Coverage Report

Created: 2018-09-25 14:53

/src/mozilla-central/tools/profiler/tests/gtest/LulTestInfrastructure.h
Line
Count
Source (jump to first uncovered line)
1
// -*- mode: C++ -*-
2
3
// Copyright (c) 2010, Google Inc.
4
// All rights reserved.
5
//
6
// Redistribution and use in source and binary forms, with or without
7
// modification, are permitted provided that the following conditions are
8
// met:
9
//
10
//     * Redistributions of source code must retain the above copyright
11
// notice, this list of conditions and the following disclaimer.
12
//     * Redistributions in binary form must reproduce the above
13
// copyright notice, this list of conditions and the following disclaimer
14
// in the documentation and/or other materials provided with the
15
// distribution.
16
//     * Neither the name of Google Inc. nor the names of its
17
// contributors may be used to endorse or promote products derived from
18
// this software without specific prior written permission.
19
//
20
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32
// Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
33
34
// Derived from:
35
// cfi_assembler.h: Define CFISection, a class for creating properly
36
// (and improperly) formatted DWARF CFI data for unit tests.
37
38
// Derived from:
39
// test-assembler.h: interface to class for building complex binary streams.
40
41
// To test the Breakpad symbol dumper and processor thoroughly, for
42
// all combinations of host system and minidump processor
43
// architecture, we need to be able to easily generate complex test
44
// data like debugging information and minidump files.
45
//
46
// For example, if we want our unit tests to provide full code
47
// coverage for stack walking, it may be difficult to persuade the
48
// compiler to generate every possible sort of stack walking
49
// information that we want to support; there are probably DWARF CFI
50
// opcodes that GCC never emits. Similarly, if we want to test our
51
// error handling, we will need to generate damaged minidumps or
52
// debugging information that (we hope) the client or compiler will
53
// never produce on its own.
54
//
55
// google_breakpad::TestAssembler provides a predictable and
56
// (relatively) simple way to generate complex formatted data streams
57
// like minidumps and CFI. Furthermore, because TestAssembler is
58
// portable, developers without access to (say) Visual Studio or a
59
// SPARC assembler can still work on test data for those targets.
60
61
#ifndef LUL_TEST_INFRASTRUCTURE_H
62
#define LUL_TEST_INFRASTRUCTURE_H
63
64
#include <string>
65
#include <vector>
66
67
using std::string;
68
using std::vector;
69
70
namespace lul_test {
71
namespace test_assembler {
72
73
// A Label represents a value not yet known that we need to store in a
74
// section. As long as all the labels a section refers to are defined
75
// by the time we retrieve its contents as bytes, we can use undefined
76
// labels freely in that section's construction.
77
//
78
// A label can be in one of three states:
79
// - undefined,
80
// - defined as the sum of some other label and a constant, or
81
// - a constant.
82
//
83
// A label's value never changes, but it can accumulate constraints.
84
// Adding labels and integers is permitted, and yields a label.
85
// Subtracting a constant from a label is permitted, and also yields a
86
// label. Subtracting two labels that have some relationship to each
87
// other is permitted, and yields a constant.
88
//
89
// For example:
90
//
91
//   Label a;               // a's value is undefined
92
//   Label b;               // b's value is undefined
93
//   {
94
//     Label c = a + 4;     // okay, even though a's value is unknown
95
//     b = c + 4;           // also okay; b is now a+8
96
//   }
97
//   Label d = b - 2;       // okay; d == a+6, even though c is gone
98
//   d.Value();             // error: d's value is not yet known
99
//   d - a;                 // is 6, even though their values are not known
100
//   a = 12;                // now b == 20, and d == 18
101
//   d.Value();             // 18: no longer an error
102
//   b.Value();             // 20
103
//   d = 10;                // error: d is already defined.
104
//
105
// Label objects' lifetimes are unconstrained: notice that, in the
106
// above example, even though a and b are only related through c, and
107
// c goes out of scope, the assignment to a sets b's value as well. In
108
// particular, it's not necessary to ensure that a Label lives beyond
109
// Sections that refer to it.
110
class Label {
111
 public:
112
  Label();                               // An undefined label.
113
  explicit Label(uint64_t value);        // A label with a fixed value
114
  Label(const Label &value);             // A label equal to another.
115
  ~Label();
116
117
  Label &operator=(uint64_t value);
118
  Label &operator=(const Label &value);
119
  Label operator+(uint64_t addend) const;
120
  Label operator-(uint64_t subtrahend) const;
121
  uint64_t operator-(const Label &subtrahend) const;
122
123
  // We could also provide == and != that work on undefined, but
124
  // related, labels.
125
126
  // Return true if this label's value is known. If VALUE_P is given,
127
  // set *VALUE_P to the known value if returning true.
128
  bool IsKnownConstant(uint64_t *value_p = NULL) const;
129
130
  // Return true if the offset from LABEL to this label is known. If
131
  // OFFSET_P is given, set *OFFSET_P to the offset when returning true.
132
  //
133
  // You can think of l.KnownOffsetFrom(m, &d) as being like 'd = l-m',
134
  // except that it also returns a value indicating whether the
135
  // subtraction is possible given what we currently know of l and m.
136
  // It can be possible even if we don't know l and m's values. For
137
  // example:
138
  //
139
  //   Label l, m;
140
  //   m = l + 10;
141
  //   l.IsKnownConstant();             // false
142
  //   m.IsKnownConstant();             // false
143
  //   uint64_t d;
144
  //   l.IsKnownOffsetFrom(m, &d);      // true, and sets d to -10.
145
  //   l-m                              // -10
146
  //   m-l                              // 10
147
  //   m.Value()                        // error: m's value is not known
148
  bool IsKnownOffsetFrom(const Label &label, uint64_t *offset_p = NULL) const;
149
150
 private:
151
  // A label's value, or if that is not yet known, how the value is
152
  // related to other labels' values. A binding may be:
153
  // - a known constant,
154
  // - constrained to be equal to some other binding plus a constant, or
155
  // - unconstrained, and free to take on any value.
156
  //
157
  // Many labels may point to a single binding, and each binding may
158
  // refer to another, so bindings and labels form trees whose leaves
159
  // are labels, whose interior nodes (and roots) are bindings, and
160
  // where links point from children to parents. Bindings are
161
  // reference counted, allowing labels to be lightweight, copyable,
162
  // assignable, placed in containers, and so on.
163
  class Binding {
164
   public:
165
    Binding();
166
    explicit Binding(uint64_t addend);
167
    ~Binding();
168
169
    // Increment our reference count.
170
0
    void Acquire() { reference_count_++; };
171
    // Decrement our reference count, and return true if it is zero.
172
0
    bool Release() { return --reference_count_ == 0; }
173
174
    // Set this binding to be equal to BINDING + ADDEND. If BINDING is
175
    // NULL, then set this binding to the known constant ADDEND.
176
    // Update every binding on this binding's chain to point directly
177
    // to BINDING, or to be a constant, with addends adjusted
178
    // appropriately.
179
    void Set(Binding *binding, uint64_t value);
180
181
    // Return what we know about the value of this binding.
182
    // - If this binding's value is a known constant, set BASE to
183
    //   NULL, and set ADDEND to its value.
184
    // - If this binding is not a known constant but related to other
185
    //   bindings, set BASE to the binding at the end of the relation
186
    //   chain (which will always be unconstrained), and set ADDEND to the
187
    //   value to add to that binding's value to get this binding's
188
    //   value.
189
    // - If this binding is unconstrained, set BASE to this, and leave
190
    //   ADDEND unchanged.
191
    void Get(Binding **base, uint64_t *addend);
192
193
   private:
194
    // There are three cases:
195
    //
196
    // - A binding representing a known constant value has base_ NULL,
197
    //   and addend_ equal to the value.
198
    //
199
    // - A binding representing a completely unconstrained value has
200
    //   base_ pointing to this; addend_ is unused.
201
    //
202
    // - A binding whose value is related to some other binding's
203
    //   value has base_ pointing to that other binding, and addend_
204
    //   set to the amount to add to that binding's value to get this
205
    //   binding's value. We only represent relationships of the form
206
    //   x = y+c.
207
    //
208
    // Thus, the bind_ links form a chain terminating in either a
209
    // known constant value or a completely unconstrained value. Most
210
    // operations on bindings do path compression: they change every
211
    // binding on the chain to point directly to the final value,
212
    // adjusting addends as appropriate.
213
    Binding *base_;
214
    uint64_t addend_;
215
216
    // The number of Labels and Bindings pointing to this binding.
217
    // (When a binding points to itself, indicating a completely
218
    // unconstrained binding, that doesn't count as a reference.)
219
    int reference_count_;
220
  };
221
222
  // This label's value.
223
  Binding *value_;
224
};
225
226
// Conventions for representing larger numbers as sequences of bytes.
227
enum Endianness {
228
  kBigEndian,        // Big-endian: the most significant byte comes first.
229
  kLittleEndian,     // Little-endian: the least significant byte comes first.
230
  kUnsetEndian,      // used internally
231
};
232
233
// A section is a sequence of bytes, constructed by appending bytes
234
// to the end. Sections have a convenient and flexible set of member
235
// functions for appending data in various formats: big-endian and
236
// little-endian signed and unsigned values of different sizes;
237
// LEB128 and ULEB128 values (see below), and raw blocks of bytes.
238
//
239
// If you need to append a value to a section that is not convenient
240
// to compute immediately, you can create a label, append the
241
// label's value to the section, and then set the label's value
242
// later, when it's convenient to do so. Once a label's value is
243
// known, the section class takes care of updating all previously
244
// appended references to it.
245
//
246
// Once all the labels to which a section refers have had their
247
// values determined, you can get a copy of the section's contents
248
// as a string.
249
//
250
// Note that there is no specified "start of section" label. This is
251
// because there are typically several different meanings for "the
252
// start of a section": the offset of the section within an object
253
// file, the address in memory at which the section's content appear,
254
// and so on. It's up to the code that uses the Section class to
255
// keep track of these explicitly, as they depend on the application.
256
class Section {
257
 public:
258
  explicit Section(Endianness endianness = kUnsetEndian)
259
0
      : endianness_(endianness) { };
260
261
  // A base class destructor should be either public and virtual,
262
  // or protected and nonvirtual.
263
0
  virtual ~Section() { };
264
265
  // Return the default endianness of this section.
266
0
  Endianness endianness() const { return endianness_; }
267
268
  // Append the SIZE bytes at DATA to the end of this section. Return
269
  // a reference to this section.
270
0
  Section &Append(const string &data) {
271
0
    contents_.append(data);
272
0
    return *this;
273
0
  };
274
275
  // Append SIZE copies of BYTE to the end of this section. Return a
276
  // reference to this section.
277
0
  Section &Append(size_t size, uint8_t byte) {
278
0
    contents_.append(size, (char) byte);
279
0
    return *this;
280
0
  }
281
282
  // Append NUMBER to this section. ENDIANNESS is the endianness to
283
  // use to write the number. SIZE is the length of the number in
284
  // bytes. Return a reference to this section.
285
  Section &Append(Endianness endianness, size_t size, uint64_t number);
286
  Section &Append(Endianness endianness, size_t size, const Label &label);
287
288
  // Append SECTION to the end of this section. The labels SECTION
289
  // refers to need not be defined yet.
290
  //
291
  // Note that this has no effect on any Labels' values, or on
292
  // SECTION. If placing SECTION within 'this' provides new
293
  // constraints on existing labels' values, then it's up to the
294
  // caller to fiddle with those labels as needed.
295
  Section &Append(const Section &section);
296
297
  // Append the contents of DATA as a series of bytes terminated by
298
  // a NULL character.
299
0
  Section &AppendCString(const string &data) {
300
0
    Append(data);
301
0
    contents_ += '\0';
302
0
    return *this;
303
0
  }
304
305
  // Append VALUE or LABEL to this section, with the given bit width and
306
  // endianness. Return a reference to this section.
307
  //
308
  // The names of these functions have the form <ENDIANNESS><BITWIDTH>:
309
  // <ENDIANNESS> is either 'L' (little-endian, least significant byte first),
310
  //                        'B' (big-endian, most significant byte first), or
311
  //                        'D' (default, the section's default endianness)
312
  // <BITWIDTH> is 8, 16, 32, or 64.
313
  //
314
  // Since endianness doesn't matter for a single byte, all the
315
  // <BITWIDTH>=8 functions are equivalent.
316
  //
317
  // These can be used to write both signed and unsigned values, as
318
  // the compiler will properly sign-extend a signed value before
319
  // passing it to the function, at which point the function's
320
  // behavior is the same either way.
321
0
  Section &L8(uint8_t value) { contents_ += value; return *this; }
322
0
  Section &B8(uint8_t value) { contents_ += value; return *this; }
323
0
  Section &D8(uint8_t value) { contents_ += value; return *this; }
324
  Section &L16(uint16_t), &L32(uint32_t), &L64(uint64_t),
325
          &B16(uint16_t), &B32(uint32_t), &B64(uint64_t),
326
          &D16(uint16_t), &D32(uint32_t), &D64(uint64_t);
327
  Section &L8(const Label &label),  &L16(const Label &label),
328
          &L32(const Label &label), &L64(const Label &label),
329
          &B8(const Label &label),  &B16(const Label &label),
330
          &B32(const Label &label), &B64(const Label &label),
331
          &D8(const Label &label),  &D16(const Label &label),
332
          &D32(const Label &label), &D64(const Label &label);
333
334
  // Append VALUE in a signed LEB128 (Little-Endian Base 128) form.
335
  //
336
  // The signed LEB128 representation of an integer N is a variable
337
  // number of bytes:
338
  //
339
  // - If N is between -0x40 and 0x3f, then its signed LEB128
340
  //   representation is a single byte whose value is N.
341
  //
342
  // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
343
  //   0x80, followed by the signed LEB128 representation of N / 128,
344
  //   rounded towards negative infinity.
345
  //
346
  // In other words, we break VALUE into groups of seven bits, put
347
  // them in little-endian order, and then write them as eight-bit
348
  // bytes with the high bit on all but the last.
349
  //
350
  // Note that VALUE cannot be a Label (we would have to implement
351
  // relaxation).
352
  Section &LEB128(long long value);
353
354
  // Append VALUE in unsigned LEB128 (Little-Endian Base 128) form.
355
  //
356
  // The unsigned LEB128 representation of an integer N is a variable
357
  // number of bytes:
358
  //
359
  // - If N is between 0 and 0x7f, then its unsigned LEB128
360
  //   representation is a single byte whose value is N.
361
  //
362
  // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
363
  //   0x80, followed by the unsigned LEB128 representation of N /
364
  //   128, rounded towards negative infinity.
365
  //
366
  // Note that VALUE cannot be a Label (we would have to implement
367
  // relaxation).
368
  Section &ULEB128(uint64_t value);
369
370
  // Jump to the next location aligned on an ALIGNMENT-byte boundary,
371
  // relative to the start of the section. Fill the gap with PAD_BYTE.
372
  // ALIGNMENT must be a power of two. Return a reference to this
373
  // section.
374
  Section &Align(size_t alignment, uint8_t pad_byte = 0);
375
376
  // Return the current size of the section.
377
0
  size_t Size() const { return contents_.size(); }
378
379
  // Return a label representing the start of the section.
380
  //
381
  // It is up to the user whether this label represents the section's
382
  // position in an object file, the section's address in memory, or
383
  // what have you; some applications may need both, in which case
384
  // this simple-minded interface won't be enough. This class only
385
  // provides a single start label, for use with the Here and Mark
386
  // member functions.
387
  //
388
  // Ideally, we'd provide this in a subclass that actually knows more
389
  // about the application at hand and can provide an appropriate
390
  // collection of start labels. But then the appending member
391
  // functions like Append and D32 would return a reference to the
392
  // base class, not the derived class, and the chaining won't work.
393
  // Since the only value here is in pretty notation, that's a fatal
394
  // flaw.
395
0
  Label start() const { return start_; }
396
397
  // Return a label representing the point at which the next Appended
398
  // item will appear in the section, relative to start().
399
0
  Label Here() const { return start_ + Size(); }
400
401
  // Set *LABEL to Here, and return a reference to this section.
402
0
  Section &Mark(Label *label) { *label = Here(); return *this; }
403
404
  // If there are no undefined label references left in this
405
  // section, set CONTENTS to the contents of this section, as a
406
  // string, and clear this section. Return true on success, or false
407
  // if there were still undefined labels.
408
  bool GetContents(string *contents);
409
410
 private:
411
  // Used internally. A reference to a label's value.
412
  struct Reference {
413
    Reference(size_t set_offset, Endianness set_endianness,  size_t set_size,
414
              const Label &set_label)
415
        : offset(set_offset), endianness(set_endianness), size(set_size),
416
0
          label(set_label) { }
417
418
    // The offset of the reference within the section.
419
    size_t offset;
420
421
    // The endianness of the reference.
422
    Endianness endianness;
423
424
    // The size of the reference.
425
    size_t size;
426
427
    // The label to which this is a reference.
428
    Label label;
429
  };
430
431
  // The default endianness of this section.
432
  Endianness endianness_;
433
434
  // The contents of the section.
435
  string contents_;
436
437
  // References to labels within those contents.
438
  vector<Reference> references_;
439
440
  // A label referring to the beginning of the section.
441
  Label start_;
442
};
443
444
}  // namespace test_assembler
445
}  // namespace lul_test
446
447
448
namespace lul_test {
449
450
using lul::DwarfPointerEncoding;
451
using lul_test::test_assembler::Endianness;
452
using lul_test::test_assembler::Label;
453
using lul_test::test_assembler::Section;
454
455
class CFISection: public Section {
456
 public:
457
458
  // CFI augmentation strings beginning with 'z', defined by the
459
  // Linux/IA-64 C++ ABI, can specify interesting encodings for
460
  // addresses appearing in FDE headers and call frame instructions (and
461
  // for additional fields whose presence the augmentation string
462
  // specifies). In particular, pointers can be specified to be relative
463
  // to various base address: the start of the .text section, the
464
  // location holding the address itself, and so on. These allow the
465
  // frame data to be position-independent even when they live in
466
  // write-protected pages. These variants are specified at the
467
  // following two URLs:
468
  //
469
  // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
470
  // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
471
  //
472
  // CFISection leaves the production of well-formed 'z'-augmented CIEs and
473
  // FDEs to the user, but does provide EncodedPointer, to emit
474
  // properly-encoded addresses for a given pointer encoding.
475
  // EncodedPointer uses an instance of this structure to find the base
476
  // addresses it should use; you can establish a default for all encoded
477
  // pointers appended to this section with SetEncodedPointerBases.
478
  struct EncodedPointerBases {
479
0
    EncodedPointerBases() : cfi(), text(), data() { }
480
481
    // The starting address of this CFI section in memory, for
482
    // DW_EH_PE_pcrel. DW_EH_PE_pcrel pointers may only be used in data
483
    // that has is loaded into the program's address space.
484
    uint64_t cfi;
485
486
    // The starting address of this file's .text section, for DW_EH_PE_textrel.
487
    uint64_t text;
488
489
    // The starting address of this file's .got or .eh_frame_hdr section,
490
    // for DW_EH_PE_datarel.
491
    uint64_t data;
492
  };
493
494
  // Create a CFISection whose endianness is ENDIANNESS, and where
495
  // machine addresses are ADDRESS_SIZE bytes long. If EH_FRAME is
496
  // true, use the .eh_frame format, as described by the Linux
497
  // Standards Base Core Specification, instead of the DWARF CFI
498
  // format.
499
  CFISection(Endianness endianness, size_t address_size,
500
             bool eh_frame = false)
501
      : Section(endianness), address_size_(address_size), eh_frame_(eh_frame),
502
        pointer_encoding_(lul::DW_EH_PE_absptr),
503
0
        encoded_pointer_bases_(), entry_length_(NULL), in_fde_(false) {
504
0
    // The 'start', 'Here', and 'Mark' members of a CFISection all refer
505
0
    // to section offsets.
506
0
    start() = 0;
507
0
  }
508
509
  // Return this CFISection's address size.
510
0
  size_t AddressSize() const { return address_size_; }
511
512
  // Return true if this CFISection uses the .eh_frame format, or
513
  // false if it contains ordinary DWARF CFI data.
514
0
  bool ContainsEHFrame() const { return eh_frame_; }
515
516
  // Use ENCODING for pointers in calls to FDEHeader and EncodedPointer.
517
0
  void SetPointerEncoding(DwarfPointerEncoding encoding) {
518
0
    pointer_encoding_ = encoding;
519
0
  }
520
521
  // Use the addresses in BASES as the base addresses for encoded
522
  // pointers in subsequent calls to FDEHeader or EncodedPointer.
523
  // This function makes a copy of BASES.
524
0
  void SetEncodedPointerBases(const EncodedPointerBases &bases) {
525
0
    encoded_pointer_bases_ = bases;
526
0
  }
527
528
  // Append a Common Information Entry header to this section with the
529
  // given values. If dwarf64 is true, use the 64-bit DWARF initial
530
  // length format for the CIE's initial length. Return a reference to
531
  // this section. You should call FinishEntry after writing the last
532
  // instruction for the CIE.
533
  //
534
  // Before calling this function, you will typically want to use Mark
535
  // or Here to make a label to pass to FDEHeader that refers to this
536
  // CIE's position in the section.
537
  CFISection &CIEHeader(uint64_t code_alignment_factor,
538
                        int data_alignment_factor,
539
                        unsigned return_address_register,
540
                        uint8_t version = 3,
541
                        const string &augmentation = "",
542
                        bool dwarf64 = false);
543
544
  // Append a Frame Description Entry header to this section with the
545
  // given values. If dwarf64 is true, use the 64-bit DWARF initial
546
  // length format for the CIE's initial length. Return a reference to
547
  // this section. You should call FinishEntry after writing the last
548
  // instruction for the CIE.
549
  //
550
  // This function doesn't support entries that are longer than
551
  // 0xffffff00 bytes. (The "initial length" is always a 32-bit
552
  // value.) Nor does it support .debug_frame sections longer than
553
  // 0xffffff00 bytes.
554
  CFISection &FDEHeader(Label cie_pointer,
555
                        uint64_t initial_location,
556
                        uint64_t address_range,
557
                        bool dwarf64 = false);
558
559
  // Note the current position as the end of the last CIE or FDE we
560
  // started, after padding with DW_CFA_nops for alignment. This
561
  // defines the label representing the entry's length, cited in the
562
  // entry's header. Return a reference to this section.
563
  CFISection &FinishEntry();
564
565
  // Append the contents of BLOCK as a DW_FORM_block value: an
566
  // unsigned LEB128 length, followed by that many bytes of data.
567
0
  CFISection &Block(const string &block) {
568
0
    ULEB128(block.size());
569
0
    Append(block);
570
0
    return *this;
571
0
  }
572
573
  // Append ADDRESS to this section, in the appropriate size and
574
  // endianness. Return a reference to this section.
575
0
  CFISection &Address(uint64_t address) {
576
0
    Section::Append(endianness(), address_size_, address);
577
0
    return *this;
578
0
  }
579
580
  // Append ADDRESS to this section, using ENCODING and BASES. ENCODING
581
  // defaults to this section's default encoding, established by
582
  // SetPointerEncoding. BASES defaults to this section's bases, set by
583
  // SetEncodedPointerBases. If the DW_EH_PE_indirect bit is set in the
584
  // encoding, assume that ADDRESS is where the true address is stored.
585
  // Return a reference to this section.
586
  //
587
  // (C++ doesn't let me use default arguments here, because I want to
588
  // refer to members of *this in the default argument expression.)
589
0
  CFISection &EncodedPointer(uint64_t address) {
590
0
    return EncodedPointer(address, pointer_encoding_, encoded_pointer_bases_);
591
0
  }
592
0
  CFISection &EncodedPointer(uint64_t address, DwarfPointerEncoding encoding) {
593
0
    return EncodedPointer(address, encoding, encoded_pointer_bases_);
594
0
  }
595
  CFISection &EncodedPointer(uint64_t address, DwarfPointerEncoding encoding,
596
                             const EncodedPointerBases &bases);
597
598
  // Restate some member functions, to keep chaining working nicely.
599
0
  CFISection &Mark(Label *label)   { Section::Mark(label); return *this; }
600
0
  CFISection &D8(uint8_t v)       { Section::D8(v);       return *this; }
601
0
  CFISection &D16(uint16_t v)     { Section::D16(v);      return *this; }
602
0
  CFISection &D16(Label v)         { Section::D16(v);      return *this; }
603
0
  CFISection &D32(uint32_t v)     { Section::D32(v);      return *this; }
604
0
  CFISection &D32(const Label &v)  { Section::D32(v);      return *this; }
605
0
  CFISection &D64(uint64_t v)     { Section::D64(v);      return *this; }
606
0
  CFISection &D64(const Label &v)  { Section::D64(v);      return *this; }
607
0
  CFISection &LEB128(long long v)  { Section::LEB128(v);   return *this; }
608
0
  CFISection &ULEB128(uint64_t v) { Section::ULEB128(v);  return *this; }
609
610
 private:
611
  // A length value that we've appended to the section, but is not yet
612
  // known. LENGTH is the appended value; START is a label referring
613
  // to the start of the data whose length was cited.
614
  struct PendingLength {
615
    Label length;
616
    Label start;
617
  };
618
619
  // Constants used in CFI/.eh_frame data:
620
621
  // If the first four bytes of an "initial length" are this constant, then
622
  // the data uses the 64-bit DWARF format, and the length itself is the
623
  // subsequent eight bytes.
624
  static const uint32_t kDwarf64InitialLengthMarker = 0xffffffffU;
625
626
  // The CIE identifier for 32- and 64-bit DWARF CFI and .eh_frame data.
627
  static const uint32_t kDwarf32CIEIdentifier = ~(uint32_t)0;
628
  static const uint64_t kDwarf64CIEIdentifier = ~(uint64_t)0;
629
  static const uint32_t kEHFrame32CIEIdentifier = 0;
630
  static const uint64_t kEHFrame64CIEIdentifier = 0;
631
632
  // The size of a machine address for the data in this section.
633
  size_t address_size_;
634
635
  // If true, we are generating a Linux .eh_frame section, instead of
636
  // a standard DWARF .debug_frame section.
637
  bool eh_frame_;
638
639
  // The encoding to use for FDE pointers.
640
  DwarfPointerEncoding pointer_encoding_;
641
642
  // The base addresses to use when emitting encoded pointers.
643
  EncodedPointerBases encoded_pointer_bases_;
644
645
  // The length value for the current entry.
646
  //
647
  // Oddly, this must be dynamically allocated. Labels never get new
648
  // values; they only acquire constraints on the value they already
649
  // have, or assert if you assign them something incompatible. So
650
  // each header needs truly fresh Label objects to cite in their
651
  // headers and track their positions. The alternative is explicit
652
  // destructor invocation and a placement new. Ick.
653
  PendingLength *entry_length_;
654
655
  // True if we are currently emitting an FDE --- that is, we have
656
  // called FDEHeader but have not yet called FinishEntry.
657
  bool in_fde_;
658
659
  // If in_fde_ is true, this is its starting address. We use this for
660
  // emitting DW_EH_PE_funcrel pointers.
661
  uint64_t fde_start_address_;
662
};
663
664
}  // namespace lul_test
665
666
#endif // LUL_TEST_INFRASTRUCTURE_H