_RANGE); |
417 | 0 |
|
418 | 0 | sieve = malloc(SIEVE_SIZE); |
419 | 0 | ARGCHK(sieve != NULL, MP_MEM); |
420 | 0 |
|
421 | 0 | MP_DIGITS(&trial) = 0; |
422 | 0 | MP_DIGITS(&q) = 0; |
423 | 0 | MP_CHECKOK(mp_init(&trial)); |
424 | 0 | MP_CHECKOK(mp_init(&q)); |
425 | 0 | /* values originally taken from table 4.4, |
426 | 0 | * HandBook of Applied Cryptography, augmented by FIPS-186 |
427 | 0 | * requirements, Table C.2 and C.3 */ |
428 | 0 | if (nBits >= 2000) { |
429 | 0 | num_tests = 3; |
430 | 0 | } else if (nBits >= 1536) { |
431 | 0 | num_tests = 4; |
432 | 0 | } else if (nBits >= 1024) { |
433 | 0 | num_tests = 5; |
434 | 0 | } else if (nBits >= 550) { |
435 | 0 | num_tests = 6; |
436 | 0 | } else if (nBits >= 450) { |
437 | 0 | num_tests = 7; |
438 | 0 | } else if (nBits >= 400) { |
439 | 0 | num_tests = 8; |
440 | 0 | } else if (nBits >= 350) { |
441 | 0 | num_tests = 9; |
442 | 0 | } else if (nBits >= 300) { |
443 | 0 | num_tests = 10; |
444 | 0 | } else if (nBits >= 250) { |
445 | 0 | num_tests = 20; |
446 | 0 | } else if (nBits >= 200) { |
447 | 0 | num_tests = 41; |
448 | 0 | } else if (nBits >= 100) { |
449 | 0 | num_tests = 38; /* funny anomaly in the FIPS tables, for aux primes, the |
450 | 0 | * required more iterations for larger aux primes */ |
451 | 0 | } else |
452 | 0 | num_tests = 50; |
453 | 0 |
|
454 | 0 | if (strong) |
455 | 0 | --nBits; |
456 | 0 | MP_CHECKOK(mpl_set_bit(start, nBits - 1, 1)); |
457 | 0 | MP_CHECKOK(mpl_set_bit(start, 0, 1)); |
458 | 0 | for (i = mpl_significant_bits(start) - 1; i >= nBits; --i) { |
459 | 0 | MP_CHECKOK(mpl_set_bit(start, i, 0)); |
460 | 0 | } |
461 | 0 | /* start sieveing with prime value of 3. */ |
462 | 0 | MP_CHECKOK(mpp_sieve(start, prime_tab + 1, prime_tab_size - 1, |
463 | 0 | sieve, SIEVE_SIZE)); |
464 | 0 |
|
465 | | #ifdef DEBUG_SIEVE |
466 | | res = 0; |
467 | | for (i = 0; i < SIEVE_SIZE; ++i) { |
468 | | if (!sieve[i]) |
469 | | ++res; |
470 | | } |
471 | | fprintf(stderr, "sieve found %d potential primes.\n", res); |
472 | | #define FPUTC(x, y) fputc(x, y) |
473 | | #else |
474 | | #define FPUTC(x, y) |
475 | 0 | #endif |
476 | 0 |
|
477 | 0 | res = MP_NO; |
478 | 0 | for (i = 0; i < SIEVE_SIZE; ++i) { |
479 | 0 | if (sieve[i]) /* this number is composite */ |
480 | 0 | continue; |
481 | 0 | MP_CHECKOK(mp_add_d(start, 2 * i, &trial)); |
482 | 0 | FPUTC('.', stderr); |
483 | 0 | /* run a Fermat test */ |
484 | 0 | res = mpp_fermat(&trial, 2); |
485 | 0 | if (res != MP_OKAY) { |
486 | 0 | if (res == MP_NO) |
487 | 0 | continue; /* was composite */ |
488 | 0 | goto CLEANUP; |
489 | 0 | } |
490 | 0 | |
491 | 0 | FPUTC('+', stderr); |
492 | 0 | /* If that passed, run some Miller-Rabin tests */ |
493 | 0 | res = mpp_pprime(&trial, num_tests); |
494 | 0 | if (res != MP_OKAY) { |
495 | 0 | if (res == MP_NO) |
496 | 0 | continue; /* was composite */ |
497 | 0 | goto CLEANUP; |
498 | 0 | } |
499 | 0 | FPUTC('!', stderr); |
500 | 0 |
|
501 | 0 | if (!strong) |
502 | 0 | break; /* success !! */ |
503 | 0 | |
504 | 0 | /* At this point, we have strong evidence that our candidate |
505 | 0 | is itself prime. If we want a strong prime, we need now |
506 | 0 | to test q = 2p + 1 for primality... |
507 | 0 | */ |
508 | 0 | MP_CHECKOK(mp_mul_2(&trial, &q)); |
509 | 0 | MP_CHECKOK(mp_add_d(&q, 1, &q)); |
510 | 0 |
|
511 | 0 | /* Test q for small prime divisors ... */ |
512 | 0 | np = prime_tab_size; |
513 | 0 | res = mpp_divis_primes(&q, &np); |
514 | 0 | if (res == MP_YES) { /* is composite */ |
515 | 0 | mp_clear(&q); |
516 | 0 | continue; |
517 | 0 | } |
518 | 0 | if (res != MP_NO) |
519 | 0 | goto CLEANUP; |
520 | 0 | |
521 | 0 | /* And test with Fermat, as with its parent ... */ |
522 | 0 | res = mpp_fermat(&q, 2); |
523 | 0 | if (res != MP_YES) { |
524 | 0 | mp_clear(&q); |
525 | 0 | if (res == MP_NO) |
526 | 0 | continue; /* was composite */ |
527 | 0 | goto CLEANUP; |
528 | 0 | } |
529 | 0 | |
530 | 0 | /* And test with Miller-Rabin, as with its parent ... */ |
531 | 0 | res = mpp_pprime(&q, num_tests); |
532 | 0 | if (res != MP_YES) { |
533 | 0 | mp_clear(&q); |
534 | 0 | if (res == MP_NO) |
535 | 0 | continue; /* was composite */ |
536 | 0 | goto CLEANUP; |
537 | 0 | } |
538 | 0 | |
539 | 0 | /* If it passed, we've got a winner */ |
540 | 0 | mp_exch(&q, &trial); |
541 | 0 | mp_clear(&q); |
542 | 0 | break; |
543 | 0 |
|
544 | 0 | } /* end of loop through sieved values */ |
545 | 0 | if (res == MP_YES) |
546 | 0 | mp_exch(&trial, start); |
547 | 0 | CLEANUP: |
548 | 0 | mp_clear(&trial); |
549 | 0 | mp_clear(&q); |
550 | 0 | if (sieve != NULL) { |
551 | 0 | memset(sieve, 0, SIEVE_SIZE); |
552 | 0 | free(sieve); |
553 | 0 | } |
554 | 0 | return res; |
555 | 0 | } |
556 | | |
557 | | /*========================================================================*/ |
558 | | /*------------------------------------------------------------------------*/ |
559 | | /* Static functions visible only to the library internally */ |
560 | | |
561 | | /* {{{ s_mpp_divp(a, vec, size, which) */ |
562 | | |
563 | | /* |
564 | | Test for divisibility by members of a vector of digits. Returns |
565 | | MP_NO if a is not divisible by any of them; returns MP_YES and sets |
566 | | 'which' to the index of the offender, if it is. Will stop on the |
567 | | first digit against which a is divisible. |
568 | | */ |
569 | | |
570 | | mp_err |
571 | | s_mpp_divp(mp_int *a, const mp_digit *vec, int size, int *which) |
572 | 0 | { |
573 | 0 | mp_err res; |
574 | 0 | mp_digit rem; |
575 | 0 |
|
576 | 0 | int ix; |
577 | 0 |
|
578 | 0 | for (ix = 0; ix < size; ix++) { |
579 | 0 | if ((res = mp_mod_d(a, vec[ix], &rem)) != MP_OKAY) |
580 | 0 | return res; |
581 | 0 | |
582 | 0 | if (rem == 0) { |
583 | 0 | if (which) |
584 | 0 | *which = ix; |
585 | 0 | return MP_YES; |
586 | 0 | } |
587 | 0 | } |
588 | 0 |
|
589 | 0 | return MP_NO; |
590 | 0 |
|
591 | 0 | } /* end s_mpp_divp() */ |
592 | | |
593 | | /* }}} */ |
594 | | |
595 | | /*------------------------------------------------------------------------*/ |
596 | | /* HERE THERE BE DRAGONS */ |