/src/mozilla-central/tools/profiler/lul/LulMainInt.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | #ifndef LulMainInt_h |
8 | | #define LulMainInt_h |
9 | | |
10 | | #include "PlatformMacros.h" |
11 | | #include "LulMain.h" // for TaggedUWord |
12 | | |
13 | | #include <vector> |
14 | | |
15 | | #include "mozilla/Assertions.h" |
16 | | |
17 | | // This file is provides internal interface inside LUL. If you are an |
18 | | // end-user of LUL, do not include it in your code. The end-user |
19 | | // interface is in LulMain.h. |
20 | | |
21 | | |
22 | | namespace lul { |
23 | | |
24 | | using std::vector; |
25 | | |
26 | | //////////////////////////////////////////////////////////////// |
27 | | // DW_REG_ constants // |
28 | | //////////////////////////////////////////////////////////////// |
29 | | |
30 | | // These are the Dwarf CFI register numbers, as (presumably) defined |
31 | | // in the ELF ABI supplements for each architecture. |
32 | | |
33 | | enum DW_REG_NUMBER { |
34 | | // No real register has this number. It's convenient to be able to |
35 | | // treat the CFA (Canonical Frame Address) as "just another |
36 | | // register", though. |
37 | | DW_REG_CFA = -1, |
38 | | #if defined(GP_ARCH_arm) |
39 | | // ARM registers |
40 | | DW_REG_ARM_R7 = 7, |
41 | | DW_REG_ARM_R11 = 11, |
42 | | DW_REG_ARM_R12 = 12, |
43 | | DW_REG_ARM_R13 = 13, |
44 | | DW_REG_ARM_R14 = 14, |
45 | | DW_REG_ARM_R15 = 15, |
46 | | #elif defined(GP_ARCH_arm64) |
47 | | // aarch64 registers |
48 | | DW_REG_AARCH64_X29 = 29, |
49 | | DW_REG_AARCH64_X30 = 30, |
50 | | DW_REG_AARCH64_SP = 31, |
51 | | #elif defined(GP_ARCH_amd64) |
52 | | // Because the X86 (32 bit) and AMD64 (64 bit) summarisers are |
53 | | // combined, a merged set of register constants is needed. |
54 | | DW_REG_INTEL_XBP = 6, |
55 | | DW_REG_INTEL_XSP = 7, |
56 | | DW_REG_INTEL_XIP = 16, |
57 | | #elif defined(GP_ARCH_x86) |
58 | | DW_REG_INTEL_XBP = 5, |
59 | | DW_REG_INTEL_XSP = 4, |
60 | | DW_REG_INTEL_XIP = 8, |
61 | | #elif defined(GP_ARCH_mips64) |
62 | | DW_REG_MIPS_SP = 29, |
63 | | DW_REG_MIPS_FP = 30, |
64 | | DW_REG_MIPS_PC = 34, |
65 | | #else |
66 | | # error "Unknown arch" |
67 | | #endif |
68 | | }; |
69 | | |
70 | | |
71 | | //////////////////////////////////////////////////////////////// |
72 | | // PfxExpr // |
73 | | //////////////////////////////////////////////////////////////// |
74 | | |
75 | | enum PfxExprOp { |
76 | | // meaning of mOperand effect on stack |
77 | | PX_Start, // bool start-with-CFA? start, with CFA on stack, or not |
78 | | PX_End, // none stop; result is at top of stack |
79 | | PX_SImm32, // int32 push signed int32 |
80 | | PX_DwReg, // DW_REG_NUMBER push value of the specified reg |
81 | | PX_Deref, // none pop X ; push *X |
82 | | PX_Add, // none pop X ; pop Y ; push Y + X |
83 | | PX_Sub, // none pop X ; pop Y ; push Y - X |
84 | | PX_And, // none pop X ; pop Y ; push Y & X |
85 | | PX_Or, // none pop X ; pop Y ; push Y | X |
86 | | PX_CmpGES, // none pop X ; pop Y ; push (Y >=s X) ? 1 : 0 |
87 | | PX_Shl // none pop X ; pop Y ; push Y << X |
88 | | }; |
89 | | |
90 | | struct PfxInstr { |
91 | | PfxInstr(PfxExprOp opcode, int32_t operand) |
92 | | : mOpcode(opcode) |
93 | | , mOperand(operand) |
94 | 0 | {} |
95 | | explicit PfxInstr(PfxExprOp opcode) |
96 | | : mOpcode(opcode) |
97 | | , mOperand(0) |
98 | 0 | {} |
99 | 0 | bool operator==(const PfxInstr& other) const { |
100 | 0 | return mOpcode == other.mOpcode && mOperand == other.mOperand; |
101 | 0 | } |
102 | | PfxExprOp mOpcode; |
103 | | int32_t mOperand; |
104 | | }; |
105 | | |
106 | | static_assert(sizeof(PfxInstr) <= 8, "PfxInstr size changed unexpectedly"); |
107 | | |
108 | | // Evaluate the prefix expression whose PfxInstrs start at aPfxInstrs[start]. |
109 | | // In the case of any mishap (stack over/underflow, running off the end of |
110 | | // the instruction vector, obviously malformed sequences), |
111 | | // return an invalid TaggedUWord. |
112 | | // RUNS IN NO-MALLOC CONTEXT |
113 | | TaggedUWord EvaluatePfxExpr(int32_t start, |
114 | | const UnwindRegs* aOldRegs, |
115 | | TaggedUWord aCFA, const StackImage* aStackImg, |
116 | | const vector<PfxInstr>& aPfxInstrs); |
117 | | |
118 | | |
119 | | //////////////////////////////////////////////////////////////// |
120 | | // LExpr // |
121 | | //////////////////////////////////////////////////////////////// |
122 | | |
123 | | // An expression -- very primitive. Denotes either "register + |
124 | | // offset", a dereferenced version of the same, or a reference to a |
125 | | // prefix expression stored elsewhere. So as to allow convenient |
126 | | // handling of Dwarf-derived unwind info, the register may also denote |
127 | | // the CFA. A large number of these need to be stored, so we ensure |
128 | | // it fits into 8 bytes. See comment below on RuleSet to see how |
129 | | // expressions fit into the bigger picture. |
130 | | |
131 | | enum LExprHow { |
132 | | UNKNOWN=0, // This LExpr denotes no value. |
133 | | NODEREF, // Value is (mReg + mOffset). |
134 | | DEREF, // Value is *(mReg + mOffset). |
135 | | PFXEXPR // Value is EvaluatePfxExpr(secMap->mPfxInstrs[mOffset]) |
136 | | }; |
137 | | |
138 | 0 | inline static const char* NameOf_LExprHow(LExprHow how) { |
139 | 0 | switch (how) { |
140 | 0 | case UNKNOWN: return "UNKNOWN"; |
141 | 0 | case NODEREF: return "NODEREF"; |
142 | 0 | case DEREF: return "DEREF"; |
143 | 0 | case PFXEXPR: return "PFXEXPR"; |
144 | 0 | default: return "LExpr-??"; |
145 | 0 | } |
146 | 0 | } |
147 | | |
148 | | |
149 | | struct LExpr { |
150 | | // Denotes an expression with no value. |
151 | | LExpr() |
152 | | : mHow(UNKNOWN) |
153 | | , mReg(0) |
154 | | , mOffset(0) |
155 | 0 | {} |
156 | | |
157 | | // Denotes any expressible expression. |
158 | | LExpr(LExprHow how, int16_t reg, int32_t offset) |
159 | | : mHow(how) |
160 | | , mReg(reg) |
161 | | , mOffset(offset) |
162 | 0 | { |
163 | 0 | switch (how) { |
164 | 0 | case UNKNOWN: MOZ_ASSERT(reg == 0 && offset == 0); break; |
165 | 0 | case NODEREF: break; |
166 | 0 | case DEREF: break; |
167 | 0 | case PFXEXPR: MOZ_ASSERT(reg == 0 && offset >= 0); break; |
168 | 0 | default: MOZ_ASSERT(0, "LExpr::LExpr: invalid how"); |
169 | 0 | } |
170 | 0 | } |
171 | | |
172 | | // Change the offset for an expression that references memory. |
173 | | LExpr add_delta(long delta) |
174 | 0 | { |
175 | 0 | MOZ_ASSERT(mHow == NODEREF); |
176 | 0 | // If this is a non-debug build and the above assertion would have |
177 | 0 | // failed, at least return LExpr() so that the machinery that uses |
178 | 0 | // the resulting expression fails in a repeatable way. |
179 | 0 | return (mHow == NODEREF) ? LExpr(mHow, mReg, mOffset+delta) |
180 | 0 | : LExpr(); // Gone bad |
181 | 0 | } |
182 | | |
183 | | // Dereference an expression that denotes a memory address. |
184 | | LExpr deref() |
185 | 0 | { |
186 | 0 | MOZ_ASSERT(mHow == NODEREF); |
187 | 0 | // Same rationale as for add_delta(). |
188 | 0 | return (mHow == NODEREF) ? LExpr(DEREF, mReg, mOffset) |
189 | 0 | : LExpr(); // Gone bad |
190 | 0 | } |
191 | | |
192 | | // Print a rule for recovery of |aNewReg| whose recovered value |
193 | | // is this LExpr. |
194 | | string ShowRule(const char* aNewReg) const; |
195 | | |
196 | | // Evaluate this expression, producing a TaggedUWord. |aOldRegs| |
197 | | // holds register values that may be referred to by the expression. |
198 | | // |aCFA| holds the CFA value, if any, that applies. |aStackImg| |
199 | | // contains a chuck of stack that will be consulted if the expression |
200 | | // references memory. |aPfxInstrs| holds the vector of PfxInstrs |
201 | | // that will be consulted if this is a PFXEXPR. |
202 | | // RUNS IN NO-MALLOC CONTEXT |
203 | | TaggedUWord EvaluateExpr(const UnwindRegs* aOldRegs, |
204 | | TaggedUWord aCFA, const StackImage* aStackImg, |
205 | | const vector<PfxInstr>* aPfxInstrs) const; |
206 | | |
207 | | // Representation of expressions. If |mReg| is DW_REG_CFA (-1) then |
208 | | // it denotes the CFA. All other allowed values for |mReg| are |
209 | | // nonnegative and are DW_REG_ values. |
210 | | LExprHow mHow:8; |
211 | | int16_t mReg; // A DW_REG_ value |
212 | | int32_t mOffset; // 32-bit signed offset should be more than enough. |
213 | | }; |
214 | | |
215 | | static_assert(sizeof(LExpr) <= 8, "LExpr size changed unexpectedly"); |
216 | | |
217 | | |
218 | | //////////////////////////////////////////////////////////////// |
219 | | // RuleSet // |
220 | | //////////////////////////////////////////////////////////////// |
221 | | |
222 | | // This is platform-dependent. For some address range, describes how |
223 | | // to recover the CFA and then how to recover the registers for the |
224 | | // previous frame. |
225 | | // |
226 | | // The set of LExprs contained in a given RuleSet describe a DAG which |
227 | | // says how to compute the caller's registers ("new registers") from |
228 | | // the callee's registers ("old registers"). The DAG can contain a |
229 | | // single internal node, which is the value of the CFA for the callee. |
230 | | // It would be possible to construct a DAG that omits the CFA, but |
231 | | // including it makes the summarisers simpler, and the Dwarf CFI spec |
232 | | // has the CFA as a central concept. |
233 | | // |
234 | | // For this to make sense, |mCfaExpr| can't have |
235 | | // |mReg| == DW_REG_CFA since we have no previous value for the CFA. |
236 | | // All of the other |Expr| fields can -- and usually do -- specify |
237 | | // |mReg| == DW_REG_CFA. |
238 | | // |
239 | | // With that in place, the unwind algorithm proceeds as follows. |
240 | | // |
241 | | // (0) Initially: we have values for the old registers, and a memory |
242 | | // image. |
243 | | // |
244 | | // (1) Compute the CFA by evaluating |mCfaExpr|. Add the computed |
245 | | // value to the set of "old registers". |
246 | | // |
247 | | // (2) Compute values for the registers by evaluating all of the other |
248 | | // |Expr| fields in the RuleSet. These can depend on both the old |
249 | | // register values and the just-computed CFA. |
250 | | // |
251 | | // If we are unwinding without computing a CFA, perhaps because the |
252 | | // RuleSets are derived from EXIDX instead of Dwarf, then |
253 | | // |mCfaExpr.mHow| will be LExpr::UNKNOWN, so the computed value will |
254 | | // be invalid -- that is, TaggedUWord() -- and so any attempt to use |
255 | | // that will result in the same value. But that's OK because the |
256 | | // RuleSet would make no sense if depended on the CFA but specified no |
257 | | // way to compute it. |
258 | | // |
259 | | // A RuleSet is not allowed to cover zero address range. Having zero |
260 | | // length would break binary searching in SecMaps and PriMaps. |
261 | | |
262 | | class RuleSet { |
263 | | public: |
264 | | RuleSet(); |
265 | | void Print(void(*aLog)(const char*)) const; |
266 | | |
267 | | // Find the LExpr* for a given DW_REG_ value in this class. |
268 | | LExpr* ExprForRegno(DW_REG_NUMBER aRegno); |
269 | | |
270 | | uintptr_t mAddr; |
271 | | uintptr_t mLen; |
272 | | // How to compute the CFA. |
273 | | LExpr mCfaExpr; |
274 | | // How to compute caller register values. These may reference the |
275 | | // value defined by |mCfaExpr|. |
276 | | #if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86) |
277 | | LExpr mXipExpr; // return address |
278 | | LExpr mXspExpr; |
279 | | LExpr mXbpExpr; |
280 | | #elif defined(GP_ARCH_arm) |
281 | | LExpr mR15expr; // return address |
282 | | LExpr mR14expr; |
283 | | LExpr mR13expr; |
284 | | LExpr mR12expr; |
285 | | LExpr mR11expr; |
286 | | LExpr mR7expr; |
287 | | #elif defined(GP_ARCH_arm64) |
288 | | LExpr mX29expr; // frame pointer register |
289 | | LExpr mX30expr; // link register |
290 | | LExpr mSPexpr; |
291 | | #elif defined(GP_ARCH_mips64) |
292 | | LExpr mPCexpr; |
293 | | LExpr mFPexpr; |
294 | | LExpr mSPexpr; |
295 | | #else |
296 | | # error "Unknown arch" |
297 | | #endif |
298 | | }; |
299 | | |
300 | | // Returns |true| for Dwarf register numbers which are members |
301 | | // of the set of registers that LUL unwinds on this target. |
302 | 0 | static inline bool registerIsTracked(DW_REG_NUMBER reg) { |
303 | 0 | switch (reg) { |
304 | 0 | # if defined(GP_ARCH_amd64) || defined(GP_ARCH_x86) |
305 | 0 | case DW_REG_INTEL_XBP: case DW_REG_INTEL_XSP: case DW_REG_INTEL_XIP: |
306 | 0 | return true; |
307 | | # elif defined(GP_ARCH_arm) |
308 | | case DW_REG_ARM_R7: case DW_REG_ARM_R11: case DW_REG_ARM_R12: |
309 | | case DW_REG_ARM_R13: case DW_REG_ARM_R14: case DW_REG_ARM_R15: |
310 | | return true; |
311 | | # elif defined(GP_ARCH_arm64) |
312 | | case DW_REG_AARCH64_X29: case DW_REG_AARCH64_X30: case DW_REG_AARCH64_SP: |
313 | | return true; |
314 | | #elif defined(GP_ARCH_mips64) |
315 | | case DW_REG_MIPS_FP: case DW_REG_MIPS_SP: case DW_REG_MIPS_PC: |
316 | | return true; |
317 | | # else |
318 | | # error "Unknown arch" |
319 | | # endif |
320 | 0 | default: |
321 | 0 | return false; |
322 | 0 | } |
323 | 0 | } Unexecuted instantiation: Unified_cpp_tools_profiler1.cpp:lul::registerIsTracked(lul::DW_REG_NUMBER) Unexecuted instantiation: Unified_cpp_tests_gtest0.cpp:lul::registerIsTracked(lul::DW_REG_NUMBER) |
324 | | |
325 | | |
326 | | //////////////////////////////////////////////////////////////// |
327 | | // SecMap // |
328 | | //////////////////////////////////////////////////////////////// |
329 | | |
330 | | // A SecMap may have zero address range, temporarily, whilst RuleSets |
331 | | // are being added to it. But adding a zero-range SecMap to a PriMap |
332 | | // will make it impossible to maintain the total order of the PriMap |
333 | | // entries, and so that can't be allowed to happen. |
334 | | |
335 | | class SecMap { |
336 | | public: |
337 | | // These summarise the contained mRuleSets, in that they give |
338 | | // exactly the lowest and highest addresses that any of the entries |
339 | | // in this SecMap cover. Hence invariants: |
340 | | // |
341 | | // mRuleSets is nonempty |
342 | | // <=> mSummaryMinAddr <= mSummaryMaxAddr |
343 | | // && mSummaryMinAddr == mRuleSets[0].mAddr |
344 | | // && mSummaryMaxAddr == mRuleSets[#rulesets-1].mAddr |
345 | | // + mRuleSets[#rulesets-1].mLen - 1; |
346 | | // |
347 | | // This requires that no RuleSet has zero length. |
348 | | // |
349 | | // mRuleSets is empty |
350 | | // <=> mSummaryMinAddr > mSummaryMaxAddr |
351 | | // |
352 | | // This doesn't constrain mSummaryMinAddr and mSummaryMaxAddr uniquely, |
353 | | // so let's use mSummaryMinAddr == 1 and mSummaryMaxAddr == 0 to denote |
354 | | // this case. |
355 | | |
356 | | explicit SecMap(void(*aLog)(const char*)); |
357 | | ~SecMap(); |
358 | | |
359 | | // Binary search mRuleSets to find one that brackets |ia|, or nullptr |
360 | | // if none is found. It's not allowable to do this until PrepareRuleSets |
361 | | // has been called first. |
362 | | RuleSet* FindRuleSet(uintptr_t ia); |
363 | | |
364 | | // Add a RuleSet to the collection. The rule is copied in. Calling |
365 | | // this makes the map non-searchable. |
366 | | void AddRuleSet(const RuleSet* rs); |
367 | | |
368 | | // Add a PfxInstr to the vector of such instrs, and return the index |
369 | | // in the vector. Calling this makes the map non-searchable. |
370 | | uint32_t AddPfxInstr(PfxInstr pfxi); |
371 | | |
372 | | // Returns the entire vector of PfxInstrs. |
373 | 0 | const vector<PfxInstr>* GetPfxInstrs() { return &mPfxInstrs; } |
374 | | |
375 | | // Prepare the map for searching. Also, remove any rules for code |
376 | | // address ranges which don't fall inside [start, +len). |len| may |
377 | | // not be zero. |
378 | | void PrepareRuleSets(uintptr_t start, size_t len); |
379 | | |
380 | | bool IsEmpty(); |
381 | | |
382 | 0 | size_t Size() { return mRuleSets.size(); } |
383 | | |
384 | | size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const; |
385 | | |
386 | | // The min and max addresses of the addresses in the contained |
387 | | // RuleSets. See comment above for invariants. |
388 | | uintptr_t mSummaryMinAddr; |
389 | | uintptr_t mSummaryMaxAddr; |
390 | | |
391 | | private: |
392 | | // False whilst adding entries; true once it is safe to call FindRuleSet. |
393 | | // Transition (false->true) is caused by calling PrepareRuleSets(). |
394 | | bool mUsable; |
395 | | |
396 | | // A vector of RuleSets, sorted, nonoverlapping (post Prepare()). |
397 | | vector<RuleSet> mRuleSets; |
398 | | |
399 | | // A vector of PfxInstrs, which are referred to by the RuleSets. |
400 | | // These are provided as a representation of Dwarf expressions |
401 | | // (DW_CFA_val_expression, DW_CFA_expression, DW_CFA_def_cfa_expression), |
402 | | // are relatively expensive to evaluate, and and are therefore |
403 | | // expected to be used only occasionally. |
404 | | // |
405 | | // The vector holds a bunch of separate PfxInstr programs, each one |
406 | | // starting with a PX_Start and terminated by a PX_End, all |
407 | | // concatenated together. When a RuleSet can't recover a value |
408 | | // using a self-contained LExpr, it uses a PFXEXPR whose mOffset is |
409 | | // the index in this vector of start of the necessary PfxInstr program. |
410 | | vector<PfxInstr> mPfxInstrs; |
411 | | |
412 | | // A logging sink, for debugging. |
413 | | void (*mLog)(const char*); |
414 | | }; |
415 | | |
416 | | } // namespace lul |
417 | | |
418 | | #endif // ndef LulMainInt_h |