Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/third_party/aom/av1/common/alloccommon.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *
3
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
4
 *
5
 * This source code is subject to the terms of the BSD 2 Clause License and
6
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
7
 * was not distributed with this source code in the LICENSE file, you can
8
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
9
 * Media Patent License 1.0 was not distributed with this source code in the
10
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
11
 */
12
13
#include "config/aom_config.h"
14
15
#include "aom_mem/aom_mem.h"
16
17
#include "av1/common/alloccommon.h"
18
#include "av1/common/blockd.h"
19
#include "av1/common/entropymode.h"
20
#include "av1/common/entropymv.h"
21
#include "av1/common/onyxc_int.h"
22
23
0
int av1_get_MBs(int width, int height) {
24
0
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
25
0
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
26
0
  const int mi_cols = aligned_width >> MI_SIZE_LOG2;
27
0
  const int mi_rows = aligned_height >> MI_SIZE_LOG2;
28
0
29
0
  const int mb_cols = (mi_cols + 2) >> 2;
30
0
  const int mb_rows = (mi_rows + 2) >> 2;
31
0
  return mb_rows * mb_cols;
32
0
}
33
34
#if LOOP_FILTER_BITMASK
35
static int alloc_loop_filter_mask(AV1_COMMON *cm) {
36
  aom_free(cm->lf.lfm);
37
  cm->lf.lfm = NULL;
38
39
  // Each lfm holds bit masks for all the 4x4 blocks in a max
40
  // 64x64 (128x128 for ext_partitions) region.  The stride
41
  // and rows are rounded up / truncated to a multiple of 16
42
  // (32 for ext_partition).
43
  cm->lf.lfm_stride = (cm->mi_cols + (MI_SIZE_64X64 - 1)) >> MIN_MIB_SIZE_LOG2;
44
  cm->lf.lfm_num = ((cm->mi_rows + (MI_SIZE_64X64 - 1)) >> MIN_MIB_SIZE_LOG2) *
45
                   cm->lf.lfm_stride;
46
  cm->lf.lfm =
47
      (LoopFilterMask *)aom_calloc(cm->lf.lfm_num, sizeof(*cm->lf.lfm));
48
  if (!cm->lf.lfm) return 1;
49
50
  unsigned int i;
51
  for (i = 0; i < cm->lf.lfm_num; ++i) av1_zero(cm->lf.lfm[i]);
52
53
  return 0;
54
}
55
56
static void free_loop_filter_mask(AV1_COMMON *cm) {
57
  if (cm->lf.lfm == NULL) return;
58
59
  aom_free(cm->lf.lfm);
60
  cm->lf.lfm = NULL;
61
  cm->lf.lfm_num = 0;
62
  cm->lf.lfm_stride = 0;
63
}
64
#endif
65
66
0
void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) {
67
0
  // Ensure that the decoded width and height are both multiples of
68
0
  // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if
69
0
  // subsampling is used).
70
0
  // This simplifies the implementation of various experiments,
71
0
  // eg. cdef, which operates on units of 8x8 luma pixels.
72
0
  const int aligned_width = ALIGN_POWER_OF_TWO(width, 3);
73
0
  const int aligned_height = ALIGN_POWER_OF_TWO(height, 3);
74
0
75
0
  cm->mi_cols = aligned_width >> MI_SIZE_LOG2;
76
0
  cm->mi_rows = aligned_height >> MI_SIZE_LOG2;
77
0
  cm->mi_stride = calc_mi_size(cm->mi_cols);
78
0
79
0
  cm->mb_cols = (cm->mi_cols + 2) >> 2;
80
0
  cm->mb_rows = (cm->mi_rows + 2) >> 2;
81
0
  cm->MBs = cm->mb_rows * cm->mb_cols;
82
0
83
#if LOOP_FILTER_BITMASK
84
  alloc_loop_filter_mask(cm);
85
#endif
86
}
87
88
0
void av1_free_ref_frame_buffers(BufferPool *pool) {
89
0
  int i;
90
0
91
0
  for (i = 0; i < FRAME_BUFFERS; ++i) {
92
0
    if (pool->frame_bufs[i].ref_count > 0 &&
93
0
        pool->frame_bufs[i].raw_frame_buffer.data != NULL) {
94
0
      pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer);
95
0
      pool->frame_bufs[i].ref_count = 0;
96
0
    }
97
0
    aom_free(pool->frame_bufs[i].mvs);
98
0
    pool->frame_bufs[i].mvs = NULL;
99
0
    aom_free(pool->frame_bufs[i].seg_map);
100
0
    pool->frame_bufs[i].seg_map = NULL;
101
0
    aom_free_frame_buffer(&pool->frame_bufs[i].buf);
102
0
  }
103
0
}
104
105
// Assumes cm->rst_info[p].restoration_unit_size is already initialized
106
0
void av1_alloc_restoration_buffers(AV1_COMMON *cm) {
107
0
  const int num_planes = av1_num_planes(cm);
108
0
  for (int p = 0; p < num_planes; ++p)
109
0
    av1_alloc_restoration_struct(cm, &cm->rst_info[p], p > 0);
110
0
111
0
  if (cm->rst_tmpbuf == NULL) {
112
0
    CHECK_MEM_ERROR(cm, cm->rst_tmpbuf,
113
0
                    (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
114
0
  }
115
0
116
0
  if (cm->rlbs == NULL) {
117
0
    CHECK_MEM_ERROR(cm, cm->rlbs, aom_malloc(sizeof(RestorationLineBuffers)));
118
0
  }
119
0
120
0
  // For striped loop restoration, we divide each row of tiles into "stripes",
121
0
  // of height 64 luma pixels but with an offset by RESTORATION_UNIT_OFFSET
122
0
  // luma pixels to match the output from CDEF. We will need to store 2 *
123
0
  // RESTORATION_CTX_VERT lines of data for each stripe, and also need to be
124
0
  // able to quickly answer the question "Where is the <n>'th stripe for tile
125
0
  // row <m>?" To make that efficient, we generate the rst_last_stripe array.
126
0
  int num_stripes = 0;
127
0
  for (int i = 0; i < cm->tile_rows; ++i) {
128
0
    TileInfo tile_info;
129
0
    av1_tile_set_row(&tile_info, cm, i);
130
0
    const int mi_h = tile_info.mi_row_end - tile_info.mi_row_start;
131
0
    const int ext_h = RESTORATION_UNIT_OFFSET + (mi_h << MI_SIZE_LOG2);
132
0
    const int tile_stripes = (ext_h + 63) / 64;
133
0
    num_stripes += tile_stripes;
134
0
    cm->rst_end_stripe[i] = num_stripes;
135
0
  }
136
0
137
0
  // Now we need to allocate enough space to store the line buffers for the
138
0
  // stripes
139
0
  const int frame_w = cm->superres_upscaled_width;
140
0
  const int use_highbd = cm->seq_params.use_highbitdepth ? 1 : 0;
141
0
142
0
  for (int p = 0; p < num_planes; ++p) {
143
0
    const int is_uv = p > 0;
144
0
    const int ss_x = is_uv && cm->seq_params.subsampling_x;
145
0
    const int plane_w = ((frame_w + ss_x) >> ss_x) + 2 * RESTORATION_EXTRA_HORZ;
146
0
    const int stride = ALIGN_POWER_OF_TWO(plane_w, 5);
147
0
    const int buf_size = num_stripes * stride * RESTORATION_CTX_VERT
148
0
                         << use_highbd;
149
0
    RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
150
0
151
0
    if (buf_size != boundaries->stripe_boundary_size ||
152
0
        boundaries->stripe_boundary_above == NULL ||
153
0
        boundaries->stripe_boundary_below == NULL) {
154
0
      aom_free(boundaries->stripe_boundary_above);
155
0
      aom_free(boundaries->stripe_boundary_below);
156
0
157
0
      CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_above,
158
0
                      (uint8_t *)aom_memalign(32, buf_size));
159
0
      CHECK_MEM_ERROR(cm, boundaries->stripe_boundary_below,
160
0
                      (uint8_t *)aom_memalign(32, buf_size));
161
0
162
0
      boundaries->stripe_boundary_size = buf_size;
163
0
    }
164
0
    boundaries->stripe_boundary_stride = stride;
165
0
  }
166
0
}
167
168
0
void av1_free_restoration_buffers(AV1_COMMON *cm) {
169
0
  int p;
170
0
  for (p = 0; p < MAX_MB_PLANE; ++p)
171
0
    av1_free_restoration_struct(&cm->rst_info[p]);
172
0
  aom_free(cm->rst_tmpbuf);
173
0
  cm->rst_tmpbuf = NULL;
174
0
  aom_free(cm->rlbs);
175
0
  cm->rlbs = NULL;
176
0
  for (p = 0; p < MAX_MB_PLANE; ++p) {
177
0
    RestorationStripeBoundaries *boundaries = &cm->rst_info[p].boundaries;
178
0
    aom_free(boundaries->stripe_boundary_above);
179
0
    aom_free(boundaries->stripe_boundary_below);
180
0
    boundaries->stripe_boundary_above = NULL;
181
0
    boundaries->stripe_boundary_below = NULL;
182
0
  }
183
0
184
0
  aom_free_frame_buffer(&cm->rst_frame);
185
0
}
186
187
void av1_free_above_context_buffers(AV1_COMMON *cm,
188
0
                                    int num_free_above_contexts) {
189
0
  int i;
190
0
  const int num_planes = cm->num_allocated_above_context_planes;
191
0
192
0
  for (int tile_row = 0; tile_row < num_free_above_contexts; tile_row++) {
193
0
    for (i = 0; i < num_planes; i++) {
194
0
      aom_free(cm->above_context[i][tile_row]);
195
0
      cm->above_context[i][tile_row] = NULL;
196
0
    }
197
0
    aom_free(cm->above_seg_context[tile_row]);
198
0
    cm->above_seg_context[tile_row] = NULL;
199
0
200
0
    aom_free(cm->above_txfm_context[tile_row]);
201
0
    cm->above_txfm_context[tile_row] = NULL;
202
0
  }
203
0
  for (i = 0; i < num_planes; i++) {
204
0
    aom_free(cm->above_context[i]);
205
0
    cm->above_context[i] = NULL;
206
0
  }
207
0
  aom_free(cm->above_seg_context);
208
0
  cm->above_seg_context = NULL;
209
0
210
0
  aom_free(cm->above_txfm_context);
211
0
  cm->above_txfm_context = NULL;
212
0
213
0
  cm->num_allocated_above_contexts = 0;
214
0
  cm->num_allocated_above_context_mi_col = 0;
215
0
  cm->num_allocated_above_context_planes = 0;
216
0
}
217
218
0
void av1_free_context_buffers(AV1_COMMON *cm) {
219
0
  cm->free_mi(cm);
220
0
221
0
  av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts);
222
0
223
#if LOOP_FILTER_BITMASK
224
  free_loop_filter_mask(cm);
225
#endif
226
}
227
228
int av1_alloc_above_context_buffers(AV1_COMMON *cm,
229
0
                                    int num_alloc_above_contexts) {
230
0
  const int num_planes = av1_num_planes(cm);
231
0
  int plane_idx;
232
0
  const int aligned_mi_cols =
233
0
      ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2);
234
0
235
0
  // Allocate above context buffers
236
0
  cm->num_allocated_above_contexts = num_alloc_above_contexts;
237
0
  cm->num_allocated_above_context_mi_col = aligned_mi_cols;
238
0
  cm->num_allocated_above_context_planes = num_planes;
239
0
  for (plane_idx = 0; plane_idx < num_planes; plane_idx++) {
240
0
    cm->above_context[plane_idx] = (ENTROPY_CONTEXT **)aom_calloc(
241
0
        num_alloc_above_contexts, sizeof(cm->above_context[0]));
242
0
    if (!cm->above_context[plane_idx]) return 1;
243
0
  }
244
0
245
0
  cm->above_seg_context = (PARTITION_CONTEXT **)aom_calloc(
246
0
      num_alloc_above_contexts, sizeof(cm->above_seg_context));
247
0
  if (!cm->above_seg_context) return 1;
248
0
249
0
  cm->above_txfm_context = (TXFM_CONTEXT **)aom_calloc(
250
0
      num_alloc_above_contexts, sizeof(cm->above_txfm_context));
251
0
  if (!cm->above_txfm_context) return 1;
252
0
253
0
  for (int tile_row = 0; tile_row < num_alloc_above_contexts; tile_row++) {
254
0
    for (plane_idx = 0; plane_idx < num_planes; plane_idx++) {
255
0
      cm->above_context[plane_idx][tile_row] = (ENTROPY_CONTEXT *)aom_calloc(
256
0
          aligned_mi_cols, sizeof(*cm->above_context[0][tile_row]));
257
0
      if (!cm->above_context[plane_idx][tile_row]) return 1;
258
0
    }
259
0
260
0
    cm->above_seg_context[tile_row] = (PARTITION_CONTEXT *)aom_calloc(
261
0
        aligned_mi_cols, sizeof(*cm->above_seg_context[tile_row]));
262
0
    if (!cm->above_seg_context[tile_row]) return 1;
263
0
264
0
    cm->above_txfm_context[tile_row] = (TXFM_CONTEXT *)aom_calloc(
265
0
        aligned_mi_cols, sizeof(*cm->above_txfm_context[tile_row]));
266
0
    if (!cm->above_txfm_context[tile_row]) return 1;
267
0
  }
268
0
269
0
  return 0;
270
0
}
271
272
0
int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) {
273
0
  int new_mi_size;
274
0
275
0
  av1_set_mb_mi(cm, width, height);
276
0
  new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows);
277
0
  if (cm->mi_alloc_size < new_mi_size) {
278
0
    cm->free_mi(cm);
279
0
    if (cm->alloc_mi(cm, new_mi_size)) goto fail;
280
0
  }
281
0
282
0
  return 0;
283
0
284
0
fail:
285
0
  // clear the mi_* values to force a realloc on resync
286
0
  av1_set_mb_mi(cm, 0, 0);
287
0
  av1_free_context_buffers(cm);
288
0
  return 1;
289
0
}
290
291
0
void av1_remove_common(AV1_COMMON *cm) {
292
0
  av1_free_context_buffers(cm);
293
0
294
0
  aom_free(cm->fc);
295
0
  cm->fc = NULL;
296
0
  aom_free(cm->frame_contexts);
297
0
  cm->frame_contexts = NULL;
298
0
}
299
300
0
void av1_init_context_buffers(AV1_COMMON *cm) { cm->setup_mi(cm); }