Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/security/sandbox/chromium/base/bind_helpers.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2
// Use of this source code is governed by a BSD-style license that can be
3
// found in the LICENSE file.
4
5
// This defines a set of argument wrappers and related factory methods that
6
// can be used specify the refcounting and reference semantics of arguments
7
// that are bound by the Bind() function in base/bind.h.
8
//
9
// It also defines a set of simple functions and utilities that people want
10
// when using Callback<> and Bind().
11
//
12
//
13
// ARGUMENT BINDING WRAPPERS
14
//
15
// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
16
// base::ConstRef(), and base::IgnoreResult().
17
//
18
// Unretained() allows Bind() to bind a non-refcounted class, and to disable
19
// refcounting on arguments that are refcounted objects.
20
//
21
// Owned() transfers ownership of an object to the Callback resulting from
22
// bind; the object will be deleted when the Callback is deleted.
23
//
24
// Passed() is for transferring movable-but-not-copyable types (eg. unique_ptr)
25
// through a Callback. Logically, this signifies a destructive transfer of
26
// the state of the argument into the target function.  Invoking
27
// Callback::Run() twice on a Callback that was created with a Passed()
28
// argument will CHECK() because the first invocation would have already
29
// transferred ownership to the target function.
30
//
31
// RetainedRef() accepts a ref counted object and retains a reference to it.
32
// When the callback is called, the object is passed as a raw pointer.
33
//
34
// ConstRef() allows binding a constant reference to an argument rather
35
// than a copy.
36
//
37
// IgnoreResult() is used to adapt a function or Callback with a return type to
38
// one with a void return. This is most useful if you have a function with,
39
// say, a pesky ignorable bool return that you want to use with PostTask or
40
// something else that expect a Callback with a void return.
41
//
42
// EXAMPLE OF Unretained():
43
//
44
//   class Foo {
45
//    public:
46
//     void func() { cout << "Foo:f" << endl; }
47
//   };
48
//
49
//   // In some function somewhere.
50
//   Foo foo;
51
//   Closure foo_callback =
52
//       Bind(&Foo::func, Unretained(&foo));
53
//   foo_callback.Run();  // Prints "Foo:f".
54
//
55
// Without the Unretained() wrapper on |&foo|, the above call would fail
56
// to compile because Foo does not support the AddRef() and Release() methods.
57
//
58
//
59
// EXAMPLE OF Owned():
60
//
61
//   void foo(int* arg) { cout << *arg << endl }
62
//
63
//   int* pn = new int(1);
64
//   Closure foo_callback = Bind(&foo, Owned(pn));
65
//
66
//   foo_callback.Run();  // Prints "1"
67
//   foo_callback.Run();  // Prints "1"
68
//   *n = 2;
69
//   foo_callback.Run();  // Prints "2"
70
//
71
//   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
72
//                          // |foo_callback| goes out of scope.
73
//
74
// Without Owned(), someone would have to know to delete |pn| when the last
75
// reference to the Callback is deleted.
76
//
77
// EXAMPLE OF RetainedRef():
78
//
79
//    void foo(RefCountedBytes* bytes) {}
80
//
81
//    scoped_refptr<RefCountedBytes> bytes = ...;
82
//    Closure callback = Bind(&foo, base::RetainedRef(bytes));
83
//    callback.Run();
84
//
85
// Without RetainedRef, the scoped_refptr would try to implicitly convert to
86
// a raw pointer and fail compilation:
87
//
88
//    Closure callback = Bind(&foo, bytes); // ERROR!
89
//
90
//
91
// EXAMPLE OF ConstRef():
92
//
93
//   void foo(int arg) { cout << arg << endl }
94
//
95
//   int n = 1;
96
//   Closure no_ref = Bind(&foo, n);
97
//   Closure has_ref = Bind(&foo, ConstRef(n));
98
//
99
//   no_ref.Run();  // Prints "1"
100
//   has_ref.Run();  // Prints "1"
101
//
102
//   n = 2;
103
//   no_ref.Run();  // Prints "1"
104
//   has_ref.Run();  // Prints "2"
105
//
106
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
107
// its bound callbacks.
108
//
109
//
110
// EXAMPLE OF IgnoreResult():
111
//
112
//   int DoSomething(int arg) { cout << arg << endl; }
113
//
114
//   // Assign to a Callback with a void return type.
115
//   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
116
//   cb->Run(1);  // Prints "1".
117
//
118
//   // Prints "1" on |ml|.
119
//   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
120
//
121
//
122
// EXAMPLE OF Passed():
123
//
124
//   void TakesOwnership(std::unique_ptr<Foo> arg) { }
125
//   std::unique_ptr<Foo> CreateFoo() { return std::unique_ptr<Foo>(new Foo());
126
//   }
127
//
128
//   std::unique_ptr<Foo> f(new Foo());
129
//
130
//   // |cb| is given ownership of Foo(). |f| is now NULL.
131
//   // You can use std::move(f) in place of &f, but it's more verbose.
132
//   Closure cb = Bind(&TakesOwnership, Passed(&f));
133
//
134
//   // Run was never called so |cb| still owns Foo() and deletes
135
//   // it on Reset().
136
//   cb.Reset();
137
//
138
//   // |cb| is given a new Foo created by CreateFoo().
139
//   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
140
//
141
//   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
142
//   // no longer owns Foo() and, if reset, would not delete Foo().
143
//   cb.Run();  // Foo() is now transferred to |arg| and deleted.
144
//   cb.Run();  // This CHECK()s since Foo() already been used once.
145
//
146
// Passed() is particularly useful with PostTask() when you are transferring
147
// ownership of an argument into a task, but don't necessarily know if the
148
// task will always be executed. This can happen if the task is cancellable
149
// or if it is posted to a TaskRunner.
150
//
151
//
152
// SIMPLE FUNCTIONS AND UTILITIES.
153
//
154
//   DoNothing() - Useful for creating a Closure that does nothing when called.
155
//   DeletePointer<T>() - Useful for creating a Closure that will delete a
156
//                        pointer when invoked. Only use this when necessary.
157
//                        In most cases MessageLoop::DeleteSoon() is a better
158
//                        fit.
159
160
#ifndef BASE_BIND_HELPERS_H_
161
#define BASE_BIND_HELPERS_H_
162
163
#include <stddef.h>
164
165
#include <type_traits>
166
#include <utility>
167
168
#include "base/callback.h"
169
#include "base/memory/weak_ptr.h"
170
#include "build/build_config.h"
171
172
namespace base {
173
174
template <typename T>
175
struct IsWeakReceiver;
176
177
template <typename>
178
struct BindUnwrapTraits;
179
180
namespace internal {
181
182
template <typename Functor, typename SFINAE = void>
183
struct FunctorTraits;
184
185
template <typename T>
186
class UnretainedWrapper {
187
 public:
188
  explicit UnretainedWrapper(T* o) : ptr_(o) {}
189
  T* get() const { return ptr_; }
190
 private:
191
  T* ptr_;
192
};
193
194
template <typename T>
195
class ConstRefWrapper {
196
 public:
197
  explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
198
  const T& get() const { return *ptr_; }
199
 private:
200
  const T* ptr_;
201
};
202
203
template <typename T>
204
class RetainedRefWrapper {
205
 public:
206
  explicit RetainedRefWrapper(T* o) : ptr_(o) {}
207
  explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
208
  T* get() const { return ptr_.get(); }
209
 private:
210
  scoped_refptr<T> ptr_;
211
};
212
213
template <typename T>
214
struct IgnoreResultHelper {
215
  explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
216
  explicit operator bool() const { return !!functor_; }
217
218
  T functor_;
219
};
220
221
// An alternate implementation is to avoid the destructive copy, and instead
222
// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
223
// a class that is essentially a std::unique_ptr<>.
224
//
225
// The current implementation has the benefit though of leaving ParamTraits<>
226
// fully in callback_internal.h as well as avoiding type conversions during
227
// storage.
228
template <typename T>
229
class OwnedWrapper {
230
 public:
231
  explicit OwnedWrapper(T* o) : ptr_(o) {}
232
  ~OwnedWrapper() { delete ptr_; }
233
  T* get() const { return ptr_; }
234
  OwnedWrapper(OwnedWrapper&& other) {
235
    ptr_ = other.ptr_;
236
    other.ptr_ = NULL;
237
  }
238
239
 private:
240
  mutable T* ptr_;
241
};
242
243
// PassedWrapper is a copyable adapter for a scoper that ignores const.
244
//
245
// It is needed to get around the fact that Bind() takes a const reference to
246
// all its arguments.  Because Bind() takes a const reference to avoid
247
// unnecessary copies, it is incompatible with movable-but-not-copyable
248
// types; doing a destructive "move" of the type into Bind() would violate
249
// the const correctness.
250
//
251
// This conundrum cannot be solved without either C++11 rvalue references or
252
// a O(2^n) blowup of Bind() templates to handle each combination of regular
253
// types and movable-but-not-copyable types.  Thus we introduce a wrapper type
254
// that is copyable to transmit the correct type information down into
255
// BindState<>. Ignoring const in this type makes sense because it is only
256
// created when we are explicitly trying to do a destructive move.
257
//
258
// Two notes:
259
//  1) PassedWrapper supports any type that has a move constructor, however
260
//     the type will need to be specifically whitelisted in order for it to be
261
//     bound to a Callback. We guard this explicitly at the call of Passed()
262
//     to make for clear errors. Things not given to Passed() will be forwarded
263
//     and stored by value which will not work for general move-only types.
264
//  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
265
//     scoper to a Callback and allow the Callback to execute once.
266
template <typename T>
267
class PassedWrapper {
268
 public:
269
  explicit PassedWrapper(T&& scoper)
270
      : is_valid_(true), scoper_(std::move(scoper)) {}
271
  PassedWrapper(PassedWrapper&& other)
272
      : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
273
  T Take() const {
274
    CHECK(is_valid_);
275
    is_valid_ = false;
276
    return std::move(scoper_);
277
  }
278
279
 private:
280
  mutable bool is_valid_;
281
  mutable T scoper_;
282
};
283
284
template <typename T>
285
using Unwrapper = BindUnwrapTraits<typename std::decay<T>::type>;
286
287
template <typename T>
288
0
auto Unwrap(T&& o) -> decltype(Unwrapper<T>::Unwrap(std::forward<T>(o))) {
289
0
  return Unwrapper<T>::Unwrap(std::forward<T>(o));
290
0
}
291
292
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
293
// method.  It is used internally by Bind() to select the correct
294
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
295
// the target object is invalidated.
296
//
297
// The first argument should be the type of the object that will be received by
298
// the method.
299
template <bool is_method, typename... Args>
300
struct IsWeakMethod : std::false_type {};
301
302
template <typename T, typename... Args>
303
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
304
305
// Packs a list of types to hold them in a single type.
306
template <typename... Types>
307
struct TypeList {};
308
309
// Used for DropTypeListItem implementation.
310
template <size_t n, typename List>
311
struct DropTypeListItemImpl;
312
313
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
314
template <size_t n, typename T, typename... List>
315
struct DropTypeListItemImpl<n, TypeList<T, List...>>
316
    : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
317
318
template <typename T, typename... List>
319
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
320
  using Type = TypeList<T, List...>;
321
};
322
323
template <>
324
struct DropTypeListItemImpl<0, TypeList<>> {
325
  using Type = TypeList<>;
326
};
327
328
// A type-level function that drops |n| list item from given TypeList.
329
template <size_t n, typename List>
330
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
331
332
// Used for TakeTypeListItem implementation.
333
template <size_t n, typename List, typename... Accum>
334
struct TakeTypeListItemImpl;
335
336
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
337
template <size_t n, typename T, typename... List, typename... Accum>
338
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
339
    : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
340
341
template <typename T, typename... List, typename... Accum>
342
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
343
  using Type = TypeList<Accum...>;
344
};
345
346
template <typename... Accum>
347
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
348
  using Type = TypeList<Accum...>;
349
};
350
351
// A type-level function that takes first |n| list item from given TypeList.
352
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
353
// TypeList<A, B, C>.
354
template <size_t n, typename List>
355
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
356
357
// Used for ConcatTypeLists implementation.
358
template <typename List1, typename List2>
359
struct ConcatTypeListsImpl;
360
361
template <typename... Types1, typename... Types2>
362
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
363
  using Type = TypeList<Types1..., Types2...>;
364
};
365
366
// A type-level function that concats two TypeLists.
367
template <typename List1, typename List2>
368
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
369
370
// Used for MakeFunctionType implementation.
371
template <typename R, typename ArgList>
372
struct MakeFunctionTypeImpl;
373
374
template <typename R, typename... Args>
375
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
376
  // MSVC 2013 doesn't support Type Alias of function types.
377
  // Revisit this after we update it to newer version.
378
  typedef R Type(Args...);
379
};
380
381
// A type-level function that constructs a function type that has |R| as its
382
// return type and has TypeLists items as its arguments.
383
template <typename R, typename ArgList>
384
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
385
386
// Used for ExtractArgs and ExtractReturnType.
387
template <typename Signature>
388
struct ExtractArgsImpl;
389
390
template <typename R, typename... Args>
391
struct ExtractArgsImpl<R(Args...)> {
392
  using ReturnType = R;
393
  using ArgsList = TypeList<Args...>;
394
};
395
396
// A type-level function that extracts function arguments into a TypeList.
397
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
398
template <typename Signature>
399
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
400
401
// A type-level function that extracts the return type of a function.
402
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
403
template <typename Signature>
404
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
405
406
}  // namespace internal
407
408
template <typename T>
409
static inline internal::UnretainedWrapper<T> Unretained(T* o) {
410
  return internal::UnretainedWrapper<T>(o);
411
}
412
413
template <typename T>
414
static inline internal::RetainedRefWrapper<T> RetainedRef(T* o) {
415
  return internal::RetainedRefWrapper<T>(o);
416
}
417
418
template <typename T>
419
static inline internal::RetainedRefWrapper<T> RetainedRef(scoped_refptr<T> o) {
420
  return internal::RetainedRefWrapper<T>(std::move(o));
421
}
422
423
template <typename T>
424
static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
425
  return internal::ConstRefWrapper<T>(o);
426
}
427
428
template <typename T>
429
static inline internal::OwnedWrapper<T> Owned(T* o) {
430
  return internal::OwnedWrapper<T>(o);
431
}
432
433
// We offer 2 syntaxes for calling Passed().  The first takes an rvalue and
434
// is best suited for use with the return value of a function or other temporary
435
// rvalues. The second takes a pointer to the scoper and is just syntactic sugar
436
// to avoid having to write Passed(std::move(scoper)).
437
//
438
// Both versions of Passed() prevent T from being an lvalue reference. The first
439
// via use of enable_if, and the second takes a T* which will not bind to T&.
440
template <typename T,
441
          typename std::enable_if<!std::is_lvalue_reference<T>::value>::type* = nullptr>
442
static inline internal::PassedWrapper<T> Passed(T&& scoper) {
443
  return internal::PassedWrapper<T>(std::move(scoper));
444
}
445
template <typename T>
446
static inline internal::PassedWrapper<T> Passed(T* scoper) {
447
  return internal::PassedWrapper<T>(std::move(*scoper));
448
}
449
450
template <typename T>
451
static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
452
  return internal::IgnoreResultHelper<T>(std::move(data));
453
}
454
455
BASE_EXPORT void DoNothing();
456
457
template<typename T>
458
void DeletePointer(T* obj) {
459
  delete obj;
460
}
461
462
// An injection point to control |this| pointer behavior on a method invocation.
463
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
464
// method, base::Bind cancels the method invocation if the receiver is tested as
465
// false.
466
// E.g. Foo::bar() is not called:
467
//   struct Foo : base::SupportsWeakPtr<Foo> {
468
//     void bar() {}
469
//   };
470
//
471
//   WeakPtr<Foo> oo = nullptr;
472
//   base::Bind(&Foo::bar, oo).Run();
473
template <typename T>
474
struct IsWeakReceiver : std::false_type {};
475
476
template <typename T>
477
struct IsWeakReceiver<internal::ConstRefWrapper<T>> : IsWeakReceiver<T> {};
478
479
template <typename T>
480
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
481
482
// An injection point to control how bound objects passed to the target
483
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
484
// before the target function is invoked.
485
template <typename>
486
struct BindUnwrapTraits {
487
  template <typename T>
488
0
  static T&& Unwrap(T&& o) { return std::forward<T>(o); }
489
};
490
491
template <typename T>
492
struct BindUnwrapTraits<internal::UnretainedWrapper<T>> {
493
  static T* Unwrap(const internal::UnretainedWrapper<T>& o) {
494
    return o.get();
495
  }
496
};
497
498
template <typename T>
499
struct BindUnwrapTraits<internal::ConstRefWrapper<T>> {
500
  static const T& Unwrap(const internal::ConstRefWrapper<T>& o) {
501
    return o.get();
502
  }
503
};
504
505
template <typename T>
506
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
507
  static T* Unwrap(const internal::RetainedRefWrapper<T>& o) {
508
    return o.get();
509
  }
510
};
511
512
template <typename T>
513
struct BindUnwrapTraits<internal::OwnedWrapper<T>> {
514
  static T* Unwrap(const internal::OwnedWrapper<T>& o) {
515
    return o.get();
516
  }
517
};
518
519
template <typename T>
520
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
521
  static T Unwrap(const internal::PassedWrapper<T>& o) {
522
    return o.Take();
523
  }
524
};
525
526
// CallbackCancellationTraits allows customization of Callback's cancellation
527
// semantics. By default, callbacks are not cancellable. A specialization should
528
// set is_cancellable = true and implement an IsCancelled() that returns if the
529
// callback should be cancelled.
530
template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
531
struct CallbackCancellationTraits {
532
  static constexpr bool is_cancellable = false;
533
};
534
535
// Specialization for method bound to weak pointer receiver.
536
template <typename Functor, typename... BoundArgs>
537
struct CallbackCancellationTraits<
538
    Functor,
539
    std::tuple<BoundArgs...>,
540
    typename std::enable_if<
541
        internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
542
                               BoundArgs...>::value>::type> {
543
  static constexpr bool is_cancellable = true;
544
545
  template <typename Receiver, typename... Args>
546
  static bool IsCancelled(const Functor&,
547
                          const Receiver& receiver,
548
                          const Args&...) {
549
    return !receiver;
550
  }
551
};
552
553
// Specialization for a nested bind.
554
template <typename Signature, typename... BoundArgs>
555
struct CallbackCancellationTraits<OnceCallback<Signature>,
556
                                  std::tuple<BoundArgs...>> {
557
  static constexpr bool is_cancellable = true;
558
559
  template <typename Functor>
560
  static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
561
    return functor.IsCancelled();
562
  }
563
};
564
565
template <typename Signature, typename... BoundArgs>
566
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
567
                                  std::tuple<BoundArgs...>> {
568
  static constexpr bool is_cancellable = true;
569
570
  template <typename Functor>
571
  static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
572
    return functor.IsCancelled();
573
  }
574
};
575
576
}  // namespace base
577
578
#endif  // BASE_BIND_HELPERS_H_