/src/mozilla-central/security/nss/lib/ssl/sslencode.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
2 | | /* |
3 | | * This file is PRIVATE to SSL. |
4 | | * |
5 | | * This Source Code Form is subject to the terms of the Mozilla Public |
6 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
7 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
8 | | |
9 | | #include "nss.h" |
10 | | #include "prnetdb.h" |
11 | | #include "ssl.h" |
12 | | #include "sslimpl.h" |
13 | | |
14 | | /* Helper function to encode an unsigned integer into a buffer. */ |
15 | | static void |
16 | | ssl_EncodeUintX(PRUint8 *to, PRUint64 value, unsigned int bytes) |
17 | 0 | { |
18 | 0 | PRUint64 encoded; |
19 | 0 |
|
20 | 0 | PORT_Assert(bytes > 0 && bytes <= sizeof(encoded)); |
21 | 0 |
|
22 | 0 | encoded = PR_htonll(value); |
23 | 0 | PORT_Memcpy(to, ((unsigned char *)(&encoded)) + (sizeof(encoded) - bytes), |
24 | 0 | bytes); |
25 | 0 | } |
26 | | |
27 | | /* Grow a buffer to hold newLen bytes of data. When used for recv/xmit buffers, |
28 | | * the caller must hold xmitBufLock or recvBufLock, as appropriate. */ |
29 | | SECStatus |
30 | | sslBuffer_Grow(sslBuffer *b, unsigned int newLen) |
31 | 0 | { |
32 | 0 | PORT_Assert(b); |
33 | 0 | if (b->fixed) { |
34 | 0 | PORT_Assert(newLen <= b->space); |
35 | 0 | if (newLen > b->space) { |
36 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
37 | 0 | return SECFailure; |
38 | 0 | } |
39 | 0 | return SECSuccess; |
40 | 0 | } |
41 | 0 | |
42 | 0 | newLen = PR_MAX(newLen, b->len + 1024); |
43 | 0 | if (newLen > b->space) { |
44 | 0 | unsigned char *newBuf; |
45 | 0 | if (b->buf) { |
46 | 0 | newBuf = (unsigned char *)PORT_Realloc(b->buf, newLen); |
47 | 0 | } else { |
48 | 0 | newBuf = (unsigned char *)PORT_Alloc(newLen); |
49 | 0 | } |
50 | 0 | if (!newBuf) { |
51 | 0 | return SECFailure; |
52 | 0 | } |
53 | 0 | b->buf = newBuf; |
54 | 0 | b->space = newLen; |
55 | 0 | } |
56 | 0 | return SECSuccess; |
57 | 0 | } |
58 | | |
59 | | SECStatus |
60 | | sslBuffer_Append(sslBuffer *b, const void *data, unsigned int len) |
61 | 0 | { |
62 | 0 | SECStatus rv = sslBuffer_Grow(b, b->len + len); |
63 | 0 | if (rv != SECSuccess) { |
64 | 0 | return SECFailure; /* Code already set. */ |
65 | 0 | } |
66 | 0 | PORT_Memcpy(SSL_BUFFER_NEXT(b), data, len); |
67 | 0 | b->len += len; |
68 | 0 | return SECSuccess; |
69 | 0 | } |
70 | | |
71 | | SECStatus |
72 | | sslBuffer_AppendNumber(sslBuffer *b, PRUint64 v, unsigned int size) |
73 | 0 | { |
74 | 0 | SECStatus rv = sslBuffer_Grow(b, b->len + size); |
75 | 0 | if (rv != SECSuccess) { |
76 | 0 | return SECFailure; |
77 | 0 | } |
78 | 0 | ssl_EncodeUintX(SSL_BUFFER_NEXT(b), v, size); |
79 | 0 | b->len += size; |
80 | 0 | return SECSuccess; |
81 | 0 | } |
82 | | |
83 | | SECStatus |
84 | | sslBuffer_AppendVariable(sslBuffer *b, const PRUint8 *data, unsigned int len, |
85 | | unsigned int size) |
86 | 0 | { |
87 | 0 | PORT_Assert(size <= 4 && size > 0); |
88 | 0 | PORT_Assert(b); |
89 | 0 | if (len >= (1ULL << (8 * size))) { |
90 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
91 | 0 | return SECFailure; |
92 | 0 | } |
93 | 0 |
|
94 | 0 | if (sslBuffer_Grow(b, b->len + len + size) != SECSuccess) { |
95 | 0 | return SECFailure; |
96 | 0 | } |
97 | 0 | |
98 | 0 | ssl_EncodeUintX(SSL_BUFFER_NEXT(b), len, size); |
99 | 0 | b->len += size; |
100 | 0 | if (len != 0) { |
101 | 0 | PORT_Assert(data); |
102 | 0 | /* We sometimes pass NULL, 0 and memcpy() doesn't want NULL. */ |
103 | 0 | PORT_Memcpy(SSL_BUFFER_NEXT(b), data, len); |
104 | 0 | } |
105 | 0 | b->len += len; |
106 | 0 | return SECSuccess; |
107 | 0 | } |
108 | | |
109 | | SECStatus |
110 | | sslBuffer_AppendBuffer(sslBuffer *b, const sslBuffer *append) |
111 | 0 | { |
112 | 0 | return sslBuffer_Append(b, append->buf, append->len); |
113 | 0 | } |
114 | | |
115 | | SECStatus |
116 | | sslBuffer_AppendBufferVariable(sslBuffer *b, const sslBuffer *append, |
117 | | unsigned int size) |
118 | 0 | { |
119 | 0 | return sslBuffer_AppendVariable(b, append->buf, append->len, size); |
120 | 0 | } |
121 | | |
122 | | SECStatus |
123 | | sslBuffer_Skip(sslBuffer *b, unsigned int size, unsigned int *savedOffset) |
124 | 0 | { |
125 | 0 | if (sslBuffer_Grow(b, b->len + size) != SECSuccess) { |
126 | 0 | return SECFailure; |
127 | 0 | } |
128 | 0 | |
129 | 0 | if (savedOffset) { |
130 | 0 | *savedOffset = b->len; |
131 | 0 | } |
132 | 0 | b->len += size; |
133 | 0 | return SECSuccess; |
134 | 0 | } |
135 | | |
136 | | /* A common problem is that a buffer is used to construct a variable length |
137 | | * structure of unknown length. The length field for that structure is then |
138 | | * populated afterwards. This function makes this process a little easier. |
139 | | * |
140 | | * To use this, before encoding the variable length structure, skip the spot |
141 | | * where the length would be using sslBuffer_Skip(). After encoding the |
142 | | * structure, and before encoding anything else, call this function passing the |
143 | | * value returned from sslBuffer_Skip() as |at| to have the length inserted. |
144 | | */ |
145 | | SECStatus |
146 | | sslBuffer_InsertLength(sslBuffer *b, unsigned int at, unsigned int size) |
147 | 0 | { |
148 | 0 | unsigned int len; |
149 | 0 |
|
150 | 0 | PORT_Assert(b->len >= at + size); |
151 | 0 | PORT_Assert(b->space >= at + size); |
152 | 0 | len = b->len - (at + size); |
153 | 0 |
|
154 | 0 | PORT_Assert(size <= 4 && size > 0); |
155 | 0 | if (len >= (1ULL << (8 * size))) { |
156 | 0 | PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); |
157 | 0 | return SECFailure; |
158 | 0 | } |
159 | 0 |
|
160 | 0 | ssl_EncodeUintX(SSL_BUFFER_BASE(b) + at, len, size); |
161 | 0 | return SECSuccess; |
162 | 0 | } |
163 | | |
164 | | void |
165 | | sslBuffer_Clear(sslBuffer *b) |
166 | 0 | { |
167 | 0 | if (!b->fixed) { |
168 | 0 | if (b->buf) { |
169 | 0 | PORT_Free(b->buf); |
170 | 0 | b->buf = NULL; |
171 | 0 | } |
172 | 0 | b->space = 0; |
173 | 0 | } |
174 | 0 | b->len = 0; |
175 | 0 | } |
176 | | |
177 | | SECStatus |
178 | | sslRead_Read(sslReader *reader, unsigned int count, sslReadBuffer *out) |
179 | 0 | { |
180 | 0 | if (!reader || !out) { |
181 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
182 | 0 | return SECFailure; |
183 | 0 | } |
184 | 0 | if (reader->buf.len < reader->offset || |
185 | 0 | count > SSL_READER_REMAINING(reader)) { |
186 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
187 | 0 | return SECFailure; |
188 | 0 | } |
189 | 0 |
|
190 | 0 | out->buf = SSL_READER_CURRENT(reader); |
191 | 0 | out->len = count; |
192 | 0 | reader->offset += count; |
193 | 0 |
|
194 | 0 | return SECSuccess; |
195 | 0 | } |
196 | | |
197 | | SECStatus |
198 | | sslRead_ReadVariable(sslReader *reader, unsigned int sizeLen, sslReadBuffer *out) |
199 | 0 | { |
200 | 0 | PRUint64 variableLen = 0; |
201 | 0 | SECStatus rv = sslRead_ReadNumber(reader, sizeLen, &variableLen); |
202 | 0 | if (rv != SECSuccess) { |
203 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
204 | 0 | return SECFailure; |
205 | 0 | } |
206 | 0 | if (!variableLen) { |
207 | 0 | // It is ok to have an empty variable. |
208 | 0 | out->len = variableLen; |
209 | 0 | return SECSuccess; |
210 | 0 | } |
211 | 0 | return sslRead_Read(reader, variableLen, out); |
212 | 0 | } |
213 | | |
214 | | SECStatus |
215 | | sslRead_ReadNumber(sslReader *reader, unsigned int bytes, PRUint64 *num) |
216 | 0 | { |
217 | 0 | if (!reader || !num) { |
218 | 0 | PORT_SetError(SEC_ERROR_INVALID_ARGS); |
219 | 0 | return SECFailure; |
220 | 0 | } |
221 | 0 | if (reader->buf.len < reader->offset || |
222 | 0 | bytes > SSL_READER_REMAINING(reader) || |
223 | 0 | bytes > 8) { |
224 | 0 | PORT_SetError(SEC_ERROR_BAD_DATA); |
225 | 0 | return SECFailure; |
226 | 0 | } |
227 | 0 | unsigned int i; |
228 | 0 | PRUint64 number = 0; |
229 | 0 | for (i = 0; i < bytes; i++) { |
230 | 0 | number = (number << 8) + reader->buf.buf[i + reader->offset]; |
231 | 0 | } |
232 | 0 |
|
233 | 0 | reader->offset = reader->offset + bytes; |
234 | 0 | *num = number; |
235 | 0 | return SECSuccess; |
236 | 0 | } |
237 | | |
238 | | /************************************************************************** |
239 | | * Append Handshake functions. |
240 | | * All these functions set appropriate error codes. |
241 | | * Most rely on ssl3_AppendHandshake to set the error code. |
242 | | **************************************************************************/ |
243 | 0 | #define MAX_SEND_BUF_LENGTH 32000 /* watch for 16-bit integer overflow */ |
244 | | #define MIN_SEND_BUF_LENGTH 4000 |
245 | | |
246 | | SECStatus |
247 | | ssl3_AppendHandshake(sslSocket *ss, const void *void_src, unsigned int bytes) |
248 | 0 | { |
249 | 0 | unsigned char *src = (unsigned char *)void_src; |
250 | 0 | int room = ss->sec.ci.sendBuf.space - ss->sec.ci.sendBuf.len; |
251 | 0 | SECStatus rv; |
252 | 0 |
|
253 | 0 | PORT_Assert(ss->opt.noLocks || ssl_HaveSSL3HandshakeLock(ss)); /* protects sendBuf. */ |
254 | 0 |
|
255 | 0 | if (!bytes) |
256 | 0 | return SECSuccess; |
257 | 0 | if (ss->sec.ci.sendBuf.space < MAX_SEND_BUF_LENGTH && room < bytes) { |
258 | 0 | rv = sslBuffer_Grow(&ss->sec.ci.sendBuf, PR_MAX(MIN_SEND_BUF_LENGTH, |
259 | 0 | PR_MIN(MAX_SEND_BUF_LENGTH, ss->sec.ci.sendBuf.len + bytes))); |
260 | 0 | if (rv != SECSuccess) |
261 | 0 | return SECFailure; /* sslBuffer_Grow sets a memory error code. */ |
262 | 0 | room = ss->sec.ci.sendBuf.space - ss->sec.ci.sendBuf.len; |
263 | 0 | } |
264 | 0 |
|
265 | 0 | PRINT_BUF(60, (ss, "Append to Handshake", (unsigned char *)void_src, bytes)); |
266 | 0 | rv = ssl3_UpdateHandshakeHashes(ss, src, bytes); |
267 | 0 | if (rv != SECSuccess) |
268 | 0 | return SECFailure; /* error code set by ssl3_UpdateHandshakeHashes */ |
269 | 0 | |
270 | 0 | while (bytes > room) { |
271 | 0 | if (room > 0) |
272 | 0 | PORT_Memcpy(ss->sec.ci.sendBuf.buf + ss->sec.ci.sendBuf.len, src, |
273 | 0 | room); |
274 | 0 | ss->sec.ci.sendBuf.len += room; |
275 | 0 | rv = ssl3_FlushHandshake(ss, ssl_SEND_FLAG_FORCE_INTO_BUFFER); |
276 | 0 | if (rv != SECSuccess) { |
277 | 0 | return SECFailure; /* error code set by ssl3_FlushHandshake */ |
278 | 0 | } |
279 | 0 | bytes -= room; |
280 | 0 | src += room; |
281 | 0 | room = ss->sec.ci.sendBuf.space; |
282 | 0 | PORT_Assert(ss->sec.ci.sendBuf.len == 0); |
283 | 0 | } |
284 | 0 | PORT_Memcpy(ss->sec.ci.sendBuf.buf + ss->sec.ci.sendBuf.len, src, bytes); |
285 | 0 | ss->sec.ci.sendBuf.len += bytes; |
286 | 0 | return SECSuccess; |
287 | 0 | } |
288 | | |
289 | | SECStatus |
290 | | ssl3_AppendHandshakeNumber(sslSocket *ss, PRUint64 num, unsigned int lenSize) |
291 | 0 | { |
292 | 0 | PRUint8 b[sizeof(num)]; |
293 | 0 | SSL_TRC(60, ("%d: number:", SSL_GETPID())); |
294 | 0 | ssl_EncodeUintX(b, num, lenSize); |
295 | 0 | return ssl3_AppendHandshake(ss, b, lenSize); |
296 | 0 | } |
297 | | |
298 | | SECStatus |
299 | | ssl3_AppendHandshakeVariable(sslSocket *ss, const PRUint8 *src, |
300 | | unsigned int bytes, unsigned int lenSize) |
301 | 0 | { |
302 | 0 | SECStatus rv; |
303 | 0 |
|
304 | 0 | PORT_Assert((bytes < (1 << 8) && lenSize == 1) || |
305 | 0 | (bytes < (1L << 16) && lenSize == 2) || |
306 | 0 | (bytes < (1L << 24) && lenSize == 3)); |
307 | 0 |
|
308 | 0 | SSL_TRC(60, ("%d: append variable:", SSL_GETPID())); |
309 | 0 | rv = ssl3_AppendHandshakeNumber(ss, bytes, lenSize); |
310 | 0 | if (rv != SECSuccess) { |
311 | 0 | return SECFailure; /* error code set by AppendHandshake. */ |
312 | 0 | } |
313 | 0 | SSL_TRC(60, ("data:")); |
314 | 0 | return ssl3_AppendHandshake(ss, src, bytes); |
315 | 0 | } |
316 | | |
317 | | SECStatus |
318 | | ssl3_AppendBufferToHandshake(sslSocket *ss, sslBuffer *buf) |
319 | 0 | { |
320 | 0 | return ssl3_AppendHandshake(ss, buf->buf, buf->len); |
321 | 0 | } |
322 | | |
323 | | SECStatus |
324 | | ssl3_AppendBufferToHandshakeVariable(sslSocket *ss, sslBuffer *buf, |
325 | | unsigned int lenSize) |
326 | 0 | { |
327 | 0 | return ssl3_AppendHandshakeVariable(ss, buf->buf, buf->len, lenSize); |
328 | 0 | } |