/src/mozilla-central/security/nss/lib/pkcs7/p7local.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
2 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | | |
5 | | /* |
6 | | * Support routines for PKCS7 implementation, none of which are exported. |
7 | | * This file should only contain things that are needed by both the |
8 | | * encoding/creation side *and* the decoding/decryption side. Anything |
9 | | * else should be static routines in the appropriate file. |
10 | | */ |
11 | | |
12 | | #include "p7local.h" |
13 | | |
14 | | #include "cryptohi.h" |
15 | | #include "secasn1.h" |
16 | | #include "secoid.h" |
17 | | #include "secitem.h" |
18 | | #include "pk11func.h" |
19 | | #include "secpkcs5.h" |
20 | | #include "secerr.h" |
21 | | |
22 | | /* |
23 | | * ------------------------------------------------------------------- |
24 | | * Cipher stuff. |
25 | | */ |
26 | | |
27 | | typedef SECStatus (*sec_pkcs7_cipher_function)(void *, |
28 | | unsigned char *, |
29 | | unsigned *, |
30 | | unsigned int, |
31 | | const unsigned char *, |
32 | | unsigned int); |
33 | | typedef SECStatus (*sec_pkcs7_cipher_destroy)(void *, PRBool); |
34 | | |
35 | 0 | #define BLOCK_SIZE 4096 |
36 | | |
37 | | struct sec_pkcs7_cipher_object { |
38 | | void *cx; |
39 | | sec_pkcs7_cipher_function doit; |
40 | | sec_pkcs7_cipher_destroy destroy; |
41 | | PRBool encrypt; |
42 | | int block_size; |
43 | | int pad_size; |
44 | | int pending_count; |
45 | | unsigned char pending_buf[BLOCK_SIZE]; |
46 | | }; |
47 | | |
48 | | SEC_ASN1_MKSUB(CERT_IssuerAndSNTemplate) |
49 | | SEC_ASN1_MKSUB(CERT_SetOfSignedCrlTemplate) |
50 | | SEC_ASN1_MKSUB(SECOID_AlgorithmIDTemplate) |
51 | | SEC_ASN1_MKSUB(SEC_OctetStringTemplate) |
52 | | SEC_ASN1_MKSUB(SEC_SetOfAnyTemplate) |
53 | | |
54 | | /* |
55 | | * Create a cipher object to do decryption, based on the given bulk |
56 | | * encryption key and algorithm identifier (which may include an iv). |
57 | | * |
58 | | * XXX This interface, or one similar, would be really nice available |
59 | | * in general... I tried to keep the pkcs7-specific stuff (mostly |
60 | | * having to do with padding) out of here. |
61 | | * |
62 | | * XXX Once both are working, it might be nice to combine this and the |
63 | | * function below (for starting up encryption) into one routine, and just |
64 | | * have two simple cover functions which call it. |
65 | | */ |
66 | | sec_PKCS7CipherObject * |
67 | | sec_PKCS7CreateDecryptObject(PK11SymKey *key, SECAlgorithmID *algid) |
68 | 0 | { |
69 | 0 | sec_PKCS7CipherObject *result; |
70 | 0 | SECOidTag algtag; |
71 | 0 | void *ciphercx; |
72 | 0 | CK_MECHANISM_TYPE cryptoMechType; |
73 | 0 | PK11SlotInfo *slot; |
74 | 0 | SECItem *param = NULL; |
75 | 0 |
|
76 | 0 | result = (struct sec_pkcs7_cipher_object *) |
77 | 0 | PORT_ZAlloc(sizeof(struct sec_pkcs7_cipher_object)); |
78 | 0 | if (result == NULL) |
79 | 0 | return NULL; |
80 | 0 | |
81 | 0 | ciphercx = NULL; |
82 | 0 | algtag = SECOID_GetAlgorithmTag(algid); |
83 | 0 |
|
84 | 0 | if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { |
85 | 0 | SECItem *pwitem; |
86 | 0 |
|
87 | 0 | pwitem = (SECItem *)PK11_GetSymKeyUserData(key); |
88 | 0 | if (!pwitem) { |
89 | 0 | PORT_Free(result); |
90 | 0 | return NULL; |
91 | 0 | } |
92 | 0 |
|
93 | 0 | cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); |
94 | 0 | if (cryptoMechType == CKM_INVALID_MECHANISM) { |
95 | 0 | PORT_Free(result); |
96 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
97 | 0 | return NULL; |
98 | 0 | } |
99 | 0 | } else { |
100 | 0 | cryptoMechType = PK11_AlgtagToMechanism(algtag); |
101 | 0 | param = PK11_ParamFromAlgid(algid); |
102 | 0 | if (param == NULL) { |
103 | 0 | PORT_Free(result); |
104 | 0 | return NULL; |
105 | 0 | } |
106 | 0 | } |
107 | 0 |
|
108 | 0 | result->pad_size = PK11_GetBlockSize(cryptoMechType, param); |
109 | 0 | slot = PK11_GetSlotFromKey(key); |
110 | 0 | result->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : result->pad_size; |
111 | 0 | PK11_FreeSlot(slot); |
112 | 0 | ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_DECRYPT, |
113 | 0 | key, param); |
114 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
115 | 0 | if (ciphercx == NULL) { |
116 | 0 | PORT_Free(result); |
117 | 0 | return NULL; |
118 | 0 | } |
119 | 0 |
|
120 | 0 | result->cx = ciphercx; |
121 | 0 | result->doit = (sec_pkcs7_cipher_function)PK11_CipherOp; |
122 | 0 | result->destroy = (sec_pkcs7_cipher_destroy)PK11_DestroyContext; |
123 | 0 | result->encrypt = PR_FALSE; |
124 | 0 | result->pending_count = 0; |
125 | 0 |
|
126 | 0 | return result; |
127 | 0 | } |
128 | | |
129 | | /* |
130 | | * Create a cipher object to do encryption, based on the given bulk |
131 | | * encryption key and algorithm tag. Fill in the algorithm identifier |
132 | | * (which may include an iv) appropriately. |
133 | | * |
134 | | * XXX This interface, or one similar, would be really nice available |
135 | | * in general... I tried to keep the pkcs7-specific stuff (mostly |
136 | | * having to do with padding) out of here. |
137 | | * |
138 | | * XXX Once both are working, it might be nice to combine this and the |
139 | | * function above (for starting up decryption) into one routine, and just |
140 | | * have two simple cover functions which call it. |
141 | | */ |
142 | | sec_PKCS7CipherObject * |
143 | | sec_PKCS7CreateEncryptObject(PLArenaPool *poolp, PK11SymKey *key, |
144 | | SECOidTag algtag, SECAlgorithmID *algid) |
145 | 0 | { |
146 | 0 | sec_PKCS7CipherObject *result; |
147 | 0 | void *ciphercx; |
148 | 0 | SECStatus rv; |
149 | 0 | CK_MECHANISM_TYPE cryptoMechType; |
150 | 0 | PK11SlotInfo *slot; |
151 | 0 | SECItem *param = NULL; |
152 | 0 | PRBool needToEncodeAlgid = PR_FALSE; |
153 | 0 |
|
154 | 0 | result = (struct sec_pkcs7_cipher_object *) |
155 | 0 | PORT_ZAlloc(sizeof(struct sec_pkcs7_cipher_object)); |
156 | 0 | if (result == NULL) |
157 | 0 | return NULL; |
158 | 0 | |
159 | 0 | ciphercx = NULL; |
160 | 0 | if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) { |
161 | 0 | SECItem *pwitem; |
162 | 0 |
|
163 | 0 | pwitem = (SECItem *)PK11_GetSymKeyUserData(key); |
164 | 0 | if (!pwitem) { |
165 | 0 | PORT_Free(result); |
166 | 0 | return NULL; |
167 | 0 | } |
168 | 0 |
|
169 | 0 | cryptoMechType = PK11_GetPBECryptoMechanism(algid, ¶m, pwitem); |
170 | 0 | if (cryptoMechType == CKM_INVALID_MECHANISM) { |
171 | 0 | PORT_Free(result); |
172 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
173 | 0 | return NULL; |
174 | 0 | } |
175 | 0 | } else { |
176 | 0 | cryptoMechType = PK11_AlgtagToMechanism(algtag); |
177 | 0 | param = PK11_GenerateNewParam(cryptoMechType, key); |
178 | 0 | if (param == NULL) { |
179 | 0 | PORT_Free(result); |
180 | 0 | return NULL; |
181 | 0 | } |
182 | 0 | needToEncodeAlgid = PR_TRUE; |
183 | 0 | } |
184 | 0 |
|
185 | 0 | result->pad_size = PK11_GetBlockSize(cryptoMechType, param); |
186 | 0 | slot = PK11_GetSlotFromKey(key); |
187 | 0 | result->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : result->pad_size; |
188 | 0 | PK11_FreeSlot(slot); |
189 | 0 | ciphercx = PK11_CreateContextBySymKey(cryptoMechType, CKA_ENCRYPT, |
190 | 0 | key, param); |
191 | 0 | if (ciphercx == NULL) { |
192 | 0 | PORT_Free(result); |
193 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
194 | 0 | return NULL; |
195 | 0 | } |
196 | 0 |
|
197 | 0 | /* |
198 | 0 | * These are placed after the CreateContextBySymKey() because some |
199 | 0 | * mechanisms have to generate their IVs from their card (i.e. FORTEZZA). |
200 | 0 | * Don't move it from here. |
201 | 0 | */ |
202 | 0 | if (needToEncodeAlgid) { |
203 | 0 | rv = PK11_ParamToAlgid(algtag, param, poolp, algid); |
204 | 0 | if (rv != SECSuccess) { |
205 | 0 | PORT_Free(result); |
206 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
207 | 0 | PK11_DestroyContext(ciphercx, PR_TRUE); |
208 | 0 | return NULL; |
209 | 0 | } |
210 | 0 | } |
211 | 0 | SECITEM_FreeItem(param, PR_TRUE); |
212 | 0 |
|
213 | 0 | result->cx = ciphercx; |
214 | 0 | result->doit = (sec_pkcs7_cipher_function)PK11_CipherOp; |
215 | 0 | result->destroy = (sec_pkcs7_cipher_destroy)PK11_DestroyContext; |
216 | 0 | result->encrypt = PR_TRUE; |
217 | 0 | result->pending_count = 0; |
218 | 0 |
|
219 | 0 | return result; |
220 | 0 | } |
221 | | |
222 | | /* |
223 | | * Destroy the cipher object. |
224 | | */ |
225 | | static void |
226 | | sec_pkcs7_destroy_cipher(sec_PKCS7CipherObject *obj) |
227 | 0 | { |
228 | 0 | (*obj->destroy)(obj->cx, PR_TRUE); |
229 | 0 | PORT_Free(obj); |
230 | 0 | } |
231 | | |
232 | | void |
233 | | sec_PKCS7DestroyDecryptObject(sec_PKCS7CipherObject *obj) |
234 | 0 | { |
235 | 0 | PORT_Assert(obj != NULL); |
236 | 0 | if (obj == NULL) |
237 | 0 | return; |
238 | 0 | PORT_Assert(!obj->encrypt); |
239 | 0 | sec_pkcs7_destroy_cipher(obj); |
240 | 0 | } |
241 | | |
242 | | void |
243 | | sec_PKCS7DestroyEncryptObject(sec_PKCS7CipherObject *obj) |
244 | 0 | { |
245 | 0 | PORT_Assert(obj != NULL); |
246 | 0 | if (obj == NULL) |
247 | 0 | return; |
248 | 0 | PORT_Assert(obj->encrypt); |
249 | 0 | sec_pkcs7_destroy_cipher(obj); |
250 | 0 | } |
251 | | |
252 | | /* |
253 | | * XXX I think all of the following lengths should be longs instead |
254 | | * of ints, but our current crypto interface uses ints, so I did too. |
255 | | */ |
256 | | |
257 | | /* |
258 | | * What will be the output length of the next call to decrypt? |
259 | | * Result can be used to perform memory allocations. Note that the amount |
260 | | * is exactly accurate only when not doing a block cipher or when final |
261 | | * is false, otherwise it is an upper bound on the amount because until |
262 | | * we see the data we do not know how many padding bytes there are |
263 | | * (always between 1 and bsize). |
264 | | * |
265 | | * Note that this can return zero, which does not mean that the decrypt |
266 | | * operation can be skipped! (It simply means that there are not enough |
267 | | * bytes to make up an entire block; the bytes will be reserved until |
268 | | * there are enough to encrypt/decrypt at least one block.) However, |
269 | | * if zero is returned it *does* mean that no output buffer need be |
270 | | * passed in to the subsequent decrypt operation, as no output bytes |
271 | | * will be stored. |
272 | | */ |
273 | | unsigned int |
274 | | sec_PKCS7DecryptLength(sec_PKCS7CipherObject *obj, unsigned int input_len, |
275 | | PRBool final) |
276 | 0 | { |
277 | 0 | int blocks, block_size; |
278 | 0 |
|
279 | 0 | PORT_Assert(!obj->encrypt); |
280 | 0 |
|
281 | 0 | block_size = obj->block_size; |
282 | 0 |
|
283 | 0 | /* |
284 | 0 | * If this is not a block cipher, then we always have the same |
285 | 0 | * number of output bytes as we had input bytes. |
286 | 0 | */ |
287 | 0 | if (block_size == 0) |
288 | 0 | return input_len; |
289 | 0 | |
290 | 0 | /* |
291 | 0 | * On the final call, we will always use up all of the pending |
292 | 0 | * bytes plus all of the input bytes, *but*, there will be padding |
293 | 0 | * at the end and we cannot predict how many bytes of padding we |
294 | 0 | * will end up removing. The amount given here is actually known |
295 | 0 | * to be at least 1 byte too long (because we know we will have |
296 | 0 | * at least 1 byte of padding), but seemed clearer/better to me. |
297 | 0 | */ |
298 | 0 | if (final) |
299 | 0 | return obj->pending_count + input_len; |
300 | 0 | |
301 | 0 | /* |
302 | 0 | * Okay, this amount is exactly what we will output on the |
303 | 0 | * next cipher operation. We will always hang onto the last |
304 | 0 | * 1 - block_size bytes for non-final operations. That is, |
305 | 0 | * we will do as many complete blocks as we can *except* the |
306 | 0 | * last block (complete or partial). (This is because until |
307 | 0 | * we know we are at the end, we cannot know when to interpret |
308 | 0 | * and removing the padding byte(s), which are guaranteed to |
309 | 0 | * be there.) |
310 | 0 | */ |
311 | 0 | blocks = (obj->pending_count + input_len - 1) / block_size; |
312 | 0 | return blocks * block_size; |
313 | 0 | } |
314 | | |
315 | | /* |
316 | | * What will be the output length of the next call to encrypt? |
317 | | * Result can be used to perform memory allocations. |
318 | | * |
319 | | * Note that this can return zero, which does not mean that the encrypt |
320 | | * operation can be skipped! (It simply means that there are not enough |
321 | | * bytes to make up an entire block; the bytes will be reserved until |
322 | | * there are enough to encrypt/decrypt at least one block.) However, |
323 | | * if zero is returned it *does* mean that no output buffer need be |
324 | | * passed in to the subsequent encrypt operation, as no output bytes |
325 | | * will be stored. |
326 | | */ |
327 | | unsigned int |
328 | | sec_PKCS7EncryptLength(sec_PKCS7CipherObject *obj, unsigned int input_len, |
329 | | PRBool final) |
330 | 0 | { |
331 | 0 | int blocks, block_size; |
332 | 0 | int pad_size; |
333 | 0 |
|
334 | 0 | PORT_Assert(obj->encrypt); |
335 | 0 |
|
336 | 0 | block_size = obj->block_size; |
337 | 0 | pad_size = obj->pad_size; |
338 | 0 |
|
339 | 0 | /* |
340 | 0 | * If this is not a block cipher, then we always have the same |
341 | 0 | * number of output bytes as we had input bytes. |
342 | 0 | */ |
343 | 0 | if (block_size == 0) |
344 | 0 | return input_len; |
345 | 0 | |
346 | 0 | /* |
347 | 0 | * On the final call, we only send out what we need for |
348 | 0 | * remaining bytes plus the padding. (There is always padding, |
349 | 0 | * so even if we have an exact number of blocks as input, we |
350 | 0 | * will add another full block that is just padding.) |
351 | 0 | */ |
352 | 0 | if (final) { |
353 | 0 | if (pad_size == 0) { |
354 | 0 | return obj->pending_count + input_len; |
355 | 0 | } else { |
356 | 0 | blocks = (obj->pending_count + input_len) / pad_size; |
357 | 0 | blocks++; |
358 | 0 | return blocks * pad_size; |
359 | 0 | } |
360 | 0 | } |
361 | 0 | |
362 | 0 | /* |
363 | 0 | * Now, count the number of complete blocks of data we have. |
364 | 0 | */ |
365 | 0 | blocks = (obj->pending_count + input_len) / block_size; |
366 | 0 |
|
367 | 0 | return blocks * block_size; |
368 | 0 | } |
369 | | |
370 | | /* |
371 | | * Decrypt a given length of input buffer (starting at "input" and |
372 | | * containing "input_len" bytes), placing the decrypted bytes in |
373 | | * "output" and storing the output length in "*output_len_p". |
374 | | * "obj" is the return value from sec_PKCS7CreateDecryptObject. |
375 | | * When "final" is true, this is the last of the data to be decrypted. |
376 | | * |
377 | | * This is much more complicated than it sounds when the cipher is |
378 | | * a block-type, meaning that the decryption function will only |
379 | | * operate on whole blocks. But our caller is operating stream-wise, |
380 | | * and can pass in any number of bytes. So we need to keep track |
381 | | * of block boundaries. We save excess bytes between calls in "obj". |
382 | | * We also need to determine which bytes are padding, and remove |
383 | | * them from the output. We can only do this step when we know we |
384 | | * have the final block of data. PKCS #7 specifies that the padding |
385 | | * used for a block cipher is a string of bytes, each of whose value is |
386 | | * the same as the length of the padding, and that all data is padded. |
387 | | * (Even data that starts out with an exact multiple of blocks gets |
388 | | * added to it another block, all of which is padding.) |
389 | | */ |
390 | | SECStatus |
391 | | sec_PKCS7Decrypt(sec_PKCS7CipherObject *obj, unsigned char *output, |
392 | | unsigned int *output_len_p, unsigned int max_output_len, |
393 | | const unsigned char *input, unsigned int input_len, |
394 | | PRBool final) |
395 | 0 | { |
396 | 0 | unsigned int blocks, bsize, pcount, padsize; |
397 | 0 | unsigned int max_needed, ifraglen, ofraglen, output_len; |
398 | 0 | unsigned char *pbuf; |
399 | 0 | SECStatus rv; |
400 | 0 |
|
401 | 0 | PORT_Assert(!obj->encrypt); |
402 | 0 |
|
403 | 0 | /* |
404 | 0 | * Check that we have enough room for the output. Our caller should |
405 | 0 | * already handle this; failure is really an internal error (i.e. bug). |
406 | 0 | */ |
407 | 0 | max_needed = sec_PKCS7DecryptLength(obj, input_len, final); |
408 | 0 | PORT_Assert(max_output_len >= max_needed); |
409 | 0 | if (max_output_len < max_needed) { |
410 | 0 | /* PORT_SetError (XXX); */ |
411 | 0 | return SECFailure; |
412 | 0 | } |
413 | 0 | |
414 | 0 | /* |
415 | 0 | * hardware encryption does not like small decryption sizes here, so we |
416 | 0 | * allow both blocking and padding. |
417 | 0 | */ |
418 | 0 | bsize = obj->block_size; |
419 | 0 | padsize = obj->pad_size; |
420 | 0 |
|
421 | 0 | /* |
422 | 0 | * When no blocking or padding work to do, we can simply call the |
423 | 0 | * cipher function and we are done. |
424 | 0 | */ |
425 | 0 | if (bsize == 0) { |
426 | 0 | return (*obj->doit)(obj->cx, output, output_len_p, max_output_len, |
427 | 0 | input, input_len); |
428 | 0 | } |
429 | 0 | |
430 | 0 | pcount = obj->pending_count; |
431 | 0 | pbuf = obj->pending_buf; |
432 | 0 |
|
433 | 0 | output_len = 0; |
434 | 0 |
|
435 | 0 | if (pcount) { |
436 | 0 | /* |
437 | 0 | * Try to fill in an entire block, starting with the bytes |
438 | 0 | * we already have saved away. |
439 | 0 | */ |
440 | 0 | while (input_len && pcount < bsize) { |
441 | 0 | pbuf[pcount++] = *input++; |
442 | 0 | input_len--; |
443 | 0 | } |
444 | 0 | /* |
445 | 0 | * If we have at most a whole block and this is not our last call, |
446 | 0 | * then we are done for now. (We do not try to decrypt a lone |
447 | 0 | * single block because we cannot interpret the padding bytes |
448 | 0 | * until we know we are handling the very last block of all input.) |
449 | 0 | */ |
450 | 0 | if (input_len == 0 && !final) { |
451 | 0 | obj->pending_count = pcount; |
452 | 0 | if (output_len_p) |
453 | 0 | *output_len_p = 0; |
454 | 0 | return SECSuccess; |
455 | 0 | } |
456 | 0 | /* |
457 | 0 | * Given the logic above, we expect to have a full block by now. |
458 | 0 | * If we do not, there is something wrong, either with our own |
459 | 0 | * logic or with (length of) the data given to us. |
460 | 0 | */ |
461 | 0 | PORT_Assert((padsize == 0) || (pcount % padsize) == 0); |
462 | 0 | if ((padsize != 0) && (pcount % padsize) != 0) { |
463 | 0 | PORT_Assert(final); |
464 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
465 | 0 | return SECFailure; |
466 | 0 | } |
467 | 0 | /* |
468 | 0 | * Decrypt the block. |
469 | 0 | */ |
470 | 0 | rv = (*obj->doit)(obj->cx, output, &ofraglen, max_output_len, |
471 | 0 | pbuf, pcount); |
472 | 0 | if (rv != SECSuccess) |
473 | 0 | return rv; |
474 | 0 | |
475 | 0 | /* |
476 | 0 | * For now anyway, all of our ciphers have the same number of |
477 | 0 | * bytes of output as they do input. If this ever becomes untrue, |
478 | 0 | * then sec_PKCS7DecryptLength needs to be made smarter! |
479 | 0 | */ |
480 | 0 | PORT_Assert(ofraglen == pcount); |
481 | 0 |
|
482 | 0 | /* |
483 | 0 | * Account for the bytes now in output. |
484 | 0 | */ |
485 | 0 | max_output_len -= ofraglen; |
486 | 0 | output_len += ofraglen; |
487 | 0 | output += ofraglen; |
488 | 0 | } |
489 | 0 |
|
490 | 0 | /* |
491 | 0 | * If this is our last call, we expect to have an exact number of |
492 | 0 | * blocks left to be decrypted; we will decrypt them all. |
493 | 0 | * |
494 | 0 | * If not our last call, we always save between 1 and bsize bytes |
495 | 0 | * until next time. (We must do this because we cannot be sure |
496 | 0 | * that none of the decrypted bytes are padding bytes until we |
497 | 0 | * have at least another whole block of data. You cannot tell by |
498 | 0 | * looking -- the data could be anything -- you can only tell by |
499 | 0 | * context, knowing you are looking at the last block.) We could |
500 | 0 | * decrypt a whole block now but it is easier if we just treat it |
501 | 0 | * the same way we treat partial block bytes. |
502 | 0 | */ |
503 | 0 | if (final) { |
504 | 0 | if (padsize) { |
505 | 0 | blocks = input_len / padsize; |
506 | 0 | ifraglen = blocks * padsize; |
507 | 0 | } else |
508 | 0 | ifraglen = input_len; |
509 | 0 | PORT_Assert(ifraglen == input_len); |
510 | 0 |
|
511 | 0 | if (ifraglen != input_len) { |
512 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
513 | 0 | return SECFailure; |
514 | 0 | } |
515 | 0 | } else { |
516 | 0 | blocks = (input_len - 1) / bsize; |
517 | 0 | ifraglen = blocks * bsize; |
518 | 0 | PORT_Assert(ifraglen < input_len); |
519 | 0 |
|
520 | 0 | pcount = input_len - ifraglen; |
521 | 0 | PORT_Memcpy(pbuf, input + ifraglen, pcount); |
522 | 0 | obj->pending_count = pcount; |
523 | 0 | } |
524 | 0 |
|
525 | 0 | if (ifraglen) { |
526 | 0 | rv = (*obj->doit)(obj->cx, output, &ofraglen, max_output_len, |
527 | 0 | input, ifraglen); |
528 | 0 | if (rv != SECSuccess) |
529 | 0 | return rv; |
530 | 0 | |
531 | 0 | /* |
532 | 0 | * For now anyway, all of our ciphers have the same number of |
533 | 0 | * bytes of output as they do input. If this ever becomes untrue, |
534 | 0 | * then sec_PKCS7DecryptLength needs to be made smarter! |
535 | 0 | */ |
536 | 0 | PORT_Assert(ifraglen == ofraglen); |
537 | 0 | if (ifraglen != ofraglen) { |
538 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
539 | 0 | return SECFailure; |
540 | 0 | } |
541 | 0 |
|
542 | 0 | output_len += ofraglen; |
543 | 0 | } else { |
544 | 0 | ofraglen = 0; |
545 | 0 | } |
546 | 0 |
|
547 | 0 | /* |
548 | 0 | * If we just did our very last block, "remove" the padding by |
549 | 0 | * adjusting the output length. |
550 | 0 | */ |
551 | 0 | if (final && (padsize != 0)) { |
552 | 0 | unsigned int padlen = *(output + ofraglen - 1); |
553 | 0 | if (padlen == 0 || padlen > padsize) { |
554 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
555 | 0 | return SECFailure; |
556 | 0 | } |
557 | 0 | output_len -= padlen; |
558 | 0 | } |
559 | 0 |
|
560 | 0 | PORT_Assert(output_len_p != NULL || output_len == 0); |
561 | 0 | if (output_len_p != NULL) |
562 | 0 | *output_len_p = output_len; |
563 | 0 |
|
564 | 0 | return SECSuccess; |
565 | 0 | } |
566 | | |
567 | | /* |
568 | | * Encrypt a given length of input buffer (starting at "input" and |
569 | | * containing "input_len" bytes), placing the encrypted bytes in |
570 | | * "output" and storing the output length in "*output_len_p". |
571 | | * "obj" is the return value from sec_PKCS7CreateEncryptObject. |
572 | | * When "final" is true, this is the last of the data to be encrypted. |
573 | | * |
574 | | * This is much more complicated than it sounds when the cipher is |
575 | | * a block-type, meaning that the encryption function will only |
576 | | * operate on whole blocks. But our caller is operating stream-wise, |
577 | | * and can pass in any number of bytes. So we need to keep track |
578 | | * of block boundaries. We save excess bytes between calls in "obj". |
579 | | * We also need to add padding bytes at the end. PKCS #7 specifies |
580 | | * that the padding used for a block cipher is a string of bytes, |
581 | | * each of whose value is the same as the length of the padding, |
582 | | * and that all data is padded. (Even data that starts out with |
583 | | * an exact multiple of blocks gets added to it another block, |
584 | | * all of which is padding.) |
585 | | * |
586 | | * XXX I would kind of like to combine this with the function above |
587 | | * which does decryption, since they have a lot in common. But the |
588 | | * tricky parts about padding and filling blocks would be much |
589 | | * harder to read that way, so I left them separate. At least for |
590 | | * now until it is clear that they are right. |
591 | | */ |
592 | | SECStatus |
593 | | sec_PKCS7Encrypt(sec_PKCS7CipherObject *obj, unsigned char *output, |
594 | | unsigned int *output_len_p, unsigned int max_output_len, |
595 | | const unsigned char *input, unsigned int input_len, |
596 | | PRBool final) |
597 | 0 | { |
598 | 0 | int blocks, bsize, padlen, pcount, padsize; |
599 | 0 | unsigned int max_needed, ifraglen, ofraglen, output_len; |
600 | 0 | unsigned char *pbuf; |
601 | 0 | SECStatus rv; |
602 | 0 |
|
603 | 0 | PORT_Assert(obj->encrypt); |
604 | 0 |
|
605 | 0 | /* |
606 | 0 | * Check that we have enough room for the output. Our caller should |
607 | 0 | * already handle this; failure is really an internal error (i.e. bug). |
608 | 0 | */ |
609 | 0 | max_needed = sec_PKCS7EncryptLength(obj, input_len, final); |
610 | 0 | PORT_Assert(max_output_len >= max_needed); |
611 | 0 | if (max_output_len < max_needed) { |
612 | 0 | /* PORT_SetError (XXX); */ |
613 | 0 | return SECFailure; |
614 | 0 | } |
615 | 0 | |
616 | 0 | bsize = obj->block_size; |
617 | 0 | padsize = obj->pad_size; |
618 | 0 |
|
619 | 0 | /* |
620 | 0 | * When no blocking and padding work to do, we can simply call the |
621 | 0 | * cipher function and we are done. |
622 | 0 | */ |
623 | 0 | if (bsize == 0) { |
624 | 0 | return (*obj->doit)(obj->cx, output, output_len_p, max_output_len, |
625 | 0 | input, input_len); |
626 | 0 | } |
627 | 0 | |
628 | 0 | pcount = obj->pending_count; |
629 | 0 | pbuf = obj->pending_buf; |
630 | 0 |
|
631 | 0 | output_len = 0; |
632 | 0 |
|
633 | 0 | if (pcount) { |
634 | 0 | /* |
635 | 0 | * Try to fill in an entire block, starting with the bytes |
636 | 0 | * we already have saved away. |
637 | 0 | */ |
638 | 0 | while (input_len && pcount < bsize) { |
639 | 0 | pbuf[pcount++] = *input++; |
640 | 0 | input_len--; |
641 | 0 | } |
642 | 0 | /* |
643 | 0 | * If we do not have a full block and we know we will be |
644 | 0 | * called again, then we are done for now. |
645 | 0 | */ |
646 | 0 | if (pcount < bsize && !final) { |
647 | 0 | obj->pending_count = pcount; |
648 | 0 | if (output_len_p != NULL) |
649 | 0 | *output_len_p = 0; |
650 | 0 | return SECSuccess; |
651 | 0 | } |
652 | 0 | /* |
653 | 0 | * If we have a whole block available, encrypt it. |
654 | 0 | */ |
655 | 0 | if ((padsize == 0) || (pcount % padsize) == 0) { |
656 | 0 | rv = (*obj->doit)(obj->cx, output, &ofraglen, max_output_len, |
657 | 0 | pbuf, pcount); |
658 | 0 | if (rv != SECSuccess) |
659 | 0 | return rv; |
660 | 0 | |
661 | 0 | /* |
662 | 0 | * For now anyway, all of our ciphers have the same number of |
663 | 0 | * bytes of output as they do input. If this ever becomes untrue, |
664 | 0 | * then sec_PKCS7EncryptLength needs to be made smarter! |
665 | 0 | */ |
666 | 0 | PORT_Assert(ofraglen == pcount); |
667 | 0 |
|
668 | 0 | /* |
669 | 0 | * Account for the bytes now in output. |
670 | 0 | */ |
671 | 0 | max_output_len -= ofraglen; |
672 | 0 | output_len += ofraglen; |
673 | 0 | output += ofraglen; |
674 | 0 |
|
675 | 0 | pcount = 0; |
676 | 0 | } |
677 | 0 | } |
678 | 0 |
|
679 | 0 | if (input_len) { |
680 | 0 | PORT_Assert(pcount == 0); |
681 | 0 |
|
682 | 0 | blocks = input_len / bsize; |
683 | 0 | ifraglen = blocks * bsize; |
684 | 0 |
|
685 | 0 | if (ifraglen) { |
686 | 0 | rv = (*obj->doit)(obj->cx, output, &ofraglen, max_output_len, |
687 | 0 | input, ifraglen); |
688 | 0 | if (rv != SECSuccess) |
689 | 0 | return rv; |
690 | 0 | |
691 | 0 | /* |
692 | 0 | * For now anyway, all of our ciphers have the same number of |
693 | 0 | * bytes of output as they do input. If this ever becomes untrue, |
694 | 0 | * then sec_PKCS7EncryptLength needs to be made smarter! |
695 | 0 | */ |
696 | 0 | PORT_Assert(ifraglen == ofraglen); |
697 | 0 |
|
698 | 0 | max_output_len -= ofraglen; |
699 | 0 | output_len += ofraglen; |
700 | 0 | output += ofraglen; |
701 | 0 | } |
702 | 0 |
|
703 | 0 | pcount = input_len - ifraglen; |
704 | 0 | PORT_Assert(pcount < bsize); |
705 | 0 | if (pcount) |
706 | 0 | PORT_Memcpy(pbuf, input + ifraglen, pcount); |
707 | 0 | } |
708 | 0 |
|
709 | 0 | if (final) { |
710 | 0 | if (padsize) { |
711 | 0 | padlen = padsize - (pcount % padsize); |
712 | 0 | PORT_Memset(pbuf + pcount, padlen, padlen); |
713 | 0 | } else { |
714 | 0 | padlen = 0; |
715 | 0 | } |
716 | 0 | rv = (*obj->doit)(obj->cx, output, &ofraglen, max_output_len, |
717 | 0 | pbuf, pcount + padlen); |
718 | 0 | if (rv != SECSuccess) |
719 | 0 | return rv; |
720 | 0 | |
721 | 0 | /* |
722 | 0 | * For now anyway, all of our ciphers have the same number of |
723 | 0 | * bytes of output as they do input. If this ever becomes untrue, |
724 | 0 | * then sec_PKCS7EncryptLength needs to be made smarter! |
725 | 0 | */ |
726 | 0 | PORT_Assert(ofraglen == (pcount + padlen)); |
727 | 0 | output_len += ofraglen; |
728 | 0 | } else { |
729 | 0 | obj->pending_count = pcount; |
730 | 0 | } |
731 | 0 |
|
732 | 0 | PORT_Assert(output_len_p != NULL || output_len == 0); |
733 | 0 | if (output_len_p != NULL) |
734 | 0 | *output_len_p = output_len; |
735 | 0 |
|
736 | 0 | return SECSuccess; |
737 | 0 | } |
738 | | |
739 | | /* |
740 | | * End of cipher stuff. |
741 | | * ------------------------------------------------------------------- |
742 | | */ |
743 | | |
744 | | /* |
745 | | * ------------------------------------------------------------------- |
746 | | * XXX The following Attribute stuff really belongs elsewhere. |
747 | | * The Attribute type is *not* part of pkcs7 but rather X.501. |
748 | | * But for now, since PKCS7 is the only customer of attributes, |
749 | | * we define them here. Once there is a use outside of PKCS7, |
750 | | * then change the attribute types and functions from internal |
751 | | * to external naming convention, and move them elsewhere! |
752 | | */ |
753 | | |
754 | | /* |
755 | | * Look through a set of attributes and find one that matches the |
756 | | * specified object ID. If "only" is true, then make sure that |
757 | | * there is not more than one attribute of the same type. Otherwise, |
758 | | * just return the first one found. (XXX Does anybody really want |
759 | | * that first-found behavior? It was like that when I found it...) |
760 | | */ |
761 | | SEC_PKCS7Attribute * |
762 | | sec_PKCS7FindAttribute(SEC_PKCS7Attribute **attrs, SECOidTag oidtag, |
763 | | PRBool only) |
764 | 0 | { |
765 | 0 | SECOidData *oid; |
766 | 0 | SEC_PKCS7Attribute *attr1, *attr2; |
767 | 0 |
|
768 | 0 | if (attrs == NULL) |
769 | 0 | return NULL; |
770 | 0 | |
771 | 0 | oid = SECOID_FindOIDByTag(oidtag); |
772 | 0 | if (oid == NULL) |
773 | 0 | return NULL; |
774 | 0 | |
775 | 0 | while ((attr1 = *attrs++) != NULL) { |
776 | 0 | if (attr1->type.len == oid->oid.len && PORT_Memcmp(attr1->type.data, oid->oid.data, oid->oid.len) == 0) |
777 | 0 | break; |
778 | 0 | } |
779 | 0 |
|
780 | 0 | if (attr1 == NULL) |
781 | 0 | return NULL; |
782 | 0 | |
783 | 0 | if (!only) |
784 | 0 | return attr1; |
785 | 0 | |
786 | 0 | while ((attr2 = *attrs++) != NULL) { |
787 | 0 | if (attr2->type.len == oid->oid.len && PORT_Memcmp(attr2->type.data, oid->oid.data, oid->oid.len) == 0) |
788 | 0 | break; |
789 | 0 | } |
790 | 0 |
|
791 | 0 | if (attr2 != NULL) |
792 | 0 | return NULL; |
793 | 0 | |
794 | 0 | return attr1; |
795 | 0 | } |
796 | | |
797 | | /* |
798 | | * Return the single attribute value, doing some sanity checking first: |
799 | | * - Multiple values are *not* expected. |
800 | | * - Empty values are *not* expected. |
801 | | */ |
802 | | SECItem * |
803 | | sec_PKCS7AttributeValue(SEC_PKCS7Attribute *attr) |
804 | 0 | { |
805 | 0 | SECItem *value; |
806 | 0 |
|
807 | 0 | if (attr == NULL) |
808 | 0 | return NULL; |
809 | 0 | |
810 | 0 | value = attr->values[0]; |
811 | 0 |
|
812 | 0 | if (value == NULL || value->data == NULL || value->len == 0) |
813 | 0 | return NULL; |
814 | 0 | |
815 | 0 | if (attr->values[1] != NULL) |
816 | 0 | return NULL; |
817 | 0 | |
818 | 0 | return value; |
819 | 0 | } |
820 | | |
821 | | static const SEC_ASN1Template * |
822 | | sec_attr_choose_attr_value_template(void *src_or_dest, PRBool encoding) |
823 | 0 | { |
824 | 0 | const SEC_ASN1Template *theTemplate; |
825 | 0 |
|
826 | 0 | SEC_PKCS7Attribute *attribute; |
827 | 0 | SECOidData *oiddata; |
828 | 0 | PRBool encoded; |
829 | 0 |
|
830 | 0 | PORT_Assert(src_or_dest != NULL); |
831 | 0 | if (src_or_dest == NULL) |
832 | 0 | return NULL; |
833 | 0 | |
834 | 0 | attribute = (SEC_PKCS7Attribute *)src_or_dest; |
835 | 0 |
|
836 | 0 | if (encoding && attribute->encoded) |
837 | 0 | return SEC_ASN1_GET(SEC_AnyTemplate); |
838 | 0 | |
839 | 0 | oiddata = attribute->typeTag; |
840 | 0 | if (oiddata == NULL) { |
841 | 0 | oiddata = SECOID_FindOID(&attribute->type); |
842 | 0 | attribute->typeTag = oiddata; |
843 | 0 | } |
844 | 0 |
|
845 | 0 | if (oiddata == NULL) { |
846 | 0 | encoded = PR_TRUE; |
847 | 0 | theTemplate = SEC_ASN1_GET(SEC_AnyTemplate); |
848 | 0 | } else { |
849 | 0 | switch (oiddata->offset) { |
850 | 0 | default: |
851 | 0 | encoded = PR_TRUE; |
852 | 0 | theTemplate = SEC_ASN1_GET(SEC_AnyTemplate); |
853 | 0 | break; |
854 | 0 | case SEC_OID_PKCS9_EMAIL_ADDRESS: |
855 | 0 | case SEC_OID_RFC1274_MAIL: |
856 | 0 | case SEC_OID_PKCS9_UNSTRUCTURED_NAME: |
857 | 0 | encoded = PR_FALSE; |
858 | 0 | theTemplate = SEC_ASN1_GET(SEC_IA5StringTemplate); |
859 | 0 | break; |
860 | 0 | case SEC_OID_PKCS9_CONTENT_TYPE: |
861 | 0 | encoded = PR_FALSE; |
862 | 0 | theTemplate = SEC_ASN1_GET(SEC_ObjectIDTemplate); |
863 | 0 | break; |
864 | 0 | case SEC_OID_PKCS9_MESSAGE_DIGEST: |
865 | 0 | encoded = PR_FALSE; |
866 | 0 | theTemplate = SEC_ASN1_GET(SEC_OctetStringTemplate); |
867 | 0 | break; |
868 | 0 | case SEC_OID_PKCS9_SIGNING_TIME: |
869 | 0 | encoded = PR_FALSE; |
870 | 0 | theTemplate = SEC_ASN1_GET(CERT_TimeChoiceTemplate); |
871 | 0 | break; |
872 | 0 | /* XXX Want other types here, too */ |
873 | 0 | } |
874 | 0 | } |
875 | 0 |
|
876 | 0 | if (encoding) { |
877 | 0 | /* |
878 | 0 | * If we are encoding and we think we have an already-encoded value, |
879 | 0 | * then the code which initialized this attribute should have set |
880 | 0 | * the "encoded" property to true (and we would have returned early, |
881 | 0 | * up above). No devastating error, but that code should be fixed. |
882 | 0 | * (It could indicate that the resulting encoded bytes are wrong.) |
883 | 0 | */ |
884 | 0 | PORT_Assert(!encoded); |
885 | 0 | } else { |
886 | 0 | /* |
887 | 0 | * We are decoding; record whether the resulting value is |
888 | 0 | * still encoded or not. |
889 | 0 | */ |
890 | 0 | attribute->encoded = encoded; |
891 | 0 | } |
892 | 0 | return theTemplate; |
893 | 0 | } |
894 | | |
895 | | static const SEC_ASN1TemplateChooserPtr sec_attr_chooser = sec_attr_choose_attr_value_template; |
896 | | |
897 | | static const SEC_ASN1Template sec_pkcs7_attribute_template[] = { |
898 | | { SEC_ASN1_SEQUENCE, |
899 | | 0, NULL, sizeof(SEC_PKCS7Attribute) }, |
900 | | { SEC_ASN1_OBJECT_ID, |
901 | | offsetof(SEC_PKCS7Attribute, type) }, |
902 | | { SEC_ASN1_DYNAMIC | SEC_ASN1_SET_OF, |
903 | | offsetof(SEC_PKCS7Attribute, values), |
904 | | &sec_attr_chooser }, |
905 | | { 0 } |
906 | | }; |
907 | | |
908 | | static const SEC_ASN1Template sec_pkcs7_set_of_attribute_template[] = { |
909 | | { SEC_ASN1_SET_OF, 0, sec_pkcs7_attribute_template }, |
910 | | }; |
911 | | |
912 | | /* |
913 | | * If you are wondering why this routine does not reorder the attributes |
914 | | * first, and might be tempted to make it do so, see the comment by the |
915 | | * call to ReorderAttributes in p7encode.c. (Or, see who else calls this |
916 | | * and think long and hard about the implications of making it always |
917 | | * do the reordering.) |
918 | | */ |
919 | | SECItem * |
920 | | sec_PKCS7EncodeAttributes(PLArenaPool *poolp, SECItem *dest, void *src) |
921 | 0 | { |
922 | 0 | return SEC_ASN1EncodeItem(poolp, dest, src, |
923 | 0 | sec_pkcs7_set_of_attribute_template); |
924 | 0 | } |
925 | | |
926 | | /* |
927 | | * Make sure that the order of the attributes guarantees valid DER |
928 | | * (which must be in lexigraphically ascending order for a SET OF); |
929 | | * if reordering is necessary it will be done in place (in attrs). |
930 | | */ |
931 | | SECStatus |
932 | | sec_PKCS7ReorderAttributes(SEC_PKCS7Attribute **attrs) |
933 | 0 | { |
934 | 0 | PLArenaPool *poolp; |
935 | 0 | int num_attrs, i, pass, besti; |
936 | 0 | unsigned int j; |
937 | 0 | SECItem **enc_attrs; |
938 | 0 | SEC_PKCS7Attribute **new_attrs; |
939 | 0 |
|
940 | 0 | /* |
941 | 0 | * I think we should not be called with NULL. But if we are, |
942 | 0 | * call it a success anyway, because the order *is* okay. |
943 | 0 | */ |
944 | 0 | PORT_Assert(attrs != NULL); |
945 | 0 | if (attrs == NULL) |
946 | 0 | return SECSuccess; |
947 | 0 | |
948 | 0 | /* |
949 | 0 | * Count how many attributes we are dealing with here. |
950 | 0 | */ |
951 | 0 | num_attrs = 0; |
952 | 0 | while (attrs[num_attrs] != NULL) |
953 | 0 | num_attrs++; |
954 | 0 |
|
955 | 0 | /* |
956 | 0 | * Again, I think we should have some attributes here. |
957 | 0 | * But if we do not, or if there is only one, then call it |
958 | 0 | * a success because it also already has a fine order. |
959 | 0 | */ |
960 | 0 | PORT_Assert(num_attrs); |
961 | 0 | if (num_attrs == 0 || num_attrs == 1) |
962 | 0 | return SECSuccess; |
963 | 0 | |
964 | 0 | /* |
965 | 0 | * Allocate an arena for us to work with, so it is easy to |
966 | 0 | * clean up all of the memory (fairly small pieces, really). |
967 | 0 | */ |
968 | 0 | poolp = PORT_NewArena(1024); /* XXX what is right value? */ |
969 | 0 | if (poolp == NULL) |
970 | 0 | return SECFailure; /* no memory; nothing we can do... */ |
971 | 0 | |
972 | 0 | /* |
973 | 0 | * Allocate arrays to hold the individual encodings which we will use |
974 | 0 | * for comparisons and the reordered attributes as they are sorted. |
975 | 0 | */ |
976 | 0 | enc_attrs = (SECItem **)PORT_ArenaZAlloc(poolp, num_attrs * sizeof(SECItem *)); |
977 | 0 | new_attrs = (SEC_PKCS7Attribute **)PORT_ArenaZAlloc(poolp, |
978 | 0 | num_attrs * sizeof(SEC_PKCS7Attribute *)); |
979 | 0 | if (enc_attrs == NULL || new_attrs == NULL) { |
980 | 0 | PORT_FreeArena(poolp, PR_FALSE); |
981 | 0 | return SECFailure; |
982 | 0 | } |
983 | 0 |
|
984 | 0 | /* |
985 | 0 | * DER encode each individual attribute. |
986 | 0 | */ |
987 | 0 | for (i = 0; i < num_attrs; i++) { |
988 | 0 | enc_attrs[i] = SEC_ASN1EncodeItem(poolp, NULL, attrs[i], |
989 | 0 | sec_pkcs7_attribute_template); |
990 | 0 | if (enc_attrs[i] == NULL) { |
991 | 0 | PORT_FreeArena(poolp, PR_FALSE); |
992 | 0 | return SECFailure; |
993 | 0 | } |
994 | 0 | } |
995 | 0 |
|
996 | 0 | /* |
997 | 0 | * Now compare and sort them; this is not the most efficient sorting |
998 | 0 | * method, but it is just fine for the problem at hand, because the |
999 | 0 | * number of attributes is (always) going to be small. |
1000 | 0 | */ |
1001 | 0 | for (pass = 0; pass < num_attrs; pass++) { |
1002 | 0 | /* |
1003 | 0 | * Find the first not-yet-accepted attribute. (Once one is |
1004 | 0 | * sorted into the other array, it is cleared from enc_attrs.) |
1005 | 0 | */ |
1006 | 0 | for (i = 0; i < num_attrs; i++) { |
1007 | 0 | if (enc_attrs[i] != NULL) |
1008 | 0 | break; |
1009 | 0 | } |
1010 | 0 | PORT_Assert(i < num_attrs); |
1011 | 0 | besti = i; |
1012 | 0 |
|
1013 | 0 | /* |
1014 | 0 | * Find the lowest (lexigraphically) encoding. One that is |
1015 | 0 | * shorter than all the rest is known to be "less" because each |
1016 | 0 | * attribute is of the same type (a SEQUENCE) and so thus the |
1017 | 0 | * first octet of each is the same, and the second octet is |
1018 | 0 | * the length (or the length of the length with the high bit |
1019 | 0 | * set, followed by the length, which also works out to always |
1020 | 0 | * order the shorter first). Two (or more) that have the |
1021 | 0 | * same length need to be compared byte by byte until a mismatch |
1022 | 0 | * is found. |
1023 | 0 | */ |
1024 | 0 | for (i = besti + 1; i < num_attrs; i++) { |
1025 | 0 | if (enc_attrs[i] == NULL) /* slot already handled */ |
1026 | 0 | continue; |
1027 | 0 | |
1028 | 0 | if (enc_attrs[i]->len != enc_attrs[besti]->len) { |
1029 | 0 | if (enc_attrs[i]->len < enc_attrs[besti]->len) |
1030 | 0 | besti = i; |
1031 | 0 | continue; |
1032 | 0 | } |
1033 | 0 |
|
1034 | 0 | for (j = 0; j < enc_attrs[i]->len; j++) { |
1035 | 0 | if (enc_attrs[i]->data[j] < enc_attrs[besti]->data[j]) { |
1036 | 0 | besti = i; |
1037 | 0 | break; |
1038 | 0 | } |
1039 | 0 | } |
1040 | 0 |
|
1041 | 0 | /* |
1042 | 0 | * For this not to be true, we would have to have encountered |
1043 | 0 | * two *identical* attributes, which I think we should not see. |
1044 | 0 | * So assert if it happens, but even if it does, let it go |
1045 | 0 | * through; the ordering of the two does not matter. |
1046 | 0 | */ |
1047 | 0 | PORT_Assert(j < enc_attrs[i]->len); |
1048 | 0 | } |
1049 | 0 |
|
1050 | 0 | /* |
1051 | 0 | * Now we have found the next-lowest one; copy it over and |
1052 | 0 | * remove it from enc_attrs. |
1053 | 0 | */ |
1054 | 0 | new_attrs[pass] = attrs[besti]; |
1055 | 0 | enc_attrs[besti] = NULL; |
1056 | 0 | } |
1057 | 0 |
|
1058 | 0 | /* |
1059 | 0 | * Now new_attrs has the attributes in the order we want; |
1060 | 0 | * copy them back into the attrs array we started with. |
1061 | 0 | */ |
1062 | 0 | for (i = 0; i < num_attrs; i++) |
1063 | 0 | attrs[i] = new_attrs[i]; |
1064 | 0 |
|
1065 | 0 | PORT_FreeArena(poolp, PR_FALSE); |
1066 | 0 | return SECSuccess; |
1067 | 0 | } |
1068 | | |
1069 | | /* |
1070 | | * End of attribute stuff. |
1071 | | * ------------------------------------------------------------------- |
1072 | | */ |
1073 | | |
1074 | | /* |
1075 | | * Templates and stuff. Keep these at the end of the file. |
1076 | | */ |
1077 | | |
1078 | | /* forward declaration */ |
1079 | | static const SEC_ASN1Template * |
1080 | | sec_pkcs7_choose_content_template(void *src_or_dest, PRBool encoding); |
1081 | | |
1082 | | static const SEC_ASN1TemplateChooserPtr sec_pkcs7_chooser = sec_pkcs7_choose_content_template; |
1083 | | |
1084 | | const SEC_ASN1Template sec_PKCS7ContentInfoTemplate[] = { |
1085 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1086 | | 0, NULL, sizeof(SEC_PKCS7ContentInfo) }, |
1087 | | { SEC_ASN1_OBJECT_ID, |
1088 | | offsetof(SEC_PKCS7ContentInfo, contentType) }, |
1089 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_DYNAMIC | SEC_ASN1_MAY_STREAM | SEC_ASN1_EXPLICIT | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | 0, |
1090 | | offsetof(SEC_PKCS7ContentInfo, content), |
1091 | | &sec_pkcs7_chooser }, |
1092 | | { 0 } |
1093 | | }; |
1094 | | |
1095 | | /* XXX These names should change from external to internal convention. */ |
1096 | | |
1097 | | static const SEC_ASN1Template SEC_PKCS7SignerInfoTemplate[] = { |
1098 | | { SEC_ASN1_SEQUENCE, |
1099 | | 0, NULL, sizeof(SEC_PKCS7SignerInfo) }, |
1100 | | { SEC_ASN1_INTEGER, |
1101 | | offsetof(SEC_PKCS7SignerInfo, version) }, |
1102 | | { SEC_ASN1_POINTER | SEC_ASN1_XTRN, |
1103 | | offsetof(SEC_PKCS7SignerInfo, issuerAndSN), |
1104 | | SEC_ASN1_SUB(CERT_IssuerAndSNTemplate) }, |
1105 | | { SEC_ASN1_INLINE | SEC_ASN1_XTRN, |
1106 | | offsetof(SEC_PKCS7SignerInfo, digestAlg), |
1107 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1108 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | 0, |
1109 | | offsetof(SEC_PKCS7SignerInfo, authAttr), |
1110 | | sec_pkcs7_set_of_attribute_template }, |
1111 | | { SEC_ASN1_INLINE | SEC_ASN1_XTRN, |
1112 | | offsetof(SEC_PKCS7SignerInfo, digestEncAlg), |
1113 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1114 | | { SEC_ASN1_OCTET_STRING, |
1115 | | offsetof(SEC_PKCS7SignerInfo, encDigest) }, |
1116 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | 1, |
1117 | | offsetof(SEC_PKCS7SignerInfo, unAuthAttr), |
1118 | | sec_pkcs7_set_of_attribute_template }, |
1119 | | { 0 } |
1120 | | }; |
1121 | | |
1122 | | static const SEC_ASN1Template SEC_PKCS7SignedDataTemplate[] = { |
1123 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1124 | | 0, NULL, sizeof(SEC_PKCS7SignedData) }, |
1125 | | { SEC_ASN1_INTEGER, |
1126 | | offsetof(SEC_PKCS7SignedData, version) }, |
1127 | | { SEC_ASN1_SET_OF | SEC_ASN1_XTRN, |
1128 | | offsetof(SEC_PKCS7SignedData, digestAlgorithms), |
1129 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1130 | | { SEC_ASN1_INLINE, |
1131 | | offsetof(SEC_PKCS7SignedData, contentInfo), |
1132 | | sec_PKCS7ContentInfoTemplate }, |
1133 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | |
1134 | | SEC_ASN1_XTRN | 0, |
1135 | | offsetof(SEC_PKCS7SignedData, rawCerts), |
1136 | | SEC_ASN1_SUB(SEC_SetOfAnyTemplate) }, |
1137 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | |
1138 | | SEC_ASN1_XTRN | 1, |
1139 | | offsetof(SEC_PKCS7SignedData, crls), |
1140 | | SEC_ASN1_SUB(CERT_SetOfSignedCrlTemplate) }, |
1141 | | { SEC_ASN1_SET_OF, |
1142 | | offsetof(SEC_PKCS7SignedData, signerInfos), |
1143 | | SEC_PKCS7SignerInfoTemplate }, |
1144 | | { 0 } |
1145 | | }; |
1146 | | |
1147 | | static const SEC_ASN1Template SEC_PointerToPKCS7SignedDataTemplate[] = { |
1148 | | { SEC_ASN1_POINTER, 0, SEC_PKCS7SignedDataTemplate } |
1149 | | }; |
1150 | | |
1151 | | static const SEC_ASN1Template SEC_PKCS7RecipientInfoTemplate[] = { |
1152 | | { SEC_ASN1_SEQUENCE, |
1153 | | 0, NULL, sizeof(SEC_PKCS7RecipientInfo) }, |
1154 | | { SEC_ASN1_INTEGER, |
1155 | | offsetof(SEC_PKCS7RecipientInfo, version) }, |
1156 | | { SEC_ASN1_POINTER | SEC_ASN1_XTRN, |
1157 | | offsetof(SEC_PKCS7RecipientInfo, issuerAndSN), |
1158 | | SEC_ASN1_SUB(CERT_IssuerAndSNTemplate) }, |
1159 | | { SEC_ASN1_INLINE | SEC_ASN1_XTRN, |
1160 | | offsetof(SEC_PKCS7RecipientInfo, keyEncAlg), |
1161 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1162 | | { SEC_ASN1_OCTET_STRING, |
1163 | | offsetof(SEC_PKCS7RecipientInfo, encKey) }, |
1164 | | { 0 } |
1165 | | }; |
1166 | | |
1167 | | static const SEC_ASN1Template SEC_PKCS7EncryptedContentInfoTemplate[] = { |
1168 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1169 | | 0, NULL, sizeof(SEC_PKCS7EncryptedContentInfo) }, |
1170 | | { SEC_ASN1_OBJECT_ID, |
1171 | | offsetof(SEC_PKCS7EncryptedContentInfo, contentType) }, |
1172 | | { SEC_ASN1_INLINE | SEC_ASN1_XTRN, |
1173 | | offsetof(SEC_PKCS7EncryptedContentInfo, contentEncAlg), |
1174 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1175 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_MAY_STREAM | SEC_ASN1_CONTEXT_SPECIFIC | |
1176 | | SEC_ASN1_XTRN | 0, |
1177 | | offsetof(SEC_PKCS7EncryptedContentInfo, encContent), |
1178 | | SEC_ASN1_SUB(SEC_OctetStringTemplate) }, |
1179 | | { 0 } |
1180 | | }; |
1181 | | |
1182 | | static const SEC_ASN1Template SEC_PKCS7EnvelopedDataTemplate[] = { |
1183 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1184 | | 0, NULL, sizeof(SEC_PKCS7EnvelopedData) }, |
1185 | | { SEC_ASN1_INTEGER, |
1186 | | offsetof(SEC_PKCS7EnvelopedData, version) }, |
1187 | | { SEC_ASN1_SET_OF, |
1188 | | offsetof(SEC_PKCS7EnvelopedData, recipientInfos), |
1189 | | SEC_PKCS7RecipientInfoTemplate }, |
1190 | | { SEC_ASN1_INLINE, |
1191 | | offsetof(SEC_PKCS7EnvelopedData, encContentInfo), |
1192 | | SEC_PKCS7EncryptedContentInfoTemplate }, |
1193 | | { 0 } |
1194 | | }; |
1195 | | |
1196 | | static const SEC_ASN1Template SEC_PointerToPKCS7EnvelopedDataTemplate[] = { |
1197 | | { SEC_ASN1_POINTER, 0, SEC_PKCS7EnvelopedDataTemplate } |
1198 | | }; |
1199 | | |
1200 | | static const SEC_ASN1Template SEC_PKCS7SignedAndEnvelopedDataTemplate[] = { |
1201 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1202 | | 0, NULL, sizeof(SEC_PKCS7SignedAndEnvelopedData) }, |
1203 | | { SEC_ASN1_INTEGER, |
1204 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, version) }, |
1205 | | { SEC_ASN1_SET_OF, |
1206 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, recipientInfos), |
1207 | | SEC_PKCS7RecipientInfoTemplate }, |
1208 | | { SEC_ASN1_SET_OF | SEC_ASN1_XTRN, |
1209 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, digestAlgorithms), |
1210 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1211 | | { SEC_ASN1_INLINE, |
1212 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, encContentInfo), |
1213 | | SEC_PKCS7EncryptedContentInfoTemplate }, |
1214 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | |
1215 | | SEC_ASN1_XTRN | 0, |
1216 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, rawCerts), |
1217 | | SEC_ASN1_SUB(SEC_SetOfAnyTemplate) }, |
1218 | | { SEC_ASN1_OPTIONAL | SEC_ASN1_CONSTRUCTED | SEC_ASN1_CONTEXT_SPECIFIC | |
1219 | | SEC_ASN1_XTRN | 1, |
1220 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, crls), |
1221 | | SEC_ASN1_SUB(CERT_SetOfSignedCrlTemplate) }, |
1222 | | { SEC_ASN1_SET_OF, |
1223 | | offsetof(SEC_PKCS7SignedAndEnvelopedData, signerInfos), |
1224 | | SEC_PKCS7SignerInfoTemplate }, |
1225 | | { 0 } |
1226 | | }; |
1227 | | |
1228 | | static const SEC_ASN1Template |
1229 | | SEC_PointerToPKCS7SignedAndEnvelopedDataTemplate[] = { |
1230 | | { SEC_ASN1_POINTER, 0, SEC_PKCS7SignedAndEnvelopedDataTemplate } |
1231 | | }; |
1232 | | |
1233 | | static const SEC_ASN1Template SEC_PKCS7DigestedDataTemplate[] = { |
1234 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1235 | | 0, NULL, sizeof(SEC_PKCS7DigestedData) }, |
1236 | | { SEC_ASN1_INTEGER, |
1237 | | offsetof(SEC_PKCS7DigestedData, version) }, |
1238 | | { SEC_ASN1_INLINE | SEC_ASN1_XTRN, |
1239 | | offsetof(SEC_PKCS7DigestedData, digestAlg), |
1240 | | SEC_ASN1_SUB(SECOID_AlgorithmIDTemplate) }, |
1241 | | { SEC_ASN1_INLINE, |
1242 | | offsetof(SEC_PKCS7DigestedData, contentInfo), |
1243 | | sec_PKCS7ContentInfoTemplate }, |
1244 | | { SEC_ASN1_OCTET_STRING, |
1245 | | offsetof(SEC_PKCS7DigestedData, digest) }, |
1246 | | { 0 } |
1247 | | }; |
1248 | | |
1249 | | static const SEC_ASN1Template SEC_PointerToPKCS7DigestedDataTemplate[] = { |
1250 | | { SEC_ASN1_POINTER, 0, SEC_PKCS7DigestedDataTemplate } |
1251 | | }; |
1252 | | |
1253 | | static const SEC_ASN1Template SEC_PKCS7EncryptedDataTemplate[] = { |
1254 | | { SEC_ASN1_SEQUENCE | SEC_ASN1_MAY_STREAM, |
1255 | | 0, NULL, sizeof(SEC_PKCS7EncryptedData) }, |
1256 | | { SEC_ASN1_INTEGER, |
1257 | | offsetof(SEC_PKCS7EncryptedData, version) }, |
1258 | | { SEC_ASN1_INLINE, |
1259 | | offsetof(SEC_PKCS7EncryptedData, encContentInfo), |
1260 | | SEC_PKCS7EncryptedContentInfoTemplate }, |
1261 | | { 0 } |
1262 | | }; |
1263 | | |
1264 | | static const SEC_ASN1Template SEC_PointerToPKCS7EncryptedDataTemplate[] = { |
1265 | | { SEC_ASN1_POINTER, 0, SEC_PKCS7EncryptedDataTemplate } |
1266 | | }; |
1267 | | |
1268 | | static const SEC_ASN1Template * |
1269 | | sec_pkcs7_choose_content_template(void *src_or_dest, PRBool encoding) |
1270 | 0 | { |
1271 | 0 | const SEC_ASN1Template *theTemplate; |
1272 | 0 | SEC_PKCS7ContentInfo *cinfo; |
1273 | 0 | SECOidTag kind; |
1274 | 0 |
|
1275 | 0 | PORT_Assert(src_or_dest != NULL); |
1276 | 0 | if (src_or_dest == NULL) |
1277 | 0 | return NULL; |
1278 | 0 | |
1279 | 0 | cinfo = (SEC_PKCS7ContentInfo *)src_or_dest; |
1280 | 0 | kind = SEC_PKCS7ContentType(cinfo); |
1281 | 0 | switch (kind) { |
1282 | 0 | default: |
1283 | 0 | theTemplate = SEC_ASN1_GET(SEC_PointerToAnyTemplate); |
1284 | 0 | break; |
1285 | 0 | case SEC_OID_PKCS7_DATA: |
1286 | 0 | theTemplate = SEC_ASN1_GET(SEC_PointerToOctetStringTemplate); |
1287 | 0 | break; |
1288 | 0 | case SEC_OID_PKCS7_SIGNED_DATA: |
1289 | 0 | theTemplate = SEC_PointerToPKCS7SignedDataTemplate; |
1290 | 0 | break; |
1291 | 0 | case SEC_OID_PKCS7_ENVELOPED_DATA: |
1292 | 0 | theTemplate = SEC_PointerToPKCS7EnvelopedDataTemplate; |
1293 | 0 | break; |
1294 | 0 | case SEC_OID_PKCS7_SIGNED_ENVELOPED_DATA: |
1295 | 0 | theTemplate = SEC_PointerToPKCS7SignedAndEnvelopedDataTemplate; |
1296 | 0 | break; |
1297 | 0 | case SEC_OID_PKCS7_DIGESTED_DATA: |
1298 | 0 | theTemplate = SEC_PointerToPKCS7DigestedDataTemplate; |
1299 | 0 | break; |
1300 | 0 | case SEC_OID_PKCS7_ENCRYPTED_DATA: |
1301 | 0 | theTemplate = SEC_PointerToPKCS7EncryptedDataTemplate; |
1302 | 0 | break; |
1303 | 0 | } |
1304 | 0 | return theTemplate; |
1305 | 0 | } |
1306 | | |
1307 | | /* |
1308 | | * End of templates. Do not add stuff after this; put new code |
1309 | | * up above the start of the template definitions. |
1310 | | */ |