/src/mozilla-central/xpcom/base/nsMemoryReporterManager.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | #include "nsAtomTable.h" |
8 | | #include "nsAutoPtr.h" |
9 | | #include "nsCOMPtr.h" |
10 | | #include "nsCOMArray.h" |
11 | | #include "nsPrintfCString.h" |
12 | | #include "nsProxyRelease.h" |
13 | | #include "nsServiceManagerUtils.h" |
14 | | #include "nsMemoryReporterManager.h" |
15 | | #include "nsITimer.h" |
16 | | #include "nsThreadUtils.h" |
17 | | #include "nsPIDOMWindow.h" |
18 | | #include "nsIObserverService.h" |
19 | | #include "nsIGlobalObject.h" |
20 | | #include "nsIXPConnect.h" |
21 | | #ifdef MOZ_GECKO_PROFILER |
22 | | #include "GeckoProfilerReporter.h" |
23 | | #endif |
24 | | #if defined(XP_UNIX) || defined(MOZ_DMD) |
25 | | #include "nsMemoryInfoDumper.h" |
26 | | #endif |
27 | | #include "nsNetCID.h" |
28 | | #include "nsThread.h" |
29 | | #include "mozilla/Attributes.h" |
30 | | #include "mozilla/MemoryReportingProcess.h" |
31 | | #include "mozilla/PodOperations.h" |
32 | | #include "mozilla/Preferences.h" |
33 | | #include "mozilla/ResultExtensions.h" |
34 | | #include "mozilla/Services.h" |
35 | | #include "mozilla/Telemetry.h" |
36 | | #include "mozilla/UniquePtrExtensions.h" |
37 | | #include "mozilla/dom/MemoryReportTypes.h" |
38 | | #include "mozilla/dom/ContentParent.h" |
39 | | #include "mozilla/gfx/GPUProcessManager.h" |
40 | | #include "mozilla/ipc/FileDescriptorUtils.h" |
41 | | |
42 | | #ifdef XP_WIN |
43 | | #include "mozilla/MemoryInfo.h" |
44 | | |
45 | | #include <process.h> |
46 | | #ifndef getpid |
47 | | #define getpid _getpid |
48 | | #endif |
49 | | #else |
50 | | #include <unistd.h> |
51 | | #endif |
52 | | |
53 | | using namespace mozilla; |
54 | | using namespace dom; |
55 | | |
56 | | #if defined(MOZ_MEMORY) |
57 | | # define HAVE_JEMALLOC_STATS 1 |
58 | | # include "mozmemory.h" |
59 | | #endif // MOZ_MEMORY |
60 | | |
61 | | #if defined(XP_LINUX) |
62 | | |
63 | | #include "mozilla/MemoryMapping.h" |
64 | | |
65 | | #include <malloc.h> |
66 | | #include <string.h> |
67 | | #include <stdlib.h> |
68 | | |
69 | | static MOZ_MUST_USE nsresult |
70 | | GetProcSelfStatmField(int aField, int64_t* aN) |
71 | 0 | { |
72 | 0 | // There are more than two fields, but we're only interested in the first |
73 | 0 | // two. |
74 | 0 | static const int MAX_FIELD = 2; |
75 | 0 | size_t fields[MAX_FIELD]; |
76 | 0 | MOZ_ASSERT(aField < MAX_FIELD, "bad field number"); |
77 | 0 | FILE* f = fopen("/proc/self/statm", "r"); |
78 | 0 | if (f) { |
79 | 0 | int nread = fscanf(f, "%zu %zu", &fields[0], &fields[1]); |
80 | 0 | fclose(f); |
81 | 0 | if (nread == MAX_FIELD) { |
82 | 0 | *aN = fields[aField] * getpagesize(); |
83 | 0 | return NS_OK; |
84 | 0 | } |
85 | 0 | } |
86 | 0 | return NS_ERROR_FAILURE; |
87 | 0 | } |
88 | | |
89 | | static MOZ_MUST_USE nsresult |
90 | | GetProcSelfSmapsPrivate(int64_t* aN) |
91 | 0 | { |
92 | 0 | // You might be tempted to calculate USS by subtracting the "shared" value |
93 | 0 | // from the "resident" value in /proc/<pid>/statm. But at least on Linux, |
94 | 0 | // statm's "shared" value actually counts pages backed by files, which has |
95 | 0 | // little to do with whether the pages are actually shared. /proc/self/smaps |
96 | 0 | // on the other hand appears to give us the correct information. |
97 | 0 |
|
98 | 0 | nsTArray<MemoryMapping> mappings(1024); |
99 | 0 | MOZ_TRY(GetMemoryMappings(mappings)); |
100 | 0 |
|
101 | 0 | int64_t amount = 0; |
102 | 0 | for (auto& mapping : mappings) { |
103 | 0 | amount += mapping.Private_Clean(); |
104 | 0 | amount += mapping.Private_Dirty(); |
105 | 0 | } |
106 | 0 | *aN = amount; |
107 | 0 | return NS_OK; |
108 | 0 | } |
109 | | |
110 | | #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 |
111 | | static MOZ_MUST_USE nsresult |
112 | | VsizeDistinguishedAmount(int64_t* aN) |
113 | 0 | { |
114 | 0 | return GetProcSelfStatmField(0, aN); |
115 | 0 | } |
116 | | |
117 | | static MOZ_MUST_USE nsresult |
118 | | ResidentDistinguishedAmount(int64_t* aN) |
119 | 0 | { |
120 | 0 | return GetProcSelfStatmField(1, aN); |
121 | 0 | } |
122 | | |
123 | | static MOZ_MUST_USE nsresult |
124 | | ResidentFastDistinguishedAmount(int64_t* aN) |
125 | 0 | { |
126 | 0 | return ResidentDistinguishedAmount(aN); |
127 | 0 | } |
128 | | |
129 | | #define HAVE_RESIDENT_UNIQUE_REPORTER 1 |
130 | | static MOZ_MUST_USE nsresult |
131 | | ResidentUniqueDistinguishedAmount(int64_t* aN) |
132 | 0 | { |
133 | 0 | return GetProcSelfSmapsPrivate(aN); |
134 | 0 | } |
135 | | |
136 | | #ifdef HAVE_MALLINFO |
137 | | #define HAVE_SYSTEM_HEAP_REPORTER 1 |
138 | | static MOZ_MUST_USE nsresult |
139 | | SystemHeapSize(int64_t* aSizeOut) |
140 | 0 | { |
141 | 0 | struct mallinfo info = mallinfo(); |
142 | 0 |
|
143 | 0 | // The documentation in the glibc man page makes it sound like |uordblks| |
144 | 0 | // would suffice, but that only gets the small allocations that are put in |
145 | 0 | // the brk heap. We need |hblkhd| as well to get the larger allocations |
146 | 0 | // that are mmapped. |
147 | 0 | // |
148 | 0 | // The fields in |struct mallinfo| are all |int|, <sigh>, so it is |
149 | 0 | // unreliable if memory usage gets high. However, the system heap size on |
150 | 0 | // Linux should usually be zero (so long as jemalloc is enabled) so that |
151 | 0 | // shouldn't be a problem. Nonetheless, cast the |int|s to |size_t| before |
152 | 0 | // adding them to provide a small amount of extra overflow protection. |
153 | 0 | *aSizeOut = size_t(info.hblkhd) + size_t(info.uordblks); |
154 | 0 | return NS_OK; |
155 | 0 | } |
156 | | #endif |
157 | | |
158 | | #elif defined(__DragonFly__) || defined(__FreeBSD__) \ |
159 | | || defined(__NetBSD__) || defined(__OpenBSD__) \ |
160 | | || defined(__FreeBSD_kernel__) |
161 | | |
162 | | #include <sys/param.h> |
163 | | #include <sys/sysctl.h> |
164 | | #if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) |
165 | | #include <sys/user.h> |
166 | | #endif |
167 | | |
168 | | #include <unistd.h> |
169 | | |
170 | | #if defined(__NetBSD__) |
171 | | #undef KERN_PROC |
172 | | #define KERN_PROC KERN_PROC2 |
173 | | #define KINFO_PROC struct kinfo_proc2 |
174 | | #else |
175 | | #define KINFO_PROC struct kinfo_proc |
176 | | #endif |
177 | | |
178 | | #if defined(__DragonFly__) |
179 | | #define KP_SIZE(kp) (kp.kp_vm_map_size) |
180 | | #define KP_RSS(kp) (kp.kp_vm_rssize * getpagesize()) |
181 | | #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) |
182 | | #define KP_SIZE(kp) (kp.ki_size) |
183 | | #define KP_RSS(kp) (kp.ki_rssize * getpagesize()) |
184 | | #elif defined(__NetBSD__) |
185 | | #define KP_SIZE(kp) (kp.p_vm_msize * getpagesize()) |
186 | | #define KP_RSS(kp) (kp.p_vm_rssize * getpagesize()) |
187 | | #elif defined(__OpenBSD__) |
188 | | #define KP_SIZE(kp) ((kp.p_vm_dsize + kp.p_vm_ssize \ |
189 | | + kp.p_vm_tsize) * getpagesize()) |
190 | | #define KP_RSS(kp) (kp.p_vm_rssize * getpagesize()) |
191 | | #endif |
192 | | |
193 | | static MOZ_MUST_USE nsresult |
194 | | GetKinfoProcSelf(KINFO_PROC* aProc) |
195 | | { |
196 | | #if defined(__OpenBSD__) && defined(MOZ_SANDBOX) |
197 | | static LazyLogModule sPledgeLog("SandboxPledge"); |
198 | | MOZ_LOG(sPledgeLog, LogLevel::Debug, |
199 | | ("%s called when pledged, returning NS_ERROR_FAILURE\n", __func__)); |
200 | | return NS_ERROR_FAILURE; |
201 | | #endif |
202 | | int mib[] = { |
203 | | CTL_KERN, |
204 | | KERN_PROC, |
205 | | KERN_PROC_PID, |
206 | | getpid(), |
207 | | #if defined(__NetBSD__) || defined(__OpenBSD__) |
208 | | sizeof(KINFO_PROC), |
209 | | 1, |
210 | | #endif |
211 | | }; |
212 | | u_int miblen = sizeof(mib) / sizeof(mib[0]); |
213 | | size_t size = sizeof(KINFO_PROC); |
214 | | if (sysctl(mib, miblen, aProc, &size, nullptr, 0)) { |
215 | | return NS_ERROR_FAILURE; |
216 | | } |
217 | | return NS_OK; |
218 | | } |
219 | | |
220 | | #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 |
221 | | static MOZ_MUST_USE nsresult |
222 | | VsizeDistinguishedAmount(int64_t* aN) |
223 | | { |
224 | | KINFO_PROC proc; |
225 | | nsresult rv = GetKinfoProcSelf(&proc); |
226 | | if (NS_SUCCEEDED(rv)) { |
227 | | *aN = KP_SIZE(proc); |
228 | | } |
229 | | return rv; |
230 | | } |
231 | | |
232 | | static MOZ_MUST_USE nsresult |
233 | | ResidentDistinguishedAmount(int64_t* aN) |
234 | | { |
235 | | KINFO_PROC proc; |
236 | | nsresult rv = GetKinfoProcSelf(&proc); |
237 | | if (NS_SUCCEEDED(rv)) { |
238 | | *aN = KP_RSS(proc); |
239 | | } |
240 | | return rv; |
241 | | } |
242 | | |
243 | | static MOZ_MUST_USE nsresult |
244 | | ResidentFastDistinguishedAmount(int64_t* aN) |
245 | | { |
246 | | return ResidentDistinguishedAmount(aN); |
247 | | } |
248 | | |
249 | | #ifdef __FreeBSD__ |
250 | | #include <libutil.h> |
251 | | #include <algorithm> |
252 | | |
253 | | static MOZ_MUST_USE nsresult |
254 | | GetKinfoVmentrySelf(int64_t* aPrss, uint64_t* aMaxreg) |
255 | | { |
256 | | int cnt; |
257 | | struct kinfo_vmentry* vmmap; |
258 | | struct kinfo_vmentry* kve; |
259 | | if (!(vmmap = kinfo_getvmmap(getpid(), &cnt))) { |
260 | | return NS_ERROR_FAILURE; |
261 | | } |
262 | | if (aPrss) { |
263 | | *aPrss = 0; |
264 | | } |
265 | | if (aMaxreg) { |
266 | | *aMaxreg = 0; |
267 | | } |
268 | | |
269 | | for (int i = 0; i < cnt; i++) { |
270 | | kve = &vmmap[i]; |
271 | | if (aPrss) { |
272 | | *aPrss += kve->kve_private_resident; |
273 | | } |
274 | | if (aMaxreg) { |
275 | | *aMaxreg = std::max(*aMaxreg, kve->kve_end - kve->kve_start); |
276 | | } |
277 | | } |
278 | | |
279 | | free(vmmap); |
280 | | return NS_OK; |
281 | | } |
282 | | |
283 | | #define HAVE_PRIVATE_REPORTER 1 |
284 | | static MOZ_MUST_USE nsresult |
285 | | PrivateDistinguishedAmount(int64_t* aN) |
286 | | { |
287 | | int64_t priv; |
288 | | nsresult rv = GetKinfoVmentrySelf(&priv, nullptr); |
289 | | NS_ENSURE_SUCCESS(rv, rv); |
290 | | *aN = priv * getpagesize(); |
291 | | return NS_OK; |
292 | | } |
293 | | |
294 | | #define HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER 1 |
295 | | static MOZ_MUST_USE nsresult |
296 | | VsizeMaxContiguousDistinguishedAmount(int64_t* aN) |
297 | | { |
298 | | uint64_t biggestRegion; |
299 | | nsresult rv = GetKinfoVmentrySelf(nullptr, &biggestRegion); |
300 | | if (NS_SUCCEEDED(rv)) { |
301 | | *aN = biggestRegion; |
302 | | } |
303 | | return NS_OK; |
304 | | } |
305 | | #endif // FreeBSD |
306 | | |
307 | | #elif defined(SOLARIS) |
308 | | |
309 | | #include <procfs.h> |
310 | | #include <fcntl.h> |
311 | | #include <unistd.h> |
312 | | |
313 | | static void |
314 | | XMappingIter(int64_t& aVsize, int64_t& aResident, int64_t& aShared) |
315 | | { |
316 | | aVsize = -1; |
317 | | aResident = -1; |
318 | | aShared = -1; |
319 | | int mapfd = open("/proc/self/xmap", O_RDONLY); |
320 | | struct stat st; |
321 | | prxmap_t* prmapp = nullptr; |
322 | | if (mapfd >= 0) { |
323 | | if (!fstat(mapfd, &st)) { |
324 | | int nmap = st.st_size / sizeof(prxmap_t); |
325 | | while (1) { |
326 | | // stat(2) on /proc/<pid>/xmap returns an incorrect value, |
327 | | // prior to the release of Solaris 11. |
328 | | // Here is a workaround for it. |
329 | | nmap *= 2; |
330 | | prmapp = (prxmap_t*)malloc((nmap + 1) * sizeof(prxmap_t)); |
331 | | if (!prmapp) { |
332 | | // out of memory |
333 | | break; |
334 | | } |
335 | | int n = pread(mapfd, prmapp, (nmap + 1) * sizeof(prxmap_t), 0); |
336 | | if (n < 0) { |
337 | | break; |
338 | | } |
339 | | if (nmap >= n / sizeof(prxmap_t)) { |
340 | | aVsize = 0; |
341 | | aResident = 0; |
342 | | aShared = 0; |
343 | | for (int i = 0; i < n / sizeof(prxmap_t); i++) { |
344 | | aVsize += prmapp[i].pr_size; |
345 | | aResident += prmapp[i].pr_rss * prmapp[i].pr_pagesize; |
346 | | if (prmapp[i].pr_mflags & MA_SHARED) { |
347 | | aShared += prmapp[i].pr_rss * prmapp[i].pr_pagesize; |
348 | | } |
349 | | } |
350 | | break; |
351 | | } |
352 | | free(prmapp); |
353 | | } |
354 | | free(prmapp); |
355 | | } |
356 | | close(mapfd); |
357 | | } |
358 | | } |
359 | | |
360 | | #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 |
361 | | static MOZ_MUST_USE nsresult |
362 | | VsizeDistinguishedAmount(int64_t* aN) |
363 | | { |
364 | | int64_t vsize, resident, shared; |
365 | | XMappingIter(vsize, resident, shared); |
366 | | if (vsize == -1) { |
367 | | return NS_ERROR_FAILURE; |
368 | | } |
369 | | *aN = vsize; |
370 | | return NS_OK; |
371 | | } |
372 | | |
373 | | static MOZ_MUST_USE nsresult |
374 | | ResidentDistinguishedAmount(int64_t* aN) |
375 | | { |
376 | | int64_t vsize, resident, shared; |
377 | | XMappingIter(vsize, resident, shared); |
378 | | if (resident == -1) { |
379 | | return NS_ERROR_FAILURE; |
380 | | } |
381 | | *aN = resident; |
382 | | return NS_OK; |
383 | | } |
384 | | |
385 | | static MOZ_MUST_USE nsresult |
386 | | ResidentFastDistinguishedAmount(int64_t* aN) |
387 | | { |
388 | | return ResidentDistinguishedAmount(aN); |
389 | | } |
390 | | |
391 | | #define HAVE_RESIDENT_UNIQUE_REPORTER 1 |
392 | | static MOZ_MUST_USE nsresult |
393 | | ResidentUniqueDistinguishedAmount(int64_t* aN) |
394 | | { |
395 | | int64_t vsize, resident, shared; |
396 | | XMappingIter(vsize, resident, shared); |
397 | | if (resident == -1) { |
398 | | return NS_ERROR_FAILURE; |
399 | | } |
400 | | *aN = resident - shared; |
401 | | return NS_OK; |
402 | | } |
403 | | |
404 | | #elif defined(XP_MACOSX) |
405 | | |
406 | | #include <mach/mach_init.h> |
407 | | #include <mach/mach_vm.h> |
408 | | #include <mach/shared_region.h> |
409 | | #include <mach/task.h> |
410 | | #include <sys/sysctl.h> |
411 | | |
412 | | static MOZ_MUST_USE bool |
413 | | GetTaskBasicInfo(struct task_basic_info* aTi) |
414 | | { |
415 | | mach_msg_type_number_t count = TASK_BASIC_INFO_COUNT; |
416 | | kern_return_t kr = task_info(mach_task_self(), TASK_BASIC_INFO, |
417 | | (task_info_t)aTi, &count); |
418 | | return kr == KERN_SUCCESS; |
419 | | } |
420 | | |
421 | | // The VSIZE figure on Mac includes huge amounts of shared memory and is always |
422 | | // absurdly high, eg. 2GB+ even at start-up. But both 'top' and 'ps' report |
423 | | // it, so we might as well too. |
424 | | #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 |
425 | | static MOZ_MUST_USE nsresult |
426 | | VsizeDistinguishedAmount(int64_t* aN) |
427 | | { |
428 | | task_basic_info ti; |
429 | | if (!GetTaskBasicInfo(&ti)) { |
430 | | return NS_ERROR_FAILURE; |
431 | | } |
432 | | *aN = ti.virtual_size; |
433 | | return NS_OK; |
434 | | } |
435 | | |
436 | | // If we're using jemalloc on Mac, we need to instruct jemalloc to purge the |
437 | | // pages it has madvise(MADV_FREE)'d before we read our RSS in order to get |
438 | | // an accurate result. The OS will take away MADV_FREE'd pages when there's |
439 | | // memory pressure, so ideally, they shouldn't count against our RSS. |
440 | | // |
441 | | // Purging these pages can take a long time for some users (see bug 789975), |
442 | | // so we provide the option to get the RSS without purging first. |
443 | | static MOZ_MUST_USE nsresult |
444 | | ResidentDistinguishedAmountHelper(int64_t* aN, bool aDoPurge) |
445 | | { |
446 | | #ifdef HAVE_JEMALLOC_STATS |
447 | | if (aDoPurge) { |
448 | | Telemetry::AutoTimer<Telemetry::MEMORY_FREE_PURGED_PAGES_MS> timer; |
449 | | jemalloc_purge_freed_pages(); |
450 | | } |
451 | | #endif |
452 | | |
453 | | task_basic_info ti; |
454 | | if (!GetTaskBasicInfo(&ti)) { |
455 | | return NS_ERROR_FAILURE; |
456 | | } |
457 | | *aN = ti.resident_size; |
458 | | return NS_OK; |
459 | | } |
460 | | |
461 | | static MOZ_MUST_USE nsresult |
462 | | ResidentFastDistinguishedAmount(int64_t* aN) |
463 | | { |
464 | | return ResidentDistinguishedAmountHelper(aN, /* doPurge = */ false); |
465 | | } |
466 | | |
467 | | static MOZ_MUST_USE nsresult |
468 | | ResidentDistinguishedAmount(int64_t* aN) |
469 | | { |
470 | | return ResidentDistinguishedAmountHelper(aN, /* doPurge = */ true); |
471 | | } |
472 | | |
473 | | #define HAVE_RESIDENT_UNIQUE_REPORTER 1 |
474 | | |
475 | | static bool |
476 | | InSharedRegion(mach_vm_address_t aAddr, cpu_type_t aType) |
477 | | { |
478 | | mach_vm_address_t base; |
479 | | mach_vm_address_t size; |
480 | | |
481 | | switch (aType) { |
482 | | case CPU_TYPE_ARM: |
483 | | base = SHARED_REGION_BASE_ARM; |
484 | | size = SHARED_REGION_SIZE_ARM; |
485 | | break; |
486 | | case CPU_TYPE_I386: |
487 | | base = SHARED_REGION_BASE_I386; |
488 | | size = SHARED_REGION_SIZE_I386; |
489 | | break; |
490 | | case CPU_TYPE_X86_64: |
491 | | base = SHARED_REGION_BASE_X86_64; |
492 | | size = SHARED_REGION_SIZE_X86_64; |
493 | | break; |
494 | | default: |
495 | | return false; |
496 | | } |
497 | | |
498 | | return base <= aAddr && aAddr < (base + size); |
499 | | } |
500 | | |
501 | | static MOZ_MUST_USE nsresult |
502 | | ResidentUniqueDistinguishedAmount(int64_t* aN) |
503 | | { |
504 | | if (!aN) { |
505 | | return NS_ERROR_FAILURE; |
506 | | } |
507 | | |
508 | | cpu_type_t cpu_type; |
509 | | size_t len = sizeof(cpu_type); |
510 | | if (sysctlbyname("sysctl.proc_cputype", &cpu_type, &len, NULL, 0) != 0) { |
511 | | return NS_ERROR_FAILURE; |
512 | | } |
513 | | |
514 | | // Roughly based on libtop_update_vm_regions in |
515 | | // http://www.opensource.apple.com/source/top/top-100.1.2/libtop.c |
516 | | size_t privatePages = 0; |
517 | | mach_vm_size_t size = 0; |
518 | | for (mach_vm_address_t addr = MACH_VM_MIN_ADDRESS; ; addr += size) { |
519 | | vm_region_top_info_data_t info; |
520 | | mach_msg_type_number_t infoCount = VM_REGION_TOP_INFO_COUNT; |
521 | | mach_port_t objectName; |
522 | | |
523 | | kern_return_t kr = |
524 | | mach_vm_region(mach_task_self(), &addr, &size, VM_REGION_TOP_INFO, |
525 | | reinterpret_cast<vm_region_info_t>(&info), |
526 | | &infoCount, &objectName); |
527 | | if (kr == KERN_INVALID_ADDRESS) { |
528 | | // Done iterating VM regions. |
529 | | break; |
530 | | } else if (kr != KERN_SUCCESS) { |
531 | | return NS_ERROR_FAILURE; |
532 | | } |
533 | | |
534 | | if (InSharedRegion(addr, cpu_type) && info.share_mode != SM_PRIVATE) { |
535 | | continue; |
536 | | } |
537 | | |
538 | | switch (info.share_mode) { |
539 | | case SM_LARGE_PAGE: |
540 | | // NB: Large pages are not shareable and always resident. |
541 | | case SM_PRIVATE: |
542 | | privatePages += info.private_pages_resident; |
543 | | privatePages += info.shared_pages_resident; |
544 | | break; |
545 | | case SM_COW: |
546 | | privatePages += info.private_pages_resident; |
547 | | if (info.ref_count == 1) { |
548 | | // Treat copy-on-write pages as private if they only have one reference. |
549 | | privatePages += info.shared_pages_resident; |
550 | | } |
551 | | break; |
552 | | case SM_SHARED: |
553 | | default: |
554 | | break; |
555 | | } |
556 | | } |
557 | | |
558 | | vm_size_t pageSize; |
559 | | if (host_page_size(mach_host_self(), &pageSize) != KERN_SUCCESS) { |
560 | | pageSize = PAGE_SIZE; |
561 | | } |
562 | | |
563 | | *aN = privatePages * pageSize; |
564 | | return NS_OK; |
565 | | } |
566 | | |
567 | | #elif defined(XP_WIN) |
568 | | |
569 | | #include <windows.h> |
570 | | #include <psapi.h> |
571 | | #include <algorithm> |
572 | | |
573 | | #define HAVE_VSIZE_AND_RESIDENT_REPORTERS 1 |
574 | | static MOZ_MUST_USE nsresult |
575 | | VsizeDistinguishedAmount(int64_t* aN) |
576 | | { |
577 | | MEMORYSTATUSEX s; |
578 | | s.dwLength = sizeof(s); |
579 | | |
580 | | if (!GlobalMemoryStatusEx(&s)) { |
581 | | return NS_ERROR_FAILURE; |
582 | | } |
583 | | |
584 | | *aN = s.ullTotalVirtual - s.ullAvailVirtual; |
585 | | return NS_OK; |
586 | | } |
587 | | |
588 | | static MOZ_MUST_USE nsresult |
589 | | ResidentDistinguishedAmount(int64_t* aN) |
590 | | { |
591 | | PROCESS_MEMORY_COUNTERS pmc; |
592 | | pmc.cb = sizeof(PROCESS_MEMORY_COUNTERS); |
593 | | |
594 | | if (!GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc))) { |
595 | | return NS_ERROR_FAILURE; |
596 | | } |
597 | | |
598 | | *aN = pmc.WorkingSetSize; |
599 | | return NS_OK; |
600 | | } |
601 | | |
602 | | static MOZ_MUST_USE nsresult |
603 | | ResidentFastDistinguishedAmount(int64_t* aN) |
604 | | { |
605 | | return ResidentDistinguishedAmount(aN); |
606 | | } |
607 | | |
608 | | #define HAVE_RESIDENT_UNIQUE_REPORTER 1 |
609 | | |
610 | | static MOZ_MUST_USE nsresult |
611 | | ResidentUniqueDistinguishedAmount(int64_t* aN) |
612 | | { |
613 | | // Determine how many entries we need. |
614 | | PSAPI_WORKING_SET_INFORMATION tmp; |
615 | | DWORD tmpSize = sizeof(tmp); |
616 | | memset(&tmp, 0, tmpSize); |
617 | | |
618 | | HANDLE proc = GetCurrentProcess(); |
619 | | QueryWorkingSet(proc, &tmp, tmpSize); |
620 | | |
621 | | // Fudge the size in case new entries are added between calls. |
622 | | size_t entries = tmp.NumberOfEntries * 2; |
623 | | |
624 | | if (!entries) { |
625 | | return NS_ERROR_FAILURE; |
626 | | } |
627 | | |
628 | | DWORD infoArraySize = tmpSize + (entries * sizeof(PSAPI_WORKING_SET_BLOCK)); |
629 | | UniqueFreePtr<PSAPI_WORKING_SET_INFORMATION> infoArray( |
630 | | static_cast<PSAPI_WORKING_SET_INFORMATION*>(malloc(infoArraySize))); |
631 | | |
632 | | if (!infoArray) { |
633 | | return NS_ERROR_FAILURE; |
634 | | } |
635 | | |
636 | | if (!QueryWorkingSet(proc, infoArray.get(), infoArraySize)) { |
637 | | return NS_ERROR_FAILURE; |
638 | | } |
639 | | |
640 | | entries = static_cast<size_t>(infoArray->NumberOfEntries); |
641 | | size_t privatePages = 0; |
642 | | for (size_t i = 0; i < entries; i++) { |
643 | | // Count shared pages that only one process is using as private. |
644 | | if (!infoArray->WorkingSetInfo[i].Shared || |
645 | | infoArray->WorkingSetInfo[i].ShareCount <= 1) { |
646 | | privatePages++; |
647 | | } |
648 | | } |
649 | | |
650 | | SYSTEM_INFO si; |
651 | | GetSystemInfo(&si); |
652 | | |
653 | | *aN = privatePages * si.dwPageSize; |
654 | | return NS_OK; |
655 | | } |
656 | | |
657 | | #define HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER 1 |
658 | | static MOZ_MUST_USE nsresult |
659 | | VsizeMaxContiguousDistinguishedAmount(int64_t* aN) |
660 | | { |
661 | | SIZE_T biggestRegion = 0; |
662 | | MEMORY_BASIC_INFORMATION vmemInfo = { 0 }; |
663 | | for (size_t currentAddress = 0; ; ) { |
664 | | if (!VirtualQuery((LPCVOID)currentAddress, &vmemInfo, sizeof(vmemInfo))) { |
665 | | // Something went wrong, just return whatever we've got already. |
666 | | break; |
667 | | } |
668 | | |
669 | | if (vmemInfo.State == MEM_FREE) { |
670 | | biggestRegion = std::max(biggestRegion, vmemInfo.RegionSize); |
671 | | } |
672 | | |
673 | | SIZE_T lastAddress = currentAddress; |
674 | | currentAddress += vmemInfo.RegionSize; |
675 | | |
676 | | // If we overflow, we've examined all of the address space. |
677 | | if (currentAddress < lastAddress) { |
678 | | break; |
679 | | } |
680 | | } |
681 | | |
682 | | *aN = biggestRegion; |
683 | | return NS_OK; |
684 | | } |
685 | | |
686 | | #define HAVE_PRIVATE_REPORTER 1 |
687 | | static MOZ_MUST_USE nsresult |
688 | | PrivateDistinguishedAmount(int64_t* aN) |
689 | | { |
690 | | PROCESS_MEMORY_COUNTERS_EX pmcex; |
691 | | pmcex.cb = sizeof(PROCESS_MEMORY_COUNTERS_EX); |
692 | | |
693 | | if (!GetProcessMemoryInfo(GetCurrentProcess(), |
694 | | (PPROCESS_MEMORY_COUNTERS) &pmcex, sizeof(pmcex))) { |
695 | | return NS_ERROR_FAILURE; |
696 | | } |
697 | | |
698 | | *aN = pmcex.PrivateUsage; |
699 | | return NS_OK; |
700 | | } |
701 | | |
702 | | #define HAVE_SYSTEM_HEAP_REPORTER 1 |
703 | | // Windows can have multiple separate heaps. During testing there were multiple |
704 | | // heaps present but the non-default ones had sizes no more than a few 10s of |
705 | | // KiBs. So we combine their sizes into a single measurement. |
706 | | static MOZ_MUST_USE nsresult |
707 | | SystemHeapSize(int64_t* aSizeOut) |
708 | | { |
709 | | // Get the number of heaps. |
710 | | DWORD nHeaps = GetProcessHeaps(0, nullptr); |
711 | | NS_ENSURE_TRUE(nHeaps != 0, NS_ERROR_FAILURE); |
712 | | |
713 | | // Get handles to all heaps, checking that the number of heaps hasn't |
714 | | // changed in the meantime. |
715 | | UniquePtr<HANDLE[]> heaps(new HANDLE[nHeaps]); |
716 | | DWORD nHeaps2 = GetProcessHeaps(nHeaps, heaps.get()); |
717 | | NS_ENSURE_TRUE(nHeaps2 != 0 && nHeaps2 == nHeaps, NS_ERROR_FAILURE); |
718 | | |
719 | | // Lock and iterate over each heap to get its size. |
720 | | int64_t heapsSize = 0; |
721 | | for (DWORD i = 0; i < nHeaps; i++) { |
722 | | HANDLE heap = heaps[i]; |
723 | | |
724 | | // Bug 1235982: When Control Flow Guard is enabled for the process, |
725 | | // GetProcessHeap may return some protected heaps that are in read-only |
726 | | // memory and thus crash in HeapLock. Ignore such heaps. |
727 | | MEMORY_BASIC_INFORMATION mbi = {0}; |
728 | | if (VirtualQuery(heap, &mbi, sizeof(mbi)) && mbi.Protect == PAGE_READONLY) { |
729 | | continue; |
730 | | } |
731 | | |
732 | | NS_ENSURE_TRUE(HeapLock(heap), NS_ERROR_FAILURE); |
733 | | |
734 | | int64_t heapSize = 0; |
735 | | PROCESS_HEAP_ENTRY entry; |
736 | | entry.lpData = nullptr; |
737 | | while (HeapWalk(heap, &entry)) { |
738 | | // We don't count entry.cbOverhead, because we just want to measure the |
739 | | // space available to the program. |
740 | | if (entry.wFlags & PROCESS_HEAP_ENTRY_BUSY) { |
741 | | heapSize += entry.cbData; |
742 | | } |
743 | | } |
744 | | |
745 | | // Check this result only after unlocking the heap, so that we don't leave |
746 | | // the heap locked if there was an error. |
747 | | DWORD lastError = GetLastError(); |
748 | | |
749 | | // I have no idea how things would proceed if unlocking this heap failed... |
750 | | NS_ENSURE_TRUE(HeapUnlock(heap), NS_ERROR_FAILURE); |
751 | | |
752 | | NS_ENSURE_TRUE(lastError == ERROR_NO_MORE_ITEMS, NS_ERROR_FAILURE); |
753 | | |
754 | | heapsSize += heapSize; |
755 | | } |
756 | | |
757 | | *aSizeOut = heapsSize; |
758 | | return NS_OK; |
759 | | } |
760 | | |
761 | | struct SegmentKind |
762 | | { |
763 | | DWORD mState; |
764 | | DWORD mType; |
765 | | DWORD mProtect; |
766 | | int mIsStack; |
767 | | }; |
768 | | |
769 | | struct SegmentEntry : public PLDHashEntryHdr |
770 | | { |
771 | | static PLDHashNumber HashKey(const void* aKey) |
772 | | { |
773 | | auto kind = static_cast<const SegmentKind*>(aKey); |
774 | | return mozilla::HashGeneric(kind->mState, kind->mType, kind->mProtect, |
775 | | kind->mIsStack); |
776 | | } |
777 | | |
778 | | static bool MatchEntry(const PLDHashEntryHdr* aEntry, const void* aKey) |
779 | | { |
780 | | auto kind = static_cast<const SegmentKind*>(aKey); |
781 | | auto entry = static_cast<const SegmentEntry*>(aEntry); |
782 | | return kind->mState == entry->mKind.mState && |
783 | | kind->mType == entry->mKind.mType && |
784 | | kind->mProtect == entry->mKind.mProtect && |
785 | | kind->mIsStack == entry->mKind.mIsStack; |
786 | | } |
787 | | |
788 | | static void InitEntry(PLDHashEntryHdr* aEntry, const void* aKey) |
789 | | { |
790 | | auto kind = static_cast<const SegmentKind*>(aKey); |
791 | | auto entry = static_cast<SegmentEntry*>(aEntry); |
792 | | entry->mKind = *kind; |
793 | | entry->mCount = 0; |
794 | | entry->mSize = 0; |
795 | | } |
796 | | |
797 | | static const PLDHashTableOps Ops; |
798 | | |
799 | | SegmentKind mKind; // The segment kind. |
800 | | uint32_t mCount; // The number of segments of this kind. |
801 | | size_t mSize; // The combined size of segments of this kind. |
802 | | }; |
803 | | |
804 | | /* static */ const PLDHashTableOps SegmentEntry::Ops = { |
805 | | SegmentEntry::HashKey, |
806 | | SegmentEntry::MatchEntry, |
807 | | PLDHashTable::MoveEntryStub, |
808 | | PLDHashTable::ClearEntryStub, |
809 | | SegmentEntry::InitEntry |
810 | | }; |
811 | | |
812 | | class WindowsAddressSpaceReporter final : public nsIMemoryReporter |
813 | | { |
814 | | ~WindowsAddressSpaceReporter() {} |
815 | | |
816 | | public: |
817 | | NS_DECL_ISUPPORTS |
818 | | |
819 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
820 | | nsISupports* aData, bool aAnonymize) override |
821 | | { |
822 | | // First iterate over all the segments and record how many of each kind |
823 | | // there were and their aggregate sizes. We use a hash table for this |
824 | | // because there are a couple of dozen different kinds possible. |
825 | | |
826 | | PLDHashTable table(&SegmentEntry::Ops, sizeof(SegmentEntry)); |
827 | | MEMORY_BASIC_INFORMATION info = { 0 }; |
828 | | bool isPrevSegStackGuard = false; |
829 | | for (size_t currentAddress = 0; ; ) { |
830 | | if (!VirtualQuery((LPCVOID)currentAddress, &info, sizeof(info))) { |
831 | | // Something went wrong, just return whatever we've got already. |
832 | | break; |
833 | | } |
834 | | |
835 | | size_t size = info.RegionSize; |
836 | | |
837 | | // Note that |type| and |protect| are ignored in some cases. |
838 | | DWORD state = info.State; |
839 | | DWORD type = |
840 | | (state == MEM_RESERVE || state == MEM_COMMIT) ? info.Type : 0; |
841 | | DWORD protect = (state == MEM_COMMIT) ? info.Protect : 0; |
842 | | bool isStack = isPrevSegStackGuard && |
843 | | state == MEM_COMMIT && |
844 | | type == MEM_PRIVATE && |
845 | | protect == PAGE_READWRITE; |
846 | | |
847 | | SegmentKind kind = { state, type, protect, isStack ? 1 : 0 }; |
848 | | auto entry = |
849 | | static_cast<SegmentEntry*>(table.Add(&kind, mozilla::fallible)); |
850 | | if (entry) { |
851 | | entry->mCount += 1; |
852 | | entry->mSize += size; |
853 | | } |
854 | | |
855 | | isPrevSegStackGuard = info.State == MEM_COMMIT && |
856 | | info.Type == MEM_PRIVATE && |
857 | | info.Protect == (PAGE_READWRITE|PAGE_GUARD); |
858 | | |
859 | | size_t lastAddress = currentAddress; |
860 | | currentAddress += size; |
861 | | |
862 | | // If we overflow, we've examined all of the address space. |
863 | | if (currentAddress < lastAddress) { |
864 | | break; |
865 | | } |
866 | | } |
867 | | |
868 | | // Then iterate over the hash table and report the details for each segment |
869 | | // kind. |
870 | | |
871 | | for (auto iter = table.Iter(); !iter.Done(); iter.Next()) { |
872 | | // For each range of pages, we consider one or more of its State, Type |
873 | | // and Protect values. These are documented at |
874 | | // https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775%28v=vs.85%29.aspx |
875 | | // (for State and Type) and |
876 | | // https://msdn.microsoft.com/en-us/library/windows/desktop/aa366786%28v=vs.85%29.aspx |
877 | | // (for Protect). |
878 | | // |
879 | | // Not all State values have accompanying Type and Protection values. |
880 | | bool doType = false; |
881 | | bool doProtect = false; |
882 | | |
883 | | auto entry = static_cast<const SegmentEntry*>(iter.Get()); |
884 | | |
885 | | nsCString path("address-space"); |
886 | | |
887 | | switch (entry->mKind.mState) { |
888 | | case MEM_FREE: |
889 | | path.AppendLiteral("/free"); |
890 | | break; |
891 | | |
892 | | case MEM_RESERVE: |
893 | | path.AppendLiteral("/reserved"); |
894 | | doType = true; |
895 | | break; |
896 | | |
897 | | case MEM_COMMIT: |
898 | | path.AppendLiteral("/commit"); |
899 | | doType = true; |
900 | | doProtect = true; |
901 | | break; |
902 | | |
903 | | default: |
904 | | // Should be impossible, but handle it just in case. |
905 | | path.AppendLiteral("/???"); |
906 | | break; |
907 | | } |
908 | | |
909 | | if (doType) { |
910 | | switch (entry->mKind.mType) { |
911 | | case MEM_IMAGE: |
912 | | path.AppendLiteral("/image"); |
913 | | break; |
914 | | |
915 | | case MEM_MAPPED: |
916 | | path.AppendLiteral("/mapped"); |
917 | | break; |
918 | | |
919 | | case MEM_PRIVATE: |
920 | | path.AppendLiteral("/private"); |
921 | | break; |
922 | | |
923 | | default: |
924 | | // Should be impossible, but handle it just in case. |
925 | | path.AppendLiteral("/???"); |
926 | | break; |
927 | | } |
928 | | } |
929 | | |
930 | | if (doProtect) { |
931 | | DWORD protect = entry->mKind.mProtect; |
932 | | // Basic attributes. Exactly one of these should be set. |
933 | | if (protect & PAGE_EXECUTE) { |
934 | | path.AppendLiteral("/execute"); |
935 | | } |
936 | | if (protect & PAGE_EXECUTE_READ) { |
937 | | path.AppendLiteral("/execute-read"); |
938 | | } |
939 | | if (protect & PAGE_EXECUTE_READWRITE) { |
940 | | path.AppendLiteral("/execute-readwrite"); |
941 | | } |
942 | | if (protect & PAGE_EXECUTE_WRITECOPY) { |
943 | | path.AppendLiteral("/execute-writecopy"); |
944 | | } |
945 | | if (protect & PAGE_NOACCESS) { |
946 | | path.AppendLiteral("/noaccess"); |
947 | | } |
948 | | if (protect & PAGE_READONLY) { |
949 | | path.AppendLiteral("/readonly"); |
950 | | } |
951 | | if (protect & PAGE_READWRITE) { |
952 | | path.AppendLiteral("/readwrite"); |
953 | | } |
954 | | if (protect & PAGE_WRITECOPY) { |
955 | | path.AppendLiteral("/writecopy"); |
956 | | } |
957 | | |
958 | | // Modifiers. At most one of these should be set. |
959 | | if (protect & PAGE_GUARD) { |
960 | | path.AppendLiteral("+guard"); |
961 | | } |
962 | | if (protect & PAGE_NOCACHE) { |
963 | | path.AppendLiteral("+nocache"); |
964 | | } |
965 | | if (protect & PAGE_WRITECOMBINE) { |
966 | | path.AppendLiteral("+writecombine"); |
967 | | } |
968 | | |
969 | | // Annotate likely stack segments, too. |
970 | | if (entry->mKind.mIsStack) { |
971 | | path.AppendLiteral("+stack"); |
972 | | } |
973 | | } |
974 | | |
975 | | // Append the segment count. |
976 | | path.AppendPrintf("(segments=%u)", entry->mCount); |
977 | | |
978 | | aHandleReport->Callback( |
979 | | EmptyCString(), path, KIND_OTHER, UNITS_BYTES, entry->mSize, |
980 | | NS_LITERAL_CSTRING("From MEMORY_BASIC_INFORMATION."), aData); |
981 | | } |
982 | | |
983 | | return NS_OK; |
984 | | } |
985 | | }; |
986 | | NS_IMPL_ISUPPORTS(WindowsAddressSpaceReporter, nsIMemoryReporter) |
987 | | |
988 | | #endif // XP_<PLATFORM> |
989 | | |
990 | | #ifdef HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER |
991 | | class VsizeMaxContiguousReporter final : public nsIMemoryReporter |
992 | | { |
993 | | ~VsizeMaxContiguousReporter() {} |
994 | | |
995 | | public: |
996 | | NS_DECL_ISUPPORTS |
997 | | |
998 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
999 | | nsISupports* aData, bool aAnonymize) override |
1000 | | { |
1001 | | int64_t amount; |
1002 | | if (NS_SUCCEEDED(VsizeMaxContiguousDistinguishedAmount(&amount))) { |
1003 | | MOZ_COLLECT_REPORT( |
1004 | | "vsize-max-contiguous", KIND_OTHER, UNITS_BYTES, amount, |
1005 | | "Size of the maximum contiguous block of available virtual memory."); |
1006 | | } |
1007 | | return NS_OK; |
1008 | | } |
1009 | | }; |
1010 | | NS_IMPL_ISUPPORTS(VsizeMaxContiguousReporter, nsIMemoryReporter) |
1011 | | #endif |
1012 | | |
1013 | | #ifdef HAVE_PRIVATE_REPORTER |
1014 | | class PrivateReporter final : public nsIMemoryReporter |
1015 | | { |
1016 | | ~PrivateReporter() {} |
1017 | | |
1018 | | public: |
1019 | | NS_DECL_ISUPPORTS |
1020 | | |
1021 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1022 | | nsISupports* aData, bool aAnonymize) override |
1023 | | { |
1024 | | int64_t amount; |
1025 | | if (NS_SUCCEEDED(PrivateDistinguishedAmount(&amount))) { |
1026 | | MOZ_COLLECT_REPORT( |
1027 | | "private", KIND_OTHER, UNITS_BYTES, amount, |
1028 | | "Memory that cannot be shared with other processes, including memory that is " |
1029 | | "committed and marked MEM_PRIVATE, data that is not mapped, and executable " |
1030 | | "pages that have been written to."); |
1031 | | } |
1032 | | return NS_OK; |
1033 | | } |
1034 | | }; |
1035 | | NS_IMPL_ISUPPORTS(PrivateReporter, nsIMemoryReporter) |
1036 | | #endif |
1037 | | |
1038 | | #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS |
1039 | | class VsizeReporter final : public nsIMemoryReporter |
1040 | | { |
1041 | 0 | ~VsizeReporter() {} |
1042 | | |
1043 | | public: |
1044 | | NS_DECL_ISUPPORTS |
1045 | | |
1046 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1047 | | nsISupports* aData, bool aAnonymize) override |
1048 | 0 | { |
1049 | 0 | int64_t amount; |
1050 | 0 | if (NS_SUCCEEDED(VsizeDistinguishedAmount(&amount))) { |
1051 | 0 | MOZ_COLLECT_REPORT( |
1052 | 0 | "vsize", KIND_OTHER, UNITS_BYTES, amount, |
1053 | 0 | "Memory mapped by the process, including code and data segments, the heap, " |
1054 | 0 | "thread stacks, memory explicitly mapped by the process via mmap and similar " |
1055 | 0 | "operations, and memory shared with other processes. This is the vsize figure " |
1056 | 0 | "as reported by 'top' and 'ps'. This figure is of limited use on Mac, where " |
1057 | 0 | "processes share huge amounts of memory with one another. But even on other " |
1058 | 0 | "operating systems, 'resident' is a much better measure of the memory " |
1059 | 0 | "resources used by the process."); |
1060 | 0 | } |
1061 | 0 | return NS_OK; |
1062 | 0 | } |
1063 | | }; |
1064 | | NS_IMPL_ISUPPORTS(VsizeReporter, nsIMemoryReporter) |
1065 | | |
1066 | | class ResidentReporter final : public nsIMemoryReporter |
1067 | | { |
1068 | 0 | ~ResidentReporter() {} |
1069 | | |
1070 | | public: |
1071 | | NS_DECL_ISUPPORTS |
1072 | | |
1073 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1074 | | nsISupports* aData, bool aAnonymize) override |
1075 | 0 | { |
1076 | 0 | int64_t amount; |
1077 | 0 | if (NS_SUCCEEDED(ResidentDistinguishedAmount(&amount))) { |
1078 | 0 | MOZ_COLLECT_REPORT( |
1079 | 0 | "resident", KIND_OTHER, UNITS_BYTES, amount, |
1080 | 0 | "Memory mapped by the process that is present in physical memory, also known " |
1081 | 0 | "as the resident set size (RSS). This is the best single figure to use when " |
1082 | 0 | "considering the memory resources used by the process, but it depends both on " |
1083 | 0 | "other processes being run and details of the OS kernel and so is best used " |
1084 | 0 | "for comparing the memory usage of a single process at different points in " |
1085 | 0 | "time."); |
1086 | 0 | } |
1087 | 0 | return NS_OK; |
1088 | 0 | } |
1089 | | }; |
1090 | | NS_IMPL_ISUPPORTS(ResidentReporter, nsIMemoryReporter) |
1091 | | |
1092 | | #endif // HAVE_VSIZE_AND_RESIDENT_REPORTERS |
1093 | | |
1094 | | #ifdef HAVE_RESIDENT_UNIQUE_REPORTER |
1095 | | class ResidentUniqueReporter final : public nsIMemoryReporter |
1096 | | { |
1097 | 0 | ~ResidentUniqueReporter() {} |
1098 | | |
1099 | | public: |
1100 | | NS_DECL_ISUPPORTS |
1101 | | |
1102 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1103 | | nsISupports* aData, bool aAnonymize) override |
1104 | 0 | { |
1105 | 0 | int64_t amount = 0; |
1106 | 0 | if (NS_SUCCEEDED(ResidentUniqueDistinguishedAmount(&amount))) { |
1107 | 0 | MOZ_COLLECT_REPORT( |
1108 | 0 | "resident-unique", KIND_OTHER, UNITS_BYTES, amount, |
1109 | 0 | "Memory mapped by the process that is present in physical memory and not " |
1110 | 0 | "shared with any other processes. This is also known as the process's unique " |
1111 | 0 | "set size (USS). This is the amount of RAM we'd expect to be freed if we " |
1112 | 0 | "closed this process."); |
1113 | 0 | } |
1114 | 0 | return NS_OK; |
1115 | 0 | } |
1116 | | }; |
1117 | | NS_IMPL_ISUPPORTS(ResidentUniqueReporter, nsIMemoryReporter) |
1118 | | |
1119 | | #endif // HAVE_RESIDENT_UNIQUE_REPORTER |
1120 | | |
1121 | | #ifdef HAVE_SYSTEM_HEAP_REPORTER |
1122 | | |
1123 | | class SystemHeapReporter final : public nsIMemoryReporter |
1124 | | { |
1125 | 0 | ~SystemHeapReporter() {} |
1126 | | |
1127 | | public: |
1128 | | NS_DECL_ISUPPORTS |
1129 | | |
1130 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1131 | | nsISupports* aData, bool aAnonymize) override |
1132 | 0 | { |
1133 | 0 | int64_t amount; |
1134 | 0 | if (NS_SUCCEEDED(SystemHeapSize(&amount))) { |
1135 | 0 | MOZ_COLLECT_REPORT( |
1136 | 0 | "system-heap-allocated", KIND_OTHER, UNITS_BYTES, amount, |
1137 | 0 | "Memory used by the system allocator that is currently allocated to the " |
1138 | 0 | "application. This is distinct from the jemalloc heap that Firefox uses for " |
1139 | 0 | "most or all of its heap allocations. Ideally this number is zero, but " |
1140 | 0 | "on some platforms we cannot force every heap allocation through jemalloc."); |
1141 | 0 | } |
1142 | 0 | return NS_OK; |
1143 | 0 | } |
1144 | | }; |
1145 | | NS_IMPL_ISUPPORTS(SystemHeapReporter, nsIMemoryReporter) |
1146 | | |
1147 | | #endif // HAVE_SYSTEM_HEAP_REPORTER |
1148 | | |
1149 | | #ifdef XP_UNIX |
1150 | | |
1151 | | #include <sys/resource.h> |
1152 | | |
1153 | | #define HAVE_RESIDENT_PEAK_REPORTER 1 |
1154 | | |
1155 | | static MOZ_MUST_USE nsresult |
1156 | | ResidentPeakDistinguishedAmount(int64_t* aN) |
1157 | 0 | { |
1158 | 0 | struct rusage usage; |
1159 | 0 | if (0 == getrusage(RUSAGE_SELF, &usage)) { |
1160 | 0 | // The units for ru_maxrrs: |
1161 | 0 | // - Mac: bytes |
1162 | 0 | // - Solaris: pages? But some sources it actually always returns 0, so |
1163 | 0 | // check for that |
1164 | 0 | // - Linux, {Net/Open/Free}BSD, DragonFly: KiB |
1165 | | #ifdef XP_MACOSX |
1166 | | *aN = usage.ru_maxrss; |
1167 | | #elif defined(SOLARIS) |
1168 | | *aN = usage.ru_maxrss * getpagesize(); |
1169 | | #else |
1170 | | *aN = usage.ru_maxrss * 1024; |
1171 | 0 | #endif |
1172 | 0 | if (*aN > 0) { |
1173 | 0 | return NS_OK; |
1174 | 0 | } |
1175 | 0 | } |
1176 | 0 | return NS_ERROR_FAILURE; |
1177 | 0 | } |
1178 | | |
1179 | | class ResidentPeakReporter final : public nsIMemoryReporter |
1180 | | { |
1181 | 0 | ~ResidentPeakReporter() {} |
1182 | | |
1183 | | public: |
1184 | | NS_DECL_ISUPPORTS |
1185 | | |
1186 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1187 | | nsISupports* aData, bool aAnonymize) override |
1188 | 0 | { |
1189 | 0 | int64_t amount = 0; |
1190 | 0 | if (NS_SUCCEEDED(ResidentPeakDistinguishedAmount(&amount))) { |
1191 | 0 | MOZ_COLLECT_REPORT( |
1192 | 0 | "resident-peak", KIND_OTHER, UNITS_BYTES, amount, |
1193 | 0 | "The peak 'resident' value for the lifetime of the process."); |
1194 | 0 | } |
1195 | 0 | return NS_OK; |
1196 | 0 | } |
1197 | | }; |
1198 | | NS_IMPL_ISUPPORTS(ResidentPeakReporter, nsIMemoryReporter) |
1199 | | |
1200 | | #define HAVE_PAGE_FAULT_REPORTERS 1 |
1201 | | |
1202 | | class PageFaultsSoftReporter final : public nsIMemoryReporter |
1203 | | { |
1204 | 0 | ~PageFaultsSoftReporter() {} |
1205 | | |
1206 | | public: |
1207 | | NS_DECL_ISUPPORTS |
1208 | | |
1209 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1210 | | nsISupports* aData, bool aAnonymize) override |
1211 | 0 | { |
1212 | 0 | struct rusage usage; |
1213 | 0 | int err = getrusage(RUSAGE_SELF, &usage); |
1214 | 0 | if (err == 0) { |
1215 | 0 | int64_t amount = usage.ru_minflt; |
1216 | 0 | MOZ_COLLECT_REPORT( |
1217 | 0 | "page-faults-soft", KIND_OTHER, UNITS_COUNT_CUMULATIVE, amount, |
1218 | 0 | "The number of soft page faults (also known as 'minor page faults') that " |
1219 | 0 | "have occurred since the process started. A soft page fault occurs when the " |
1220 | 0 | "process tries to access a page which is present in physical memory but is " |
1221 | 0 | "not mapped into the process's address space. For instance, a process might " |
1222 | 0 | "observe soft page faults when it loads a shared library which is already " |
1223 | 0 | "present in physical memory. A process may experience many thousands of soft " |
1224 | 0 | "page faults even when the machine has plenty of available physical memory, " |
1225 | 0 | "and because the OS services a soft page fault without accessing the disk, " |
1226 | 0 | "they impact performance much less than hard page faults."); |
1227 | 0 | } |
1228 | 0 | return NS_OK; |
1229 | 0 | } |
1230 | | }; |
1231 | | NS_IMPL_ISUPPORTS(PageFaultsSoftReporter, nsIMemoryReporter) |
1232 | | |
1233 | | static MOZ_MUST_USE nsresult |
1234 | | PageFaultsHardDistinguishedAmount(int64_t* aAmount) |
1235 | 0 | { |
1236 | 0 | struct rusage usage; |
1237 | 0 | int err = getrusage(RUSAGE_SELF, &usage); |
1238 | 0 | if (err != 0) { |
1239 | 0 | return NS_ERROR_FAILURE; |
1240 | 0 | } |
1241 | 0 | *aAmount = usage.ru_majflt; |
1242 | 0 | return NS_OK; |
1243 | 0 | } |
1244 | | |
1245 | | class PageFaultsHardReporter final : public nsIMemoryReporter |
1246 | | { |
1247 | 0 | ~PageFaultsHardReporter() {} |
1248 | | |
1249 | | public: |
1250 | | NS_DECL_ISUPPORTS |
1251 | | |
1252 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1253 | | nsISupports* aData, bool aAnonymize) override |
1254 | 0 | { |
1255 | 0 | int64_t amount = 0; |
1256 | 0 | if (NS_SUCCEEDED(PageFaultsHardDistinguishedAmount(&amount))) { |
1257 | 0 | MOZ_COLLECT_REPORT( |
1258 | 0 | "page-faults-hard", KIND_OTHER, UNITS_COUNT_CUMULATIVE, amount, |
1259 | 0 | "The number of hard page faults (also known as 'major page faults') that have " |
1260 | 0 | "occurred since the process started. A hard page fault occurs when a process " |
1261 | 0 | "tries to access a page which is not present in physical memory. The " |
1262 | 0 | "operating system must access the disk in order to fulfill a hard page fault. " |
1263 | 0 | "When memory is plentiful, you should see very few hard page faults. But if " |
1264 | 0 | "the process tries to use more memory than your machine has available, you " |
1265 | 0 | "may see many thousands of hard page faults. Because accessing the disk is up " |
1266 | 0 | "to a million times slower than accessing RAM, the program may run very " |
1267 | 0 | "slowly when it is experiencing more than 100 or so hard page faults a " |
1268 | 0 | "second."); |
1269 | 0 | } |
1270 | 0 | return NS_OK; |
1271 | 0 | } |
1272 | | }; |
1273 | | NS_IMPL_ISUPPORTS(PageFaultsHardReporter, nsIMemoryReporter) |
1274 | | |
1275 | | #endif // XP_UNIX |
1276 | | |
1277 | | /** |
1278 | | ** memory reporter implementation for jemalloc and OSX malloc, |
1279 | | ** to obtain info on total memory in use (that we know about, |
1280 | | ** at least -- on OSX, there are sometimes other zones in use). |
1281 | | **/ |
1282 | | |
1283 | | #ifdef HAVE_JEMALLOC_STATS |
1284 | | |
1285 | | static size_t |
1286 | | HeapOverhead(jemalloc_stats_t* aStats) |
1287 | | { |
1288 | | return aStats->waste + aStats->bookkeeping + |
1289 | | aStats->page_cache + aStats->bin_unused; |
1290 | | } |
1291 | | |
1292 | | // This has UNITS_PERCENTAGE, so it is multiplied by 100x *again* on top of the |
1293 | | // 100x for the percentage. |
1294 | | static int64_t |
1295 | | HeapOverheadFraction(jemalloc_stats_t* aStats) |
1296 | | { |
1297 | | size_t heapOverhead = HeapOverhead(aStats); |
1298 | | size_t heapCommitted = aStats->allocated + heapOverhead; |
1299 | | return int64_t(10000 * (heapOverhead / (double)heapCommitted)); |
1300 | | } |
1301 | | |
1302 | | class JemallocHeapReporter final : public nsIMemoryReporter |
1303 | | { |
1304 | | ~JemallocHeapReporter() {} |
1305 | | |
1306 | | public: |
1307 | | NS_DECL_ISUPPORTS |
1308 | | |
1309 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1310 | | nsISupports* aData, bool aAnonymize) override |
1311 | | { |
1312 | | jemalloc_stats_t stats; |
1313 | | jemalloc_stats(&stats); |
1314 | | |
1315 | | MOZ_COLLECT_REPORT( |
1316 | | "heap-committed/allocated", KIND_OTHER, UNITS_BYTES, stats.allocated, |
1317 | | "Memory mapped by the heap allocator that is currently allocated to the " |
1318 | | "application. This may exceed the amount of memory requested by the " |
1319 | | "application because the allocator regularly rounds up request sizes. (The " |
1320 | | "exact amount requested is not recorded.)"); |
1321 | | |
1322 | | MOZ_COLLECT_REPORT( |
1323 | | "heap-allocated", KIND_OTHER, UNITS_BYTES, stats.allocated, |
1324 | | "The same as 'heap-committed/allocated'."); |
1325 | | |
1326 | | // We mark this and the other heap-overhead reporters as KIND_NONHEAP |
1327 | | // because KIND_HEAP memory means "counted in heap-allocated", which |
1328 | | // this is not. |
1329 | | MOZ_COLLECT_REPORT( |
1330 | | "explicit/heap-overhead/bin-unused", KIND_NONHEAP, UNITS_BYTES, |
1331 | | stats.bin_unused, |
1332 | | "Unused bytes due to fragmentation in the bins used for 'small' (<= 2 KiB) " |
1333 | | "allocations. These bytes will be used if additional allocations occur."); |
1334 | | |
1335 | | if (stats.waste > 0) { |
1336 | | MOZ_COLLECT_REPORT( |
1337 | | "explicit/heap-overhead/waste", KIND_NONHEAP, UNITS_BYTES, |
1338 | | stats.waste, |
1339 | | "Committed bytes which do not correspond to an active allocation and which the " |
1340 | | "allocator is not intentionally keeping alive (i.e., not " |
1341 | | "'explicit/heap-overhead/{bookkeeping,page-cache,bin-unused}')."); |
1342 | | } |
1343 | | |
1344 | | MOZ_COLLECT_REPORT( |
1345 | | "explicit/heap-overhead/bookkeeping", KIND_NONHEAP, UNITS_BYTES, |
1346 | | stats.bookkeeping, |
1347 | | "Committed bytes which the heap allocator uses for internal data structures."); |
1348 | | |
1349 | | MOZ_COLLECT_REPORT( |
1350 | | "explicit/heap-overhead/page-cache", KIND_NONHEAP, UNITS_BYTES, |
1351 | | stats.page_cache, |
1352 | | "Memory which the allocator could return to the operating system, but hasn't. " |
1353 | | "The allocator keeps this memory around as an optimization, so it doesn't " |
1354 | | "have to ask the OS the next time it needs to fulfill a request. This value " |
1355 | | "is typically not larger than a few megabytes."); |
1356 | | |
1357 | | MOZ_COLLECT_REPORT( |
1358 | | "heap-committed/overhead", KIND_OTHER, UNITS_BYTES, |
1359 | | HeapOverhead(&stats), |
1360 | | "The sum of 'explicit/heap-overhead/*'."); |
1361 | | |
1362 | | MOZ_COLLECT_REPORT( |
1363 | | "heap-mapped", KIND_OTHER, UNITS_BYTES, stats.mapped, |
1364 | | "Amount of memory currently mapped. Includes memory that is uncommitted, i.e. " |
1365 | | "neither in physical memory nor paged to disk."); |
1366 | | |
1367 | | MOZ_COLLECT_REPORT( |
1368 | | "heap-chunksize", KIND_OTHER, UNITS_BYTES, stats.chunksize, |
1369 | | "Size of chunks."); |
1370 | | |
1371 | | return NS_OK; |
1372 | | } |
1373 | | }; |
1374 | | NS_IMPL_ISUPPORTS(JemallocHeapReporter, nsIMemoryReporter) |
1375 | | |
1376 | | #endif // HAVE_JEMALLOC_STATS |
1377 | | |
1378 | | // Why is this here? At first glance, you'd think it could be defined and |
1379 | | // registered with nsMemoryReporterManager entirely within nsAtomTable.cpp. |
1380 | | // However, the obvious time to register it is when the table is initialized, |
1381 | | // and that happens before XPCOM components are initialized, which means the |
1382 | | // RegisterStrongMemoryReporter call fails. So instead we do it here. |
1383 | | class AtomTablesReporter final : public nsIMemoryReporter |
1384 | | { |
1385 | | MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf) |
1386 | | |
1387 | 0 | ~AtomTablesReporter() {} |
1388 | | |
1389 | | public: |
1390 | | NS_DECL_ISUPPORTS |
1391 | | |
1392 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1393 | | nsISupports* aData, bool aAnonymize) override |
1394 | 0 | { |
1395 | 0 | AtomsSizes sizes; |
1396 | 0 | NS_AddSizeOfAtoms(MallocSizeOf, sizes); |
1397 | 0 |
|
1398 | 0 | MOZ_COLLECT_REPORT( |
1399 | 0 | "explicit/atoms/table", KIND_HEAP, UNITS_BYTES, sizes.mTable, |
1400 | 0 | "Memory used by the atom table."); |
1401 | 0 |
|
1402 | 0 | MOZ_COLLECT_REPORT( |
1403 | 0 | "explicit/atoms/dynamic-objects-and-chars", KIND_HEAP, UNITS_BYTES, |
1404 | 0 | sizes.mDynamicAtoms, |
1405 | 0 | "Memory used by dynamic atom objects and chars (which are stored " |
1406 | 0 | "at the end of each atom object)."); |
1407 | 0 |
|
1408 | 0 | return NS_OK; |
1409 | 0 | } |
1410 | | }; |
1411 | | NS_IMPL_ISUPPORTS(AtomTablesReporter, nsIMemoryReporter) |
1412 | | |
1413 | | class ThreadsReporter final : public nsIMemoryReporter |
1414 | | { |
1415 | | MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf) |
1416 | | ~ThreadsReporter() = default; |
1417 | | |
1418 | | public: |
1419 | | NS_DECL_ISUPPORTS |
1420 | | |
1421 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1422 | | nsISupports* aData, bool aAnonymize) override |
1423 | 0 | { |
1424 | 0 | #ifdef XP_LINUX |
1425 | 0 | nsTArray<MemoryMapping> mappings(1024); |
1426 | 0 | MOZ_TRY(GetMemoryMappings(mappings)); |
1427 | 0 | #endif |
1428 | 0 |
|
1429 | 0 | // Enumerating over active threads requires holding a lock, so we collect |
1430 | 0 | // info on all threads, and then call our reporter callbacks after releasing |
1431 | 0 | // the lock. |
1432 | 0 | struct ThreadData |
1433 | 0 | { |
1434 | 0 | nsCString mName; |
1435 | 0 | uint32_t mThreadId; |
1436 | 0 | size_t mPrivateSize; |
1437 | 0 | }; |
1438 | 0 | AutoTArray<ThreadData, 32> threads; |
1439 | 0 |
|
1440 | 0 | size_t eventQueueSizes = 0; |
1441 | 0 | size_t wrapperSizes = 0; |
1442 | 0 | size_t threadCount = 0; |
1443 | 0 |
|
1444 | 0 | for (auto* thread : nsThread::Enumerate()) { |
1445 | 0 | threadCount++; |
1446 | 0 | eventQueueSizes += thread->SizeOfEventQueues(MallocSizeOf); |
1447 | 0 | wrapperSizes += thread->ShallowSizeOfIncludingThis(MallocSizeOf); |
1448 | 0 |
|
1449 | 0 | if (!thread->StackBase()) { |
1450 | 0 | continue; |
1451 | 0 | } |
1452 | 0 | |
1453 | 0 | #if defined(XP_LINUX) |
1454 | 0 | int idx = mappings.BinaryIndexOf(thread->StackBase()); |
1455 | 0 | if (idx < 0) { |
1456 | 0 | continue; |
1457 | 0 | } |
1458 | 0 | // Referenced() is the combined size of all pages in the region which have |
1459 | 0 | // ever been touched, and are therefore consuming memory. For stack |
1460 | 0 | // regions, these pages are guaranteed to be un-shared unless we fork |
1461 | 0 | // after creating threads (which we don't). |
1462 | 0 | size_t privateSize = mappings[idx].Referenced(); |
1463 | 0 |
|
1464 | 0 | // On Linux, we have to be very careful matching memory regions to thread |
1465 | 0 | // stacks. |
1466 | 0 | // |
1467 | 0 | // To begin with, the kernel only reports VM stats for regions of all |
1468 | 0 | // adjacent pages with the same flags, protection, and backing file. |
1469 | 0 | // There's no way to get finer-grained usage information for a subset of |
1470 | 0 | // those pages. |
1471 | 0 | // |
1472 | 0 | // Stack segments always have a guard page at the bottom of the stack |
1473 | 0 | // (assuming we only support stacks that grow down), so there's no danger |
1474 | 0 | // of them being merged with other stack regions. At the top, there's no |
1475 | 0 | // protection page, and no way to allocate one without using pthreads |
1476 | 0 | // directly and allocating our own stacks. So we get around the problem by |
1477 | 0 | // adding an extra VM flag (NOHUGEPAGES) to our stack region, which we |
1478 | 0 | // don't expect to be set on any heap regions. But this is not fool-proof. |
1479 | 0 | // |
1480 | 0 | // A second kink is that different C libraries (and different versions |
1481 | 0 | // thereof) report stack base locations and sizes differently with regard |
1482 | 0 | // to the guard page. For the libraries that include the guard page in the |
1483 | 0 | // stack size base pointer, we need to adjust those values to compensate. |
1484 | 0 | // But it's possible that our logic will get out of sync with library |
1485 | 0 | // changes, or someone will compile with an unexpected library. |
1486 | 0 | // |
1487 | 0 | // |
1488 | 0 | // The upshot of all of this is that there may be configurations that our |
1489 | 0 | // special cases don't cover. And if there are, we want to know about it. |
1490 | 0 | // So assert that total size of the memory region we're reporting actually |
1491 | 0 | // matches the allocated size of the thread stack. |
1492 | 0 | #ifndef ANDROID |
1493 | 0 | MOZ_ASSERT(mappings[idx].Size() == thread->StackSize(), |
1494 | 0 | "Mapping region size doesn't match stack allocation size"); |
1495 | 0 | #endif |
1496 | | #elif defined(XP_WIN) |
1497 | | auto memInfo = MemoryInfo::Get(thread->StackBase(), thread->StackSize()); |
1498 | | size_t privateSize = memInfo.Committed(); |
1499 | | #else |
1500 | | size_t privateSize = thread->StackSize(); |
1501 | | MOZ_ASSERT_UNREACHABLE("Shouldn't have stack base pointer on this " |
1502 | | "platform"); |
1503 | | #endif |
1504 | |
|
1505 | 0 | threads.AppendElement(ThreadData{ |
1506 | 0 | nsCString(PR_GetThreadName(thread->GetPRThread())), |
1507 | 0 | thread->ThreadId(), |
1508 | 0 | // On Linux, it's possible (but unlikely) that our stack region will |
1509 | 0 | // have been merged with adjacent heap regions, in which case we'll get |
1510 | 0 | // combined size information for both. So we take the minimum of the |
1511 | 0 | // reported private size and the requested stack size to avoid the |
1512 | 0 | // possible of majorly over-reporting in that case. |
1513 | 0 | std::min(privateSize, thread->StackSize()), |
1514 | 0 | }); |
1515 | 0 | } |
1516 | 0 |
|
1517 | 0 | for (auto& thread : threads) { |
1518 | 0 | nsPrintfCString path("explicit/threads/stacks/%s (tid=%u)", |
1519 | 0 | thread.mName.get(), thread.mThreadId); |
1520 | 0 |
|
1521 | 0 | aHandleReport->Callback( |
1522 | 0 | EmptyCString(), path, |
1523 | 0 | KIND_NONHEAP, UNITS_BYTES, |
1524 | 0 | thread.mPrivateSize, |
1525 | 0 | NS_LITERAL_CSTRING("The sizes of thread stacks which have been " |
1526 | 0 | "committed to memory."), |
1527 | 0 | aData); |
1528 | 0 | } |
1529 | 0 |
|
1530 | 0 | MOZ_COLLECT_REPORT( |
1531 | 0 | "explicit/threads/overhead/event-queues", KIND_HEAP, UNITS_BYTES, |
1532 | 0 | eventQueueSizes, |
1533 | 0 | "The sizes of nsThread event queues and observers."); |
1534 | 0 |
|
1535 | 0 | MOZ_COLLECT_REPORT( |
1536 | 0 | "explicit/threads/overhead/wrappers", KIND_HEAP, UNITS_BYTES, |
1537 | 0 | wrapperSizes, |
1538 | 0 | "The sizes of nsThread/PRThread wrappers."); |
1539 | 0 |
|
1540 | | #if defined(XP_WIN) |
1541 | | // Each thread on Windows has a fixed kernel overhead. For 32 bit Windows, |
1542 | | // that's 12K. For 64 bit, it's 24K. |
1543 | | // |
1544 | | // See https://blogs.technet.microsoft.com/markrussinovich/2009/07/05/pushing-the-limits-of-windows-processes-and-threads/ |
1545 | | constexpr size_t kKernelSize = (sizeof(void*) == 8 ? 24 : 12) * 1024; |
1546 | | #elif defined(XP_LINUX) |
1547 | | // On Linux, kernel stacks are usually 8K. However, on x86, they are |
1548 | 0 | // allocated virtually, and start out at 4K. They may grow to 8K, but we |
1549 | 0 | // have no way of knowing which ones do, so all we can do is guess. |
1550 | 0 | #if defined(__x86_64__) || defined(__i386__) |
1551 | 0 | constexpr size_t kKernelSize = 4 * 1024; |
1552 | | #else |
1553 | | constexpr size_t kKernelSize = 8 * 1024; |
1554 | | #endif |
1555 | | #elif defined(XP_MACOSX) |
1556 | | // On Darwin, kernel stacks are 16K: |
1557 | | // |
1558 | | // https://books.google.com/books?id=K8vUkpOXhN4C&lpg=PA513&dq=mach%20kernel%20thread%20stack%20size&pg=PA513#v=onepage&q=mach%20kernel%20thread%20stack%20size&f=false |
1559 | | constexpr size_t kKernelSize = 16 * 1024; |
1560 | | #else |
1561 | | // Elsewhere, just assume that kernel stacks require at least 8K. |
1562 | | constexpr size_t kKernelSize = 8 * 1024; |
1563 | | #endif |
1564 | |
|
1565 | 0 | MOZ_COLLECT_REPORT( |
1566 | 0 | "explicit/threads/overhead/kernel", KIND_NONHEAP, UNITS_BYTES, |
1567 | 0 | threadCount * kKernelSize, |
1568 | 0 | "The total kernel overhead for all active threads."); |
1569 | 0 |
|
1570 | 0 | return NS_OK; |
1571 | 0 | } |
1572 | | }; |
1573 | | NS_IMPL_ISUPPORTS(ThreadsReporter, nsIMemoryReporter) |
1574 | | |
1575 | | #ifdef DEBUG |
1576 | | |
1577 | | // Ideally, this would be implemented in BlockingResourceBase.cpp. |
1578 | | // However, this ends up breaking the linking step of various unit tests due |
1579 | | // to adding a new dependency to libdmd for a commonly used feature (mutexes) |
1580 | | // in DMD builds. So instead we do it here. |
1581 | | class DeadlockDetectorReporter final : public nsIMemoryReporter |
1582 | | { |
1583 | | MOZ_DEFINE_MALLOC_SIZE_OF(MallocSizeOf) |
1584 | | |
1585 | | ~DeadlockDetectorReporter() {} |
1586 | | |
1587 | | public: |
1588 | | NS_DECL_ISUPPORTS |
1589 | | |
1590 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1591 | | nsISupports* aData, bool aAnonymize) override |
1592 | | { |
1593 | | MOZ_COLLECT_REPORT( |
1594 | | "explicit/deadlock-detector", KIND_HEAP, UNITS_BYTES, |
1595 | | BlockingResourceBase::SizeOfDeadlockDetector(MallocSizeOf), |
1596 | | "Memory used by the deadlock detector."); |
1597 | | |
1598 | | return NS_OK; |
1599 | | } |
1600 | | }; |
1601 | | NS_IMPL_ISUPPORTS(DeadlockDetectorReporter, nsIMemoryReporter) |
1602 | | |
1603 | | #endif |
1604 | | |
1605 | | #ifdef MOZ_DMD |
1606 | | |
1607 | | namespace mozilla { |
1608 | | namespace dmd { |
1609 | | |
1610 | | class DMDReporter final : public nsIMemoryReporter |
1611 | | { |
1612 | | public: |
1613 | | NS_DECL_ISUPPORTS |
1614 | | |
1615 | | NS_IMETHOD CollectReports(nsIHandleReportCallback* aHandleReport, |
1616 | | nsISupports* aData, bool aAnonymize) override |
1617 | | { |
1618 | | dmd::Sizes sizes; |
1619 | | dmd::SizeOf(&sizes); |
1620 | | |
1621 | | MOZ_COLLECT_REPORT( |
1622 | | "explicit/dmd/stack-traces/used", KIND_HEAP, UNITS_BYTES, |
1623 | | sizes.mStackTracesUsed, |
1624 | | "Memory used by stack traces which correspond to at least " |
1625 | | "one heap block DMD is tracking."); |
1626 | | |
1627 | | MOZ_COLLECT_REPORT( |
1628 | | "explicit/dmd/stack-traces/unused", KIND_HEAP, UNITS_BYTES, |
1629 | | sizes.mStackTracesUnused, |
1630 | | "Memory used by stack traces which don't correspond to any heap " |
1631 | | "blocks DMD is currently tracking."); |
1632 | | |
1633 | | MOZ_COLLECT_REPORT( |
1634 | | "explicit/dmd/stack-traces/table", KIND_HEAP, UNITS_BYTES, |
1635 | | sizes.mStackTraceTable, |
1636 | | "Memory used by DMD's stack trace table."); |
1637 | | |
1638 | | MOZ_COLLECT_REPORT( |
1639 | | "explicit/dmd/live-block-table", KIND_HEAP, UNITS_BYTES, |
1640 | | sizes.mLiveBlockTable, |
1641 | | "Memory used by DMD's live block table."); |
1642 | | |
1643 | | MOZ_COLLECT_REPORT( |
1644 | | "explicit/dmd/dead-block-list", KIND_HEAP, UNITS_BYTES, |
1645 | | sizes.mDeadBlockTable, |
1646 | | "Memory used by DMD's dead block list."); |
1647 | | |
1648 | | return NS_OK; |
1649 | | } |
1650 | | |
1651 | | private: |
1652 | | ~DMDReporter() {} |
1653 | | }; |
1654 | | NS_IMPL_ISUPPORTS(DMDReporter, nsIMemoryReporter) |
1655 | | |
1656 | | } // namespace dmd |
1657 | | } // namespace mozilla |
1658 | | |
1659 | | #endif // MOZ_DMD |
1660 | | |
1661 | | /** |
1662 | | ** nsMemoryReporterManager implementation |
1663 | | **/ |
1664 | | |
1665 | | NS_IMPL_ISUPPORTS(nsMemoryReporterManager, nsIMemoryReporterManager, nsIMemoryReporter) |
1666 | | |
1667 | | NS_IMETHODIMP |
1668 | | nsMemoryReporterManager::Init() |
1669 | 3 | { |
1670 | 3 | if (!NS_IsMainThread()) { |
1671 | 0 | MOZ_CRASH(); |
1672 | 0 | } |
1673 | 3 | |
1674 | 3 | // Under normal circumstances this function is only called once. However, |
1675 | 3 | // we've (infrequently) seen memory report dumps in crash reports that |
1676 | 3 | // suggest that this function is sometimes called multiple times. That in |
1677 | 3 | // turn means that multiple reporters of each kind are registered, which |
1678 | 3 | // leads to duplicated reports of individual measurements such as "resident", |
1679 | 3 | // "vsize", etc. |
1680 | 3 | // |
1681 | 3 | // It's unclear how these multiple calls can occur. The only plausible theory |
1682 | 3 | // so far is badly-written extensions, because this function is callable from |
1683 | 3 | // JS code via nsIMemoryReporter.idl. |
1684 | 3 | // |
1685 | 3 | // Whatever the cause, it's a bad thing. So we protect against it with the |
1686 | 3 | // following check. |
1687 | 3 | static bool isInited = false; |
1688 | 3 | if (isInited) { |
1689 | 0 | NS_WARNING("nsMemoryReporterManager::Init() has already been called!"); |
1690 | 0 | return NS_OK; |
1691 | 0 | } |
1692 | 3 | isInited = true; |
1693 | 3 | |
1694 | | #if defined(HAVE_JEMALLOC_STATS) && defined(MOZ_GLUE_IN_PROGRAM) |
1695 | | if (!jemalloc_stats) { |
1696 | | return NS_ERROR_FAILURE; |
1697 | | } |
1698 | | #endif |
1699 | | |
1700 | | #ifdef HAVE_JEMALLOC_STATS |
1701 | | RegisterStrongReporter(new JemallocHeapReporter()); |
1702 | | #endif |
1703 | | |
1704 | 3 | #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS |
1705 | 3 | RegisterStrongReporter(new VsizeReporter()); |
1706 | 3 | RegisterStrongReporter(new ResidentReporter()); |
1707 | 3 | #endif |
1708 | 3 | |
1709 | | #ifdef HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER |
1710 | | RegisterStrongReporter(new VsizeMaxContiguousReporter()); |
1711 | | #endif |
1712 | | |
1713 | 3 | #ifdef HAVE_RESIDENT_PEAK_REPORTER |
1714 | 3 | RegisterStrongReporter(new ResidentPeakReporter()); |
1715 | 3 | #endif |
1716 | 3 | |
1717 | 3 | #ifdef HAVE_RESIDENT_UNIQUE_REPORTER |
1718 | 3 | RegisterStrongReporter(new ResidentUniqueReporter()); |
1719 | 3 | #endif |
1720 | 3 | |
1721 | 3 | #ifdef HAVE_PAGE_FAULT_REPORTERS |
1722 | 3 | RegisterStrongReporter(new PageFaultsSoftReporter()); |
1723 | 3 | RegisterStrongReporter(new PageFaultsHardReporter()); |
1724 | 3 | #endif |
1725 | 3 | |
1726 | | #ifdef HAVE_PRIVATE_REPORTER |
1727 | | RegisterStrongReporter(new PrivateReporter()); |
1728 | | #endif |
1729 | | |
1730 | 3 | #ifdef HAVE_SYSTEM_HEAP_REPORTER |
1731 | 3 | RegisterStrongReporter(new SystemHeapReporter()); |
1732 | 3 | #endif |
1733 | 3 | |
1734 | 3 | RegisterStrongReporter(new AtomTablesReporter()); |
1735 | 3 | |
1736 | 3 | RegisterStrongReporter(new ThreadsReporter()); |
1737 | 3 | |
1738 | | #ifdef DEBUG |
1739 | | RegisterStrongReporter(new DeadlockDetectorReporter()); |
1740 | | #endif |
1741 | | |
1742 | 3 | #ifdef MOZ_GECKO_PROFILER |
1743 | 3 | // We have to register this here rather than in profiler_init() because |
1744 | 3 | // profiler_init() runs prior to nsMemoryReporterManager's creation. |
1745 | 3 | RegisterStrongReporter(new GeckoProfilerReporter()); |
1746 | 3 | #endif |
1747 | 3 | |
1748 | | #ifdef MOZ_DMD |
1749 | | RegisterStrongReporter(new mozilla::dmd::DMDReporter()); |
1750 | | #endif |
1751 | | |
1752 | | #ifdef XP_WIN |
1753 | | RegisterStrongReporter(new WindowsAddressSpaceReporter()); |
1754 | | #endif |
1755 | | |
1756 | 3 | #ifdef XP_UNIX |
1757 | 3 | nsMemoryInfoDumper::Initialize(); |
1758 | 3 | #endif |
1759 | 3 | |
1760 | 3 | // Report our own memory usage as well. |
1761 | 3 | RegisterWeakReporter(this); |
1762 | 3 | |
1763 | 3 | return NS_OK; |
1764 | 3 | } |
1765 | | |
1766 | | nsMemoryReporterManager::nsMemoryReporterManager() |
1767 | | : mMutex("nsMemoryReporterManager::mMutex") |
1768 | | , mIsRegistrationBlocked(false) |
1769 | | , mStrongReporters(new StrongReportersTable()) |
1770 | | , mWeakReporters(new WeakReportersTable()) |
1771 | | , mSavedStrongReporters(nullptr) |
1772 | | , mSavedWeakReporters(nullptr) |
1773 | | , mNextGeneration(1) |
1774 | | , mPendingProcessesState(nullptr) |
1775 | | , mPendingReportersState(nullptr) |
1776 | | #ifdef HAVE_JEMALLOC_STATS |
1777 | | , mThreadPool(do_GetService(NS_STREAMTRANSPORTSERVICE_CONTRACTID)) |
1778 | | #endif |
1779 | 3 | { |
1780 | 3 | } |
1781 | | |
1782 | | nsMemoryReporterManager::~nsMemoryReporterManager() |
1783 | 0 | { |
1784 | 0 | delete mStrongReporters; |
1785 | 0 | delete mWeakReporters; |
1786 | 0 | NS_ASSERTION(!mSavedStrongReporters, "failed to restore strong reporters"); |
1787 | 0 | NS_ASSERTION(!mSavedWeakReporters, "failed to restore weak reporters"); |
1788 | 0 | } |
1789 | | |
1790 | | NS_IMETHODIMP |
1791 | | nsMemoryReporterManager::CollectReports(nsIHandleReportCallback* aHandleReport, |
1792 | | nsISupports* aData, bool aAnonymize) |
1793 | 0 | { |
1794 | 0 | size_t n = MallocSizeOf(this); |
1795 | 0 | n += mStrongReporters->ShallowSizeOfIncludingThis(MallocSizeOf); |
1796 | 0 | n += mWeakReporters->ShallowSizeOfIncludingThis(MallocSizeOf); |
1797 | 0 |
|
1798 | 0 | MOZ_COLLECT_REPORT( |
1799 | 0 | "explicit/memory-reporter-manager", KIND_HEAP, UNITS_BYTES, |
1800 | 0 | n, |
1801 | 0 | "Memory used by the memory reporter infrastructure."); |
1802 | 0 |
|
1803 | 0 | return NS_OK; |
1804 | 0 | } |
1805 | | |
1806 | | #ifdef DEBUG_CHILD_PROCESS_MEMORY_REPORTING |
1807 | | #define MEMORY_REPORTING_LOG(format, ...) \ |
1808 | | printf_stderr("++++ MEMORY REPORTING: " format, ##__VA_ARGS__); |
1809 | | #else |
1810 | | #define MEMORY_REPORTING_LOG(...) |
1811 | | #endif |
1812 | | |
1813 | | NS_IMETHODIMP |
1814 | | nsMemoryReporterManager::GetReports( |
1815 | | nsIHandleReportCallback* aHandleReport, |
1816 | | nsISupports* aHandleReportData, |
1817 | | nsIFinishReportingCallback* aFinishReporting, |
1818 | | nsISupports* aFinishReportingData, |
1819 | | bool aAnonymize) |
1820 | 0 | { |
1821 | 0 | return GetReportsExtended(aHandleReport, aHandleReportData, |
1822 | 0 | aFinishReporting, aFinishReportingData, |
1823 | 0 | aAnonymize, |
1824 | 0 | /* minimize = */ false, |
1825 | 0 | /* DMDident = */ EmptyString()); |
1826 | 0 | } |
1827 | | |
1828 | | NS_IMETHODIMP |
1829 | | nsMemoryReporterManager::GetReportsExtended( |
1830 | | nsIHandleReportCallback* aHandleReport, |
1831 | | nsISupports* aHandleReportData, |
1832 | | nsIFinishReportingCallback* aFinishReporting, |
1833 | | nsISupports* aFinishReportingData, |
1834 | | bool aAnonymize, |
1835 | | bool aMinimize, |
1836 | | const nsAString& aDMDDumpIdent) |
1837 | 0 | { |
1838 | 0 | nsresult rv; |
1839 | 0 |
|
1840 | 0 | // Memory reporters are not necessarily threadsafe, so this function must |
1841 | 0 | // be called from the main thread. |
1842 | 0 | if (!NS_IsMainThread()) { |
1843 | 0 | MOZ_CRASH(); |
1844 | 0 | } |
1845 | 0 |
|
1846 | 0 | uint32_t generation = mNextGeneration++; |
1847 | 0 |
|
1848 | 0 | if (mPendingProcessesState) { |
1849 | 0 | // A request is in flight. Don't start another one. And don't report |
1850 | 0 | // an error; just ignore it, and let the in-flight request finish. |
1851 | 0 | MEMORY_REPORTING_LOG("GetReports (gen=%u, s->gen=%u): abort\n", |
1852 | 0 | generation, mPendingProcessesState->mGeneration); |
1853 | 0 | return NS_OK; |
1854 | 0 | } |
1855 | 0 | |
1856 | 0 | MEMORY_REPORTING_LOG("GetReports (gen=%u)\n", generation); |
1857 | 0 |
|
1858 | 0 | uint32_t concurrency = Preferences::GetUint("memory.report_concurrency", 1); |
1859 | 0 | MOZ_ASSERT(concurrency >= 1); |
1860 | 0 | if (concurrency < 1) { |
1861 | 0 | concurrency = 1; |
1862 | 0 | } |
1863 | 0 | mPendingProcessesState = new PendingProcessesState(generation, |
1864 | 0 | aAnonymize, |
1865 | 0 | aMinimize, |
1866 | 0 | concurrency, |
1867 | 0 | aHandleReport, |
1868 | 0 | aHandleReportData, |
1869 | 0 | aFinishReporting, |
1870 | 0 | aFinishReportingData, |
1871 | 0 | aDMDDumpIdent); |
1872 | 0 |
|
1873 | 0 | if (aMinimize) { |
1874 | 0 | nsCOMPtr<nsIRunnable> callback = |
1875 | 0 | NewRunnableMethod("nsMemoryReporterManager::StartGettingReports", |
1876 | 0 | this, |
1877 | 0 | &nsMemoryReporterManager::StartGettingReports); |
1878 | 0 | rv = MinimizeMemoryUsage(callback); |
1879 | 0 | } else { |
1880 | 0 | rv = StartGettingReports(); |
1881 | 0 | } |
1882 | 0 | return rv; |
1883 | 0 | } |
1884 | | |
1885 | | nsresult |
1886 | | nsMemoryReporterManager::StartGettingReports() |
1887 | 0 | { |
1888 | 0 | PendingProcessesState* s = mPendingProcessesState; |
1889 | 0 | nsresult rv; |
1890 | 0 |
|
1891 | 0 | // Get reports for this process. |
1892 | 0 | FILE* parentDMDFile = nullptr; |
1893 | | #ifdef MOZ_DMD |
1894 | | if (!s->mDMDDumpIdent.IsEmpty()) { |
1895 | | rv = nsMemoryInfoDumper::OpenDMDFile(s->mDMDDumpIdent, getpid(), |
1896 | | &parentDMDFile); |
1897 | | if (NS_WARN_IF(NS_FAILED(rv))) { |
1898 | | // Proceed with the memory report as if DMD were disabled. |
1899 | | parentDMDFile = nullptr; |
1900 | | } |
1901 | | } |
1902 | | #endif |
1903 | |
|
1904 | 0 | // This is async. |
1905 | 0 | GetReportsForThisProcessExtended(s->mHandleReport, s->mHandleReportData, |
1906 | 0 | s->mAnonymize, parentDMDFile, |
1907 | 0 | s->mFinishReporting, s->mFinishReportingData); |
1908 | 0 |
|
1909 | 0 | nsTArray<dom::ContentParent*> childWeakRefs; |
1910 | 0 | dom::ContentParent::GetAll(childWeakRefs); |
1911 | 0 | if (!childWeakRefs.IsEmpty()) { |
1912 | 0 | // Request memory reports from child processes. This happens |
1913 | 0 | // after the parent report so that the parent's main thread will |
1914 | 0 | // be free to process the child reports, instead of causing them |
1915 | 0 | // to be buffered and consume (possibly scarce) memory. |
1916 | 0 |
|
1917 | 0 | for (size_t i = 0; i < childWeakRefs.Length(); ++i) { |
1918 | 0 | s->mChildrenPending.AppendElement(childWeakRefs[i]); |
1919 | 0 | } |
1920 | 0 | } |
1921 | 0 |
|
1922 | 0 | if (gfx::GPUProcessManager* gpu = gfx::GPUProcessManager::Get()) { |
1923 | 0 | if (RefPtr<MemoryReportingProcess> proc = gpu->GetProcessMemoryReporter()) { |
1924 | 0 | s->mChildrenPending.AppendElement(proc.forget()); |
1925 | 0 | } |
1926 | 0 | } |
1927 | 0 |
|
1928 | 0 | if (!s->mChildrenPending.IsEmpty()) { |
1929 | 0 | nsCOMPtr<nsITimer> timer; |
1930 | 0 | rv = NS_NewTimerWithFuncCallback( |
1931 | 0 | getter_AddRefs(timer), |
1932 | 0 | TimeoutCallback, |
1933 | 0 | this, |
1934 | 0 | kTimeoutLengthMS, |
1935 | 0 | nsITimer::TYPE_ONE_SHOT, |
1936 | 0 | "nsMemoryReporterManager::StartGettingReports"); |
1937 | 0 | if (NS_WARN_IF(NS_FAILED(rv))) { |
1938 | 0 | FinishReporting(); |
1939 | 0 | return rv; |
1940 | 0 | } |
1941 | 0 | |
1942 | 0 | MOZ_ASSERT(!s->mTimer); |
1943 | 0 | s->mTimer.swap(timer); |
1944 | 0 | } |
1945 | 0 |
|
1946 | 0 | return NS_OK; |
1947 | 0 | } |
1948 | | |
1949 | | void |
1950 | | nsMemoryReporterManager::DispatchReporter( |
1951 | | nsIMemoryReporter* aReporter, bool aIsAsync, |
1952 | | nsIHandleReportCallback* aHandleReport, |
1953 | | nsISupports* aHandleReportData, |
1954 | | bool aAnonymize) |
1955 | 0 | { |
1956 | 0 | MOZ_ASSERT(mPendingReportersState); |
1957 | 0 |
|
1958 | 0 | // Grab refs to everything used in the lambda function. |
1959 | 0 | RefPtr<nsMemoryReporterManager> self = this; |
1960 | 0 | nsCOMPtr<nsIMemoryReporter> reporter = aReporter; |
1961 | 0 | nsCOMPtr<nsIHandleReportCallback> handleReport = aHandleReport; |
1962 | 0 | nsCOMPtr<nsISupports> handleReportData = aHandleReportData; |
1963 | 0 |
|
1964 | 0 | nsCOMPtr<nsIRunnable> event = NS_NewRunnableFunction( |
1965 | 0 | "nsMemoryReporterManager::DispatchReporter", |
1966 | 0 | [self, reporter, aIsAsync, handleReport, handleReportData, aAnonymize]() { |
1967 | 0 | reporter->CollectReports(handleReport, handleReportData, aAnonymize); |
1968 | 0 | if (!aIsAsync) { |
1969 | 0 | self->EndReport(); |
1970 | 0 | } |
1971 | 0 | }); |
1972 | 0 |
|
1973 | 0 | NS_DispatchToMainThread(event); |
1974 | 0 | mPendingReportersState->mReportsPending++; |
1975 | 0 | } |
1976 | | |
1977 | | NS_IMETHODIMP |
1978 | | nsMemoryReporterManager::GetReportsForThisProcessExtended( |
1979 | | nsIHandleReportCallback* aHandleReport, nsISupports* aHandleReportData, |
1980 | | bool aAnonymize, FILE* aDMDFile, |
1981 | | nsIFinishReportingCallback* aFinishReporting, |
1982 | | nsISupports* aFinishReportingData) |
1983 | 0 | { |
1984 | 0 | // Memory reporters are not necessarily threadsafe, so this function must |
1985 | 0 | // be called from the main thread. |
1986 | 0 | if (!NS_IsMainThread()) { |
1987 | 0 | MOZ_CRASH(); |
1988 | 0 | } |
1989 | 0 |
|
1990 | 0 | if (NS_WARN_IF(mPendingReportersState)) { |
1991 | 0 | // Report is already in progress. |
1992 | 0 | return NS_ERROR_IN_PROGRESS; |
1993 | 0 | } |
1994 | 0 | |
1995 | | #ifdef MOZ_DMD |
1996 | | if (aDMDFile) { |
1997 | | // Clear DMD's reportedness state before running the memory |
1998 | | // reporters, to avoid spurious twice-reported warnings. |
1999 | | dmd::ClearReports(); |
2000 | | } |
2001 | | #else |
2002 | 0 | MOZ_ASSERT(!aDMDFile); |
2003 | 0 | #endif |
2004 | 0 |
|
2005 | 0 | mPendingReportersState = new PendingReportersState( |
2006 | 0 | aFinishReporting, aFinishReportingData, aDMDFile); |
2007 | 0 |
|
2008 | 0 | { |
2009 | 0 | mozilla::MutexAutoLock autoLock(mMutex); |
2010 | 0 |
|
2011 | 0 | for (auto iter = mStrongReporters->Iter(); !iter.Done(); iter.Next()) { |
2012 | 0 | DispatchReporter(iter.Key(), iter.Data(), |
2013 | 0 | aHandleReport, aHandleReportData, aAnonymize); |
2014 | 0 | } |
2015 | 0 |
|
2016 | 0 | for (auto iter = mWeakReporters->Iter(); !iter.Done(); iter.Next()) { |
2017 | 0 | nsCOMPtr<nsIMemoryReporter> reporter = iter.Key(); |
2018 | 0 | DispatchReporter(reporter, iter.Data(), |
2019 | 0 | aHandleReport, aHandleReportData, aAnonymize); |
2020 | 0 | } |
2021 | 0 | } |
2022 | 0 |
|
2023 | 0 | return NS_OK; |
2024 | 0 | } |
2025 | | |
2026 | | NS_IMETHODIMP |
2027 | | nsMemoryReporterManager::EndReport() |
2028 | 0 | { |
2029 | 0 | if (--mPendingReportersState->mReportsPending == 0) { |
2030 | | #ifdef MOZ_DMD |
2031 | | if (mPendingReportersState->mDMDFile) { |
2032 | | nsMemoryInfoDumper::DumpDMDToFile(mPendingReportersState->mDMDFile); |
2033 | | } |
2034 | | #endif |
2035 | 0 | if (mPendingProcessesState) { |
2036 | 0 | // This is the parent process. |
2037 | 0 | EndProcessReport(mPendingProcessesState->mGeneration, true); |
2038 | 0 | } else { |
2039 | 0 | mPendingReportersState->mFinishReporting->Callback( |
2040 | 0 | mPendingReportersState->mFinishReportingData); |
2041 | 0 | } |
2042 | 0 |
|
2043 | 0 | delete mPendingReportersState; |
2044 | 0 | mPendingReportersState = nullptr; |
2045 | 0 | } |
2046 | 0 |
|
2047 | 0 | return NS_OK; |
2048 | 0 | } |
2049 | | |
2050 | | nsMemoryReporterManager::PendingProcessesState* |
2051 | | nsMemoryReporterManager::GetStateForGeneration(uint32_t aGeneration) |
2052 | 0 | { |
2053 | 0 | // Memory reporting only happens on the main thread. |
2054 | 0 | MOZ_RELEASE_ASSERT(NS_IsMainThread()); |
2055 | 0 |
|
2056 | 0 | PendingProcessesState* s = mPendingProcessesState; |
2057 | 0 |
|
2058 | 0 | if (!s) { |
2059 | 0 | // If we reach here, then: |
2060 | 0 | // |
2061 | 0 | // - A child process reported back too late, and no subsequent request |
2062 | 0 | // is in flight. |
2063 | 0 | // |
2064 | 0 | // So there's nothing to be done. Just ignore it. |
2065 | 0 | MEMORY_REPORTING_LOG( |
2066 | 0 | "HandleChildReports: no request in flight (aGen=%u)\n", |
2067 | 0 | aGeneration); |
2068 | 0 | return nullptr; |
2069 | 0 | } |
2070 | 0 | |
2071 | 0 | if (aGeneration != s->mGeneration) { |
2072 | 0 | // If we reach here, a child process must have reported back, too late, |
2073 | 0 | // while a subsequent (higher-numbered) request is in flight. Again, |
2074 | 0 | // ignore it. |
2075 | 0 | MOZ_ASSERT(aGeneration < s->mGeneration); |
2076 | 0 | MEMORY_REPORTING_LOG( |
2077 | 0 | "HandleChildReports: gen mismatch (aGen=%u, s->gen=%u)\n", |
2078 | 0 | aGeneration, s->mGeneration); |
2079 | 0 | return nullptr; |
2080 | 0 | } |
2081 | 0 |
|
2082 | 0 | return s; |
2083 | 0 | } |
2084 | | |
2085 | | // This function has no return value. If something goes wrong, there's no |
2086 | | // clear place to report the problem to, but that's ok -- we will end up |
2087 | | // hitting the timeout and executing TimeoutCallback(). |
2088 | | void |
2089 | | nsMemoryReporterManager::HandleChildReport( |
2090 | | uint32_t aGeneration, |
2091 | | const dom::MemoryReport& aChildReport) |
2092 | 0 | { |
2093 | 0 | PendingProcessesState* s = GetStateForGeneration(aGeneration); |
2094 | 0 | if (!s) { |
2095 | 0 | return; |
2096 | 0 | } |
2097 | 0 | |
2098 | 0 | // Child reports should have a non-empty process. |
2099 | 0 | MOZ_ASSERT(!aChildReport.process().IsEmpty()); |
2100 | 0 |
|
2101 | 0 | // If the call fails, ignore and continue. |
2102 | 0 | s->mHandleReport->Callback(aChildReport.process(), |
2103 | 0 | aChildReport.path(), |
2104 | 0 | aChildReport.kind(), |
2105 | 0 | aChildReport.units(), |
2106 | 0 | aChildReport.amount(), |
2107 | 0 | aChildReport.desc(), |
2108 | 0 | s->mHandleReportData); |
2109 | 0 | } |
2110 | | |
2111 | | /* static */ bool |
2112 | | nsMemoryReporterManager::StartChildReport(mozilla::MemoryReportingProcess* aChild, |
2113 | | const PendingProcessesState* aState) |
2114 | 0 | { |
2115 | 0 | if (!aChild->IsAlive()) { |
2116 | 0 | MEMORY_REPORTING_LOG("StartChildReports (gen=%u): child exited before" |
2117 | 0 | " its report was started\n", |
2118 | 0 | aState->mGeneration); |
2119 | 0 | return false; |
2120 | 0 | } |
2121 | 0 | |
2122 | 0 | mozilla::dom::MaybeFileDesc dmdFileDesc = void_t(); |
2123 | | #ifdef MOZ_DMD |
2124 | | if (!aState->mDMDDumpIdent.IsEmpty()) { |
2125 | | FILE *dmdFile = nullptr; |
2126 | | nsresult rv = nsMemoryInfoDumper::OpenDMDFile(aState->mDMDDumpIdent, |
2127 | | aChild->Pid(), &dmdFile); |
2128 | | if (NS_WARN_IF(NS_FAILED(rv))) { |
2129 | | // Proceed with the memory report as if DMD were disabled. |
2130 | | dmdFile = nullptr; |
2131 | | } |
2132 | | if (dmdFile) { |
2133 | | dmdFileDesc = mozilla::ipc::FILEToFileDescriptor(dmdFile); |
2134 | | fclose(dmdFile); |
2135 | | } |
2136 | | } |
2137 | | #endif |
2138 | | return aChild->SendRequestMemoryReport( |
2139 | 0 | aState->mGeneration, aState->mAnonymize, aState->mMinimize, dmdFileDesc); |
2140 | 0 | } |
2141 | | |
2142 | | void |
2143 | | nsMemoryReporterManager::EndProcessReport(uint32_t aGeneration, bool aSuccess) |
2144 | 0 | { |
2145 | 0 | PendingProcessesState* s = GetStateForGeneration(aGeneration); |
2146 | 0 | if (!s) { |
2147 | 0 | return; |
2148 | 0 | } |
2149 | 0 | |
2150 | 0 | MOZ_ASSERT(s->mNumProcessesRunning > 0); |
2151 | 0 | s->mNumProcessesRunning--; |
2152 | 0 | s->mNumProcessesCompleted++; |
2153 | 0 | MEMORY_REPORTING_LOG("HandleChildReports (aGen=%u): process %u %s" |
2154 | 0 | " (%u running, %u pending)\n", |
2155 | 0 | aGeneration, s->mNumProcessesCompleted, |
2156 | 0 | aSuccess ? "completed" : "exited during report", |
2157 | 0 | s->mNumProcessesRunning, |
2158 | 0 | static_cast<unsigned>(s->mChildrenPending.Length())); |
2159 | 0 |
|
2160 | 0 | // Start pending children up to the concurrency limit. |
2161 | 0 | while (s->mNumProcessesRunning < s->mConcurrencyLimit && |
2162 | 0 | !s->mChildrenPending.IsEmpty()) { |
2163 | 0 | // Pop last element from s->mChildrenPending |
2164 | 0 | RefPtr<MemoryReportingProcess> nextChild; |
2165 | 0 | nextChild.swap(s->mChildrenPending.LastElement()); |
2166 | 0 | s->mChildrenPending.TruncateLength(s->mChildrenPending.Length() - 1); |
2167 | 0 | // Start report (if the child is still alive). |
2168 | 0 | if (StartChildReport(nextChild, s)) { |
2169 | 0 | ++s->mNumProcessesRunning; |
2170 | 0 | MEMORY_REPORTING_LOG("HandleChildReports (aGen=%u): started child report" |
2171 | 0 | " (%u running, %u pending)\n", |
2172 | 0 | aGeneration, s->mNumProcessesRunning, |
2173 | 0 | static_cast<unsigned>(s->mChildrenPending.Length())); |
2174 | 0 | } |
2175 | 0 | } |
2176 | 0 |
|
2177 | 0 | // If all the child processes (if any) have reported, we can cancel |
2178 | 0 | // the timer (if started) and finish up. Otherwise, just return. |
2179 | 0 | if (s->mNumProcessesRunning == 0) { |
2180 | 0 | MOZ_ASSERT(s->mChildrenPending.IsEmpty()); |
2181 | 0 | if (s->mTimer) { |
2182 | 0 | s->mTimer->Cancel(); |
2183 | 0 | } |
2184 | 0 | FinishReporting(); |
2185 | 0 | } |
2186 | 0 | } |
2187 | | |
2188 | | /* static */ void |
2189 | | nsMemoryReporterManager::TimeoutCallback(nsITimer* aTimer, void* aData) |
2190 | 0 | { |
2191 | 0 | nsMemoryReporterManager* mgr = static_cast<nsMemoryReporterManager*>(aData); |
2192 | 0 | PendingProcessesState* s = mgr->mPendingProcessesState; |
2193 | 0 |
|
2194 | 0 | // Release assert because: if the pointer is null we're about to |
2195 | 0 | // crash regardless of DEBUG, and this way the compiler doesn't |
2196 | 0 | // complain about unused variables. |
2197 | 0 | MOZ_RELEASE_ASSERT(s, "mgr->mPendingProcessesState"); |
2198 | 0 | MEMORY_REPORTING_LOG("TimeoutCallback (s->gen=%u; %u running, %u pending)\n", |
2199 | 0 | s->mGeneration, s->mNumProcessesRunning, |
2200 | 0 | static_cast<unsigned>(s->mChildrenPending.Length())); |
2201 | 0 |
|
2202 | 0 | // We don't bother sending any kind of cancellation message to the child |
2203 | 0 | // processes that haven't reported back. |
2204 | 0 | mgr->FinishReporting(); |
2205 | 0 | } |
2206 | | |
2207 | | nsresult |
2208 | | nsMemoryReporterManager::FinishReporting() |
2209 | 0 | { |
2210 | 0 | // Memory reporting only happens on the main thread. |
2211 | 0 | if (!NS_IsMainThread()) { |
2212 | 0 | MOZ_CRASH(); |
2213 | 0 | } |
2214 | 0 |
|
2215 | 0 | MOZ_ASSERT(mPendingProcessesState); |
2216 | 0 | MEMORY_REPORTING_LOG("FinishReporting (s->gen=%u; %u processes reported)\n", |
2217 | 0 | mPendingProcessesState->mGeneration, |
2218 | 0 | mPendingProcessesState->mNumProcessesCompleted); |
2219 | 0 |
|
2220 | 0 | // Call this before deleting |mPendingProcessesState|. That way, if |
2221 | 0 | // |mFinishReportData| calls GetReports(), it will silently abort, as |
2222 | 0 | // required. |
2223 | 0 | nsresult rv = mPendingProcessesState->mFinishReporting->Callback( |
2224 | 0 | mPendingProcessesState->mFinishReportingData); |
2225 | 0 |
|
2226 | 0 | delete mPendingProcessesState; |
2227 | 0 | mPendingProcessesState = nullptr; |
2228 | 0 | return rv; |
2229 | 0 | } |
2230 | | |
2231 | | nsMemoryReporterManager::PendingProcessesState::PendingProcessesState( |
2232 | | uint32_t aGeneration, bool aAnonymize, bool aMinimize, |
2233 | | uint32_t aConcurrencyLimit, |
2234 | | nsIHandleReportCallback* aHandleReport, |
2235 | | nsISupports* aHandleReportData, |
2236 | | nsIFinishReportingCallback* aFinishReporting, |
2237 | | nsISupports* aFinishReportingData, |
2238 | | const nsAString& aDMDDumpIdent) |
2239 | | : mGeneration(aGeneration) |
2240 | | , mAnonymize(aAnonymize) |
2241 | | , mMinimize(aMinimize) |
2242 | | , mChildrenPending() |
2243 | | , mNumProcessesRunning(1) // reporting starts with the parent |
2244 | | , mNumProcessesCompleted(0) |
2245 | | , mConcurrencyLimit(aConcurrencyLimit) |
2246 | | , mHandleReport(aHandleReport) |
2247 | | , mHandleReportData(aHandleReportData) |
2248 | | , mFinishReporting(aFinishReporting) |
2249 | | , mFinishReportingData(aFinishReportingData) |
2250 | | , mDMDDumpIdent(aDMDDumpIdent) |
2251 | 0 | { |
2252 | 0 | } |
2253 | | |
2254 | | static void |
2255 | | CrashIfRefcountIsZero(nsISupports* aObj) |
2256 | 85 | { |
2257 | 85 | // This will probably crash if the object's refcount is 0. |
2258 | 85 | uint32_t refcnt = NS_ADDREF(aObj); |
2259 | 85 | if (refcnt <= 1) { |
2260 | 0 | MOZ_CRASH("CrashIfRefcountIsZero: refcount is zero"); |
2261 | 0 | } |
2262 | 85 | NS_RELEASE(aObj); |
2263 | 85 | } |
2264 | | |
2265 | | nsresult |
2266 | | nsMemoryReporterManager::RegisterReporterHelper( |
2267 | | nsIMemoryReporter* aReporter, bool aForce, bool aStrong, bool aIsAsync) |
2268 | 85 | { |
2269 | 85 | // This method is thread-safe. |
2270 | 85 | mozilla::MutexAutoLock autoLock(mMutex); |
2271 | 85 | |
2272 | 85 | if (mIsRegistrationBlocked && !aForce) { |
2273 | 0 | return NS_ERROR_FAILURE; |
2274 | 0 | } |
2275 | 85 | |
2276 | 85 | if (mStrongReporters->Contains(aReporter) || |
2277 | 85 | mWeakReporters->Contains(aReporter)) { |
2278 | 0 | return NS_ERROR_FAILURE; |
2279 | 0 | } |
2280 | 85 | |
2281 | 85 | // If |aStrong| is true, |aReporter| may have a refcnt of 0, so we take |
2282 | 85 | // a kung fu death grip before calling PutEntry. Otherwise, if PutEntry |
2283 | 85 | // addref'ed and released |aReporter| before finally addref'ing it for |
2284 | 85 | // good, it would free aReporter! The kung fu death grip could itself be |
2285 | 85 | // problematic if PutEntry didn't addref |aReporter| (because then when the |
2286 | 85 | // death grip goes out of scope, we would delete the reporter). In debug |
2287 | 85 | // mode, we check that this doesn't happen. |
2288 | 85 | // |
2289 | 85 | // If |aStrong| is false, we require that |aReporter| have a non-zero |
2290 | 85 | // refcnt. |
2291 | 85 | // |
2292 | 85 | if (aStrong) { |
2293 | 52 | nsCOMPtr<nsIMemoryReporter> kungFuDeathGrip = aReporter; |
2294 | 52 | mStrongReporters->Put(aReporter, aIsAsync); |
2295 | 52 | CrashIfRefcountIsZero(aReporter); |
2296 | 52 | } else { |
2297 | 33 | CrashIfRefcountIsZero(aReporter); |
2298 | 33 | nsCOMPtr<nsIXPConnectWrappedJS> jsComponent = do_QueryInterface(aReporter); |
2299 | 33 | if (jsComponent) { |
2300 | 0 | // We cannot allow non-native reporters (WrappedJS), since we'll be |
2301 | 0 | // holding onto a raw pointer, which would point to the wrapper, |
2302 | 0 | // and that wrapper is likely to go away as soon as this register |
2303 | 0 | // call finishes. This would then lead to subsequent crashes in |
2304 | 0 | // CollectReports(). |
2305 | 0 | return NS_ERROR_XPC_BAD_CONVERT_JS; |
2306 | 0 | } |
2307 | 33 | mWeakReporters->Put(aReporter, aIsAsync); |
2308 | 33 | } |
2309 | 85 | |
2310 | 85 | return NS_OK; |
2311 | 85 | } |
2312 | | |
2313 | | NS_IMETHODIMP |
2314 | | nsMemoryReporterManager::RegisterStrongReporter(nsIMemoryReporter* aReporter) |
2315 | 52 | { |
2316 | 52 | return RegisterReporterHelper(aReporter, /* force = */ false, |
2317 | 52 | /* strong = */ true, |
2318 | 52 | /* async = */ false); |
2319 | 52 | } |
2320 | | |
2321 | | NS_IMETHODIMP |
2322 | | nsMemoryReporterManager::RegisterStrongAsyncReporter(nsIMemoryReporter* aReporter) |
2323 | 0 | { |
2324 | 0 | return RegisterReporterHelper(aReporter, /* force = */ false, |
2325 | 0 | /* strong = */ true, |
2326 | 0 | /* async = */ true); |
2327 | 0 | } |
2328 | | |
2329 | | NS_IMETHODIMP |
2330 | | nsMemoryReporterManager::RegisterWeakReporter(nsIMemoryReporter* aReporter) |
2331 | 33 | { |
2332 | 33 | return RegisterReporterHelper(aReporter, /* force = */ false, |
2333 | 33 | /* strong = */ false, |
2334 | 33 | /* async = */ false); |
2335 | 33 | } |
2336 | | |
2337 | | NS_IMETHODIMP |
2338 | | nsMemoryReporterManager::RegisterWeakAsyncReporter(nsIMemoryReporter* aReporter) |
2339 | 0 | { |
2340 | 0 | return RegisterReporterHelper(aReporter, /* force = */ false, |
2341 | 0 | /* strong = */ false, |
2342 | 0 | /* async = */ true); |
2343 | 0 | } |
2344 | | |
2345 | | NS_IMETHODIMP |
2346 | | nsMemoryReporterManager::RegisterStrongReporterEvenIfBlocked( |
2347 | | nsIMemoryReporter* aReporter) |
2348 | 0 | { |
2349 | 0 | return RegisterReporterHelper(aReporter, /* force = */ true, |
2350 | 0 | /* strong = */ true, |
2351 | 0 | /* async = */ false); |
2352 | 0 | } |
2353 | | |
2354 | | NS_IMETHODIMP |
2355 | | nsMemoryReporterManager::UnregisterStrongReporter(nsIMemoryReporter* aReporter) |
2356 | 0 | { |
2357 | 0 | // This method is thread-safe. |
2358 | 0 | mozilla::MutexAutoLock autoLock(mMutex); |
2359 | 0 |
|
2360 | 0 | MOZ_ASSERT(!mWeakReporters->Contains(aReporter)); |
2361 | 0 |
|
2362 | 0 | if (mStrongReporters->Contains(aReporter)) { |
2363 | 0 | mStrongReporters->Remove(aReporter); |
2364 | 0 | return NS_OK; |
2365 | 0 | } |
2366 | 0 | |
2367 | 0 | // We don't register new reporters when the block is in place, but we do |
2368 | 0 | // unregister existing reporters. This is so we don't keep holding strong |
2369 | 0 | // references that these reporters aren't expecting (which can keep them |
2370 | 0 | // alive longer than intended). |
2371 | 0 | if (mSavedStrongReporters && mSavedStrongReporters->Contains(aReporter)) { |
2372 | 0 | mSavedStrongReporters->Remove(aReporter); |
2373 | 0 | return NS_OK; |
2374 | 0 | } |
2375 | 0 | |
2376 | 0 | return NS_ERROR_FAILURE; |
2377 | 0 | } |
2378 | | |
2379 | | NS_IMETHODIMP |
2380 | | nsMemoryReporterManager::UnregisterWeakReporter(nsIMemoryReporter* aReporter) |
2381 | 0 | { |
2382 | 0 | // This method is thread-safe. |
2383 | 0 | mozilla::MutexAutoLock autoLock(mMutex); |
2384 | 0 |
|
2385 | 0 | MOZ_ASSERT(!mStrongReporters->Contains(aReporter)); |
2386 | 0 |
|
2387 | 0 | if (mWeakReporters->Contains(aReporter)) { |
2388 | 0 | mWeakReporters->Remove(aReporter); |
2389 | 0 | return NS_OK; |
2390 | 0 | } |
2391 | 0 | |
2392 | 0 | // We don't register new reporters when the block is in place, but we do |
2393 | 0 | // unregister existing reporters. This is so we don't keep holding weak |
2394 | 0 | // references that the old reporters aren't expecting (which can end up as |
2395 | 0 | // dangling pointers that lead to use-after-frees). |
2396 | 0 | if (mSavedWeakReporters && mSavedWeakReporters->Contains(aReporter)) { |
2397 | 0 | mSavedWeakReporters->Remove(aReporter); |
2398 | 0 | return NS_OK; |
2399 | 0 | } |
2400 | 0 | |
2401 | 0 | return NS_ERROR_FAILURE; |
2402 | 0 | } |
2403 | | |
2404 | | NS_IMETHODIMP |
2405 | | nsMemoryReporterManager::BlockRegistrationAndHideExistingReporters() |
2406 | 0 | { |
2407 | 0 | // This method is thread-safe. |
2408 | 0 | mozilla::MutexAutoLock autoLock(mMutex); |
2409 | 0 | if (mIsRegistrationBlocked) { |
2410 | 0 | return NS_ERROR_FAILURE; |
2411 | 0 | } |
2412 | 0 | mIsRegistrationBlocked = true; |
2413 | 0 |
|
2414 | 0 | // Hide the existing reporters, saving them for later restoration. |
2415 | 0 | MOZ_ASSERT(!mSavedStrongReporters); |
2416 | 0 | MOZ_ASSERT(!mSavedWeakReporters); |
2417 | 0 | mSavedStrongReporters = mStrongReporters; |
2418 | 0 | mSavedWeakReporters = mWeakReporters; |
2419 | 0 | mStrongReporters = new StrongReportersTable(); |
2420 | 0 | mWeakReporters = new WeakReportersTable(); |
2421 | 0 |
|
2422 | 0 | return NS_OK; |
2423 | 0 | } |
2424 | | |
2425 | | NS_IMETHODIMP |
2426 | | nsMemoryReporterManager::UnblockRegistrationAndRestoreOriginalReporters() |
2427 | 0 | { |
2428 | 0 | // This method is thread-safe. |
2429 | 0 | mozilla::MutexAutoLock autoLock(mMutex); |
2430 | 0 | if (!mIsRegistrationBlocked) { |
2431 | 0 | return NS_ERROR_FAILURE; |
2432 | 0 | } |
2433 | 0 | |
2434 | 0 | // Banish the current reporters, and restore the hidden ones. |
2435 | 0 | delete mStrongReporters; |
2436 | 0 | delete mWeakReporters; |
2437 | 0 | mStrongReporters = mSavedStrongReporters; |
2438 | 0 | mWeakReporters = mSavedWeakReporters; |
2439 | 0 | mSavedStrongReporters = nullptr; |
2440 | 0 | mSavedWeakReporters = nullptr; |
2441 | 0 |
|
2442 | 0 | mIsRegistrationBlocked = false; |
2443 | 0 | return NS_OK; |
2444 | 0 | } |
2445 | | |
2446 | | NS_IMETHODIMP |
2447 | | nsMemoryReporterManager::GetVsize(int64_t* aVsize) |
2448 | 0 | { |
2449 | 0 | #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS |
2450 | 0 | return VsizeDistinguishedAmount(aVsize); |
2451 | | #else |
2452 | | *aVsize = 0; |
2453 | | return NS_ERROR_NOT_AVAILABLE; |
2454 | | #endif |
2455 | | } |
2456 | | |
2457 | | NS_IMETHODIMP |
2458 | | nsMemoryReporterManager::GetVsizeMaxContiguous(int64_t* aAmount) |
2459 | 0 | { |
2460 | | #ifdef HAVE_VSIZE_MAX_CONTIGUOUS_REPORTER |
2461 | | return VsizeMaxContiguousDistinguishedAmount(aAmount); |
2462 | | #else |
2463 | | *aAmount = 0; |
2464 | 0 | return NS_ERROR_NOT_AVAILABLE; |
2465 | 0 | #endif |
2466 | 0 | } |
2467 | | |
2468 | | NS_IMETHODIMP |
2469 | | nsMemoryReporterManager::GetResident(int64_t* aAmount) |
2470 | 0 | { |
2471 | 0 | #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS |
2472 | 0 | return ResidentDistinguishedAmount(aAmount); |
2473 | | #else |
2474 | | *aAmount = 0; |
2475 | | return NS_ERROR_NOT_AVAILABLE; |
2476 | | #endif |
2477 | | } |
2478 | | |
2479 | | NS_IMETHODIMP |
2480 | | nsMemoryReporterManager::GetResidentFast(int64_t* aAmount) |
2481 | 0 | { |
2482 | 0 | #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS |
2483 | 0 | return ResidentFastDistinguishedAmount(aAmount); |
2484 | | #else |
2485 | | *aAmount = 0; |
2486 | | return NS_ERROR_NOT_AVAILABLE; |
2487 | | #endif |
2488 | | } |
2489 | | |
2490 | | /*static*/ int64_t |
2491 | | nsMemoryReporterManager::ResidentFast() |
2492 | 0 | { |
2493 | 0 | #ifdef HAVE_VSIZE_AND_RESIDENT_REPORTERS |
2494 | 0 | int64_t amount; |
2495 | 0 | nsresult rv = ResidentFastDistinguishedAmount(&amount); |
2496 | 0 | NS_ENSURE_SUCCESS(rv, 0); |
2497 | 0 | return amount; |
2498 | | #else |
2499 | | return 0; |
2500 | | #endif |
2501 | | } |
2502 | | |
2503 | | NS_IMETHODIMP |
2504 | | nsMemoryReporterManager::GetResidentPeak(int64_t* aAmount) |
2505 | 0 | { |
2506 | 0 | #ifdef HAVE_RESIDENT_PEAK_REPORTER |
2507 | 0 | return ResidentPeakDistinguishedAmount(aAmount); |
2508 | | #else |
2509 | | *aAmount = 0; |
2510 | | return NS_ERROR_NOT_AVAILABLE; |
2511 | | #endif |
2512 | | } |
2513 | | |
2514 | | /*static*/ int64_t |
2515 | | nsMemoryReporterManager::ResidentPeak() |
2516 | 0 | { |
2517 | 0 | #ifdef HAVE_RESIDENT_PEAK_REPORTER |
2518 | 0 | int64_t amount = 0; |
2519 | 0 | nsresult rv = ResidentPeakDistinguishedAmount(&amount); |
2520 | 0 | NS_ENSURE_SUCCESS(rv, 0); |
2521 | 0 | return amount; |
2522 | | #else |
2523 | | return 0; |
2524 | | #endif |
2525 | | } |
2526 | | |
2527 | | NS_IMETHODIMP |
2528 | | nsMemoryReporterManager::GetResidentUnique(int64_t* aAmount) |
2529 | 0 | { |
2530 | 0 | #ifdef HAVE_RESIDENT_UNIQUE_REPORTER |
2531 | 0 | return ResidentUniqueDistinguishedAmount(aAmount); |
2532 | | #else |
2533 | | *aAmount = 0; |
2534 | | return NS_ERROR_NOT_AVAILABLE; |
2535 | | #endif |
2536 | | } |
2537 | | |
2538 | | /*static*/ int64_t |
2539 | | nsMemoryReporterManager::ResidentUnique() |
2540 | 0 | { |
2541 | 0 | #ifdef HAVE_RESIDENT_UNIQUE_REPORTER |
2542 | 0 | int64_t amount = 0; |
2543 | 0 | nsresult rv = ResidentUniqueDistinguishedAmount(&amount); |
2544 | 0 | NS_ENSURE_SUCCESS(rv, 0); |
2545 | 0 | return amount; |
2546 | | #else |
2547 | | return 0; |
2548 | | #endif |
2549 | | } |
2550 | | |
2551 | | NS_IMETHODIMP |
2552 | | nsMemoryReporterManager::GetHeapAllocated(int64_t* aAmount) |
2553 | 0 | { |
2554 | | #ifdef HAVE_JEMALLOC_STATS |
2555 | | jemalloc_stats_t stats; |
2556 | | jemalloc_stats(&stats); |
2557 | | *aAmount = stats.allocated; |
2558 | | return NS_OK; |
2559 | | #else |
2560 | | *aAmount = 0; |
2561 | 0 | return NS_ERROR_NOT_AVAILABLE; |
2562 | 0 | #endif |
2563 | 0 | } |
2564 | | |
2565 | | NS_IMETHODIMP |
2566 | | nsMemoryReporterManager::GetHeapAllocatedAsync(nsIHeapAllocatedCallback *aCallback) |
2567 | 0 | { |
2568 | | #ifdef HAVE_JEMALLOC_STATS |
2569 | | if (!mThreadPool) { |
2570 | | return NS_ERROR_UNEXPECTED; |
2571 | | } |
2572 | | |
2573 | | RefPtr<nsIMemoryReporterManager> self{this}; |
2574 | | nsMainThreadPtrHandle<nsIHeapAllocatedCallback> mainThreadCallback( |
2575 | | new nsMainThreadPtrHolder<nsIHeapAllocatedCallback>("HeapAllocatedCallback", |
2576 | | aCallback)); |
2577 | | |
2578 | | nsCOMPtr<nsIRunnable> getHeapAllocatedRunnable = NS_NewRunnableFunction( |
2579 | | "nsMemoryReporterManager::GetHeapAllocatedAsync", |
2580 | | [self, mainThreadCallback]() mutable { |
2581 | | MOZ_ASSERT(!NS_IsMainThread()); |
2582 | | |
2583 | | int64_t heapAllocated = 0; |
2584 | | nsresult rv = self->GetHeapAllocated(&heapAllocated); |
2585 | | |
2586 | | nsCOMPtr<nsIRunnable> resultCallbackRunnable = NS_NewRunnableFunction( |
2587 | | "nsMemoryReporterManager::GetHeapAllocatedAsync", |
2588 | | [mainThreadCallback, heapAllocated, rv]() mutable { |
2589 | | MOZ_ASSERT(NS_IsMainThread()); |
2590 | | |
2591 | | if (NS_FAILED(rv)) { |
2592 | | mainThreadCallback->Callback(0); |
2593 | | return; |
2594 | | } |
2595 | | |
2596 | | mainThreadCallback->Callback(heapAllocated); |
2597 | | }); // resultCallbackRunnable. |
2598 | | |
2599 | | Unused << NS_DispatchToMainThread(resultCallbackRunnable); |
2600 | | }); // getHeapAllocatedRunnable. |
2601 | | |
2602 | | return mThreadPool->Dispatch(getHeapAllocatedRunnable, NS_DISPATCH_NORMAL); |
2603 | | #else |
2604 | | return NS_ERROR_NOT_AVAILABLE; |
2605 | 0 | #endif |
2606 | 0 | } |
2607 | | |
2608 | | // This has UNITS_PERCENTAGE, so it is multiplied by 100x. |
2609 | | NS_IMETHODIMP |
2610 | | nsMemoryReporterManager::GetHeapOverheadFraction(int64_t* aAmount) |
2611 | 0 | { |
2612 | | #ifdef HAVE_JEMALLOC_STATS |
2613 | | jemalloc_stats_t stats; |
2614 | | jemalloc_stats(&stats); |
2615 | | *aAmount = HeapOverheadFraction(&stats); |
2616 | | return NS_OK; |
2617 | | #else |
2618 | | *aAmount = 0; |
2619 | 0 | return NS_ERROR_NOT_AVAILABLE; |
2620 | 0 | #endif |
2621 | 0 | } |
2622 | | |
2623 | | static MOZ_MUST_USE nsresult |
2624 | | GetInfallibleAmount(InfallibleAmountFn aAmountFn, int64_t* aAmount) |
2625 | 0 | { |
2626 | 0 | if (aAmountFn) { |
2627 | 0 | *aAmount = aAmountFn(); |
2628 | 0 | return NS_OK; |
2629 | 0 | } |
2630 | 0 | *aAmount = 0; |
2631 | 0 | return NS_ERROR_NOT_AVAILABLE; |
2632 | 0 | } |
2633 | | |
2634 | | NS_IMETHODIMP |
2635 | | nsMemoryReporterManager::GetJSMainRuntimeGCHeap(int64_t* aAmount) |
2636 | 0 | { |
2637 | 0 | return GetInfallibleAmount(mAmountFns.mJSMainRuntimeGCHeap, aAmount); |
2638 | 0 | } |
2639 | | |
2640 | | NS_IMETHODIMP |
2641 | | nsMemoryReporterManager::GetJSMainRuntimeTemporaryPeak(int64_t* aAmount) |
2642 | 0 | { |
2643 | 0 | return GetInfallibleAmount(mAmountFns.mJSMainRuntimeTemporaryPeak, aAmount); |
2644 | 0 | } |
2645 | | |
2646 | | NS_IMETHODIMP |
2647 | | nsMemoryReporterManager::GetJSMainRuntimeRealmsSystem(int64_t* aAmount) |
2648 | 0 | { |
2649 | 0 | return GetInfallibleAmount(mAmountFns.mJSMainRuntimeRealmsSystem, |
2650 | 0 | aAmount); |
2651 | 0 | } |
2652 | | |
2653 | | NS_IMETHODIMP |
2654 | | nsMemoryReporterManager::GetJSMainRuntimeRealmsUser(int64_t* aAmount) |
2655 | 0 | { |
2656 | 0 | return GetInfallibleAmount(mAmountFns.mJSMainRuntimeRealmsUser, |
2657 | 0 | aAmount); |
2658 | 0 | } |
2659 | | |
2660 | | NS_IMETHODIMP |
2661 | | nsMemoryReporterManager::GetImagesContentUsedUncompressed(int64_t* aAmount) |
2662 | 0 | { |
2663 | 0 | return GetInfallibleAmount(mAmountFns.mImagesContentUsedUncompressed, |
2664 | 0 | aAmount); |
2665 | 0 | } |
2666 | | |
2667 | | NS_IMETHODIMP |
2668 | | nsMemoryReporterManager::GetStorageSQLite(int64_t* aAmount) |
2669 | 0 | { |
2670 | 0 | return GetInfallibleAmount(mAmountFns.mStorageSQLite, aAmount); |
2671 | 0 | } |
2672 | | |
2673 | | NS_IMETHODIMP |
2674 | | nsMemoryReporterManager::GetLowMemoryEventsVirtual(int64_t* aAmount) |
2675 | 0 | { |
2676 | 0 | return GetInfallibleAmount(mAmountFns.mLowMemoryEventsVirtual, aAmount); |
2677 | 0 | } |
2678 | | |
2679 | | NS_IMETHODIMP |
2680 | | nsMemoryReporterManager::GetLowMemoryEventsCommitSpace(int64_t* aAmount) |
2681 | 0 | { |
2682 | 0 | return GetInfallibleAmount(mAmountFns.mLowMemoryEventsCommitSpace, aAmount); |
2683 | 0 | } |
2684 | | |
2685 | | NS_IMETHODIMP |
2686 | | nsMemoryReporterManager::GetLowMemoryEventsPhysical(int64_t* aAmount) |
2687 | 0 | { |
2688 | 0 | return GetInfallibleAmount(mAmountFns.mLowMemoryEventsPhysical, aAmount); |
2689 | 0 | } |
2690 | | |
2691 | | NS_IMETHODIMP |
2692 | | nsMemoryReporterManager::GetGhostWindows(int64_t* aAmount) |
2693 | 0 | { |
2694 | 0 | return GetInfallibleAmount(mAmountFns.mGhostWindows, aAmount); |
2695 | 0 | } |
2696 | | |
2697 | | NS_IMETHODIMP |
2698 | | nsMemoryReporterManager::GetPageFaultsHard(int64_t* aAmount) |
2699 | 0 | { |
2700 | 0 | #ifdef HAVE_PAGE_FAULT_REPORTERS |
2701 | 0 | return PageFaultsHardDistinguishedAmount(aAmount); |
2702 | | #else |
2703 | | *aAmount = 0; |
2704 | | return NS_ERROR_NOT_AVAILABLE; |
2705 | | #endif |
2706 | | } |
2707 | | |
2708 | | NS_IMETHODIMP |
2709 | | nsMemoryReporterManager::GetHasMozMallocUsableSize(bool* aHas) |
2710 | 0 | { |
2711 | 0 | void* p = malloc(16); |
2712 | 0 | if (!p) { |
2713 | 0 | return NS_ERROR_OUT_OF_MEMORY; |
2714 | 0 | } |
2715 | 0 | size_t usable = moz_malloc_usable_size(p); |
2716 | 0 | free(p); |
2717 | 0 | *aHas = !!(usable > 0); |
2718 | 0 | return NS_OK; |
2719 | 0 | } |
2720 | | |
2721 | | NS_IMETHODIMP |
2722 | | nsMemoryReporterManager::GetIsDMDEnabled(bool* aIsEnabled) |
2723 | 0 | { |
2724 | | #ifdef MOZ_DMD |
2725 | | *aIsEnabled = true; |
2726 | | #else |
2727 | | *aIsEnabled = false; |
2728 | 0 | #endif |
2729 | 0 | return NS_OK; |
2730 | 0 | } |
2731 | | |
2732 | | NS_IMETHODIMP |
2733 | | nsMemoryReporterManager::GetIsDMDRunning(bool* aIsRunning) |
2734 | 0 | { |
2735 | | #ifdef MOZ_DMD |
2736 | | *aIsRunning = dmd::IsRunning(); |
2737 | | #else |
2738 | | *aIsRunning = false; |
2739 | 0 | #endif |
2740 | 0 | return NS_OK; |
2741 | 0 | } |
2742 | | |
2743 | | namespace { |
2744 | | |
2745 | | /** |
2746 | | * This runnable lets us implement |
2747 | | * nsIMemoryReporterManager::MinimizeMemoryUsage(). We fire a heap-minimize |
2748 | | * notification, spin the event loop, and repeat this process a few times. |
2749 | | * |
2750 | | * When this sequence finishes, we invoke the callback function passed to the |
2751 | | * runnable's constructor. |
2752 | | */ |
2753 | | class MinimizeMemoryUsageRunnable : public Runnable |
2754 | | { |
2755 | | public: |
2756 | | explicit MinimizeMemoryUsageRunnable(nsIRunnable* aCallback) |
2757 | | : mozilla::Runnable("MinimizeMemoryUsageRunnable") |
2758 | | , mCallback(aCallback) |
2759 | | , mRemainingIters(sNumIters) |
2760 | 0 | { |
2761 | 0 | } |
2762 | | |
2763 | | NS_IMETHOD Run() override |
2764 | 0 | { |
2765 | 0 | nsCOMPtr<nsIObserverService> os = services::GetObserverService(); |
2766 | 0 | if (!os) { |
2767 | 0 | return NS_ERROR_FAILURE; |
2768 | 0 | } |
2769 | 0 | |
2770 | 0 | if (mRemainingIters == 0) { |
2771 | 0 | os->NotifyObservers(nullptr, "after-minimize-memory-usage", |
2772 | 0 | u"MinimizeMemoryUsageRunnable"); |
2773 | 0 | if (mCallback) { |
2774 | 0 | mCallback->Run(); |
2775 | 0 | } |
2776 | 0 | return NS_OK; |
2777 | 0 | } |
2778 | 0 |
|
2779 | 0 | os->NotifyObservers(nullptr, "memory-pressure", u"heap-minimize"); |
2780 | 0 | mRemainingIters--; |
2781 | 0 | NS_DispatchToMainThread(this); |
2782 | 0 |
|
2783 | 0 | return NS_OK; |
2784 | 0 | } |
2785 | | |
2786 | | private: |
2787 | | // Send sNumIters heap-minimize notifications, spinning the event |
2788 | | // loop after each notification (see bug 610166 comment 12 for an |
2789 | | // explanation), because one notification doesn't cut it. |
2790 | | static const uint32_t sNumIters = 3; |
2791 | | |
2792 | | nsCOMPtr<nsIRunnable> mCallback; |
2793 | | uint32_t mRemainingIters; |
2794 | | }; |
2795 | | |
2796 | | } // namespace |
2797 | | |
2798 | | NS_IMETHODIMP |
2799 | | nsMemoryReporterManager::MinimizeMemoryUsage(nsIRunnable* aCallback) |
2800 | 0 | { |
2801 | 0 | RefPtr<MinimizeMemoryUsageRunnable> runnable = |
2802 | 0 | new MinimizeMemoryUsageRunnable(aCallback); |
2803 | 0 |
|
2804 | 0 | return NS_DispatchToMainThread(runnable); |
2805 | 0 | } |
2806 | | |
2807 | | NS_IMETHODIMP |
2808 | | nsMemoryReporterManager::SizeOfTab(mozIDOMWindowProxy* aTopWindow, |
2809 | | int64_t* aJSObjectsSize, |
2810 | | int64_t* aJSStringsSize, |
2811 | | int64_t* aJSOtherSize, |
2812 | | int64_t* aDomSize, |
2813 | | int64_t* aStyleSize, |
2814 | | int64_t* aOtherSize, |
2815 | | int64_t* aTotalSize, |
2816 | | double* aJSMilliseconds, |
2817 | | double* aNonJSMilliseconds) |
2818 | 0 | { |
2819 | 0 | nsCOMPtr<nsIGlobalObject> global = do_QueryInterface(aTopWindow); |
2820 | 0 | auto* piWindow = nsPIDOMWindowOuter::From(aTopWindow); |
2821 | 0 | if (NS_WARN_IF(!global) || NS_WARN_IF(!piWindow)) { |
2822 | 0 | return NS_ERROR_FAILURE; |
2823 | 0 | } |
2824 | 0 | |
2825 | 0 | TimeStamp t1 = TimeStamp::Now(); |
2826 | 0 |
|
2827 | 0 | // Measure JS memory consumption (and possibly some non-JS consumption, via |
2828 | 0 | // |jsPrivateSize|). |
2829 | 0 | size_t jsObjectsSize, jsStringsSize, jsPrivateSize, jsOtherSize; |
2830 | 0 | nsresult rv = mSizeOfTabFns.mJS(global->GetGlobalJSObject(), |
2831 | 0 | &jsObjectsSize, &jsStringsSize, |
2832 | 0 | &jsPrivateSize, &jsOtherSize); |
2833 | 0 | if (NS_WARN_IF(NS_FAILED(rv))) { |
2834 | 0 | return rv; |
2835 | 0 | } |
2836 | 0 | |
2837 | 0 | TimeStamp t2 = TimeStamp::Now(); |
2838 | 0 |
|
2839 | 0 | // Measure non-JS memory consumption. |
2840 | 0 | size_t domSize, styleSize, otherSize; |
2841 | 0 | rv = mSizeOfTabFns.mNonJS(piWindow, &domSize, &styleSize, &otherSize); |
2842 | 0 | if (NS_WARN_IF(NS_FAILED(rv))) { |
2843 | 0 | return rv; |
2844 | 0 | } |
2845 | 0 | |
2846 | 0 | TimeStamp t3 = TimeStamp::Now(); |
2847 | 0 |
|
2848 | 0 | *aTotalSize = 0; |
2849 | 0 | #define DO(aN, n) { *aN = (n); *aTotalSize += (n); } |
2850 | 0 | DO(aJSObjectsSize, jsObjectsSize); |
2851 | 0 | DO(aJSStringsSize, jsStringsSize); |
2852 | 0 | DO(aJSOtherSize, jsOtherSize); |
2853 | 0 | DO(aDomSize, jsPrivateSize + domSize); |
2854 | 0 | DO(aStyleSize, styleSize); |
2855 | 0 | DO(aOtherSize, otherSize); |
2856 | 0 | #undef DO |
2857 | 0 |
|
2858 | 0 | *aJSMilliseconds = (t2 - t1).ToMilliseconds(); |
2859 | 0 | *aNonJSMilliseconds = (t3 - t2).ToMilliseconds(); |
2860 | 0 |
|
2861 | 0 | return NS_OK; |
2862 | 0 | } |
2863 | | |
2864 | | namespace mozilla { |
2865 | | |
2866 | | #define GET_MEMORY_REPORTER_MANAGER(mgr) \ |
2867 | 73 | RefPtr<nsMemoryReporterManager> mgr = \ |
2868 | 73 | nsMemoryReporterManager::GetOrCreate(); \ |
2869 | 73 | if (!mgr) { \ |
2870 | 0 | return NS_ERROR_FAILURE; \ |
2871 | 0 | } |
2872 | | |
2873 | | nsresult |
2874 | | RegisterStrongMemoryReporter(nsIMemoryReporter* aReporter) |
2875 | 22 | { |
2876 | 22 | // Hold a strong reference to the argument to make sure it gets released if |
2877 | 22 | // we return early below. |
2878 | 22 | nsCOMPtr<nsIMemoryReporter> reporter = aReporter; |
2879 | 22 | GET_MEMORY_REPORTER_MANAGER(mgr) |
2880 | 22 | return mgr->RegisterStrongReporter(reporter); |
2881 | 22 | } |
2882 | | |
2883 | | nsresult |
2884 | | RegisterStrongAsyncMemoryReporter(nsIMemoryReporter* aReporter) |
2885 | 0 | { |
2886 | 0 | // Hold a strong reference to the argument to make sure it gets released if |
2887 | 0 | // we return early below. |
2888 | 0 | nsCOMPtr<nsIMemoryReporter> reporter = aReporter; |
2889 | 0 | GET_MEMORY_REPORTER_MANAGER(mgr) |
2890 | 0 | return mgr->RegisterStrongAsyncReporter(reporter); |
2891 | 0 | } |
2892 | | |
2893 | | nsresult |
2894 | | RegisterWeakMemoryReporter(nsIMemoryReporter* aReporter) |
2895 | 30 | { |
2896 | 30 | GET_MEMORY_REPORTER_MANAGER(mgr) |
2897 | 30 | return mgr->RegisterWeakReporter(aReporter); |
2898 | 30 | } |
2899 | | |
2900 | | nsresult |
2901 | | RegisterWeakAsyncMemoryReporter(nsIMemoryReporter* aReporter) |
2902 | 0 | { |
2903 | 0 | GET_MEMORY_REPORTER_MANAGER(mgr) |
2904 | 0 | return mgr->RegisterWeakAsyncReporter(aReporter); |
2905 | 0 | } |
2906 | | |
2907 | | nsresult |
2908 | | UnregisterStrongMemoryReporter(nsIMemoryReporter* aReporter) |
2909 | 0 | { |
2910 | 0 | GET_MEMORY_REPORTER_MANAGER(mgr) |
2911 | 0 | return mgr->UnregisterStrongReporter(aReporter); |
2912 | 0 | } |
2913 | | |
2914 | | nsresult |
2915 | | UnregisterWeakMemoryReporter(nsIMemoryReporter* aReporter) |
2916 | 0 | { |
2917 | 0 | GET_MEMORY_REPORTER_MANAGER(mgr) |
2918 | 0 | return mgr->UnregisterWeakReporter(aReporter); |
2919 | 0 | } |
2920 | | |
2921 | | // Macro for generating functions that register distinguished amount functions |
2922 | | // with the memory reporter manager. |
2923 | | #define DEFINE_REGISTER_DISTINGUISHED_AMOUNT(kind, name) \ |
2924 | | nsresult \ |
2925 | | Register##name##DistinguishedAmount(kind##AmountFn aAmountFn) \ |
2926 | 15 | { \ |
2927 | 15 | GET_MEMORY_REPORTER_MANAGER(mgr) \ |
2928 | 15 | mgr->mAmountFns.m##name = aAmountFn; \ |
2929 | 15 | return NS_OK; \ |
2930 | 15 | } mozilla::RegisterJSMainRuntimeGCHeapDistinguishedAmount(long (*)()) Line | Count | Source | 2926 | 3 | { \ | 2927 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2928 | 3 | mgr->mAmountFns.m##name = aAmountFn; \ | 2929 | 3 | return NS_OK; \ | 2930 | 3 | } |
mozilla::RegisterJSMainRuntimeTemporaryPeakDistinguishedAmount(long (*)()) Line | Count | Source | 2926 | 3 | { \ | 2927 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2928 | 3 | mgr->mAmountFns.m##name = aAmountFn; \ | 2929 | 3 | return NS_OK; \ | 2930 | 3 | } |
mozilla::RegisterJSMainRuntimeRealmsSystemDistinguishedAmount(long (*)()) Line | Count | Source | 2926 | 3 | { \ | 2927 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2928 | 3 | mgr->mAmountFns.m##name = aAmountFn; \ | 2929 | 3 | return NS_OK; \ | 2930 | 3 | } |
mozilla::RegisterJSMainRuntimeRealmsUserDistinguishedAmount(long (*)()) Line | Count | Source | 2926 | 3 | { \ | 2927 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2928 | 3 | mgr->mAmountFns.m##name = aAmountFn; \ | 2929 | 3 | return NS_OK; \ | 2930 | 3 | } |
Unexecuted instantiation: mozilla::RegisterImagesContentUsedUncompressedDistinguishedAmount(long (*)()) Unexecuted instantiation: mozilla::RegisterStorageSQLiteDistinguishedAmount(long (*)()) Unexecuted instantiation: mozilla::RegisterLowMemoryEventsVirtualDistinguishedAmount(long (*)()) Unexecuted instantiation: mozilla::RegisterLowMemoryEventsCommitSpaceDistinguishedAmount(long (*)()) Unexecuted instantiation: mozilla::RegisterLowMemoryEventsPhysicalDistinguishedAmount(long (*)()) mozilla::RegisterGhostWindowsDistinguishedAmount(long (*)()) Line | Count | Source | 2926 | 3 | { \ | 2927 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2928 | 3 | mgr->mAmountFns.m##name = aAmountFn; \ | 2929 | 3 | return NS_OK; \ | 2930 | 3 | } |
|
2931 | | |
2932 | | // Macro for generating functions that unregister distinguished amount |
2933 | | // functions with the memory reporter manager. |
2934 | | #define DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(name) \ |
2935 | | nsresult \ |
2936 | | Unregister##name##DistinguishedAmount() \ |
2937 | 0 | { \ |
2938 | 0 | GET_MEMORY_REPORTER_MANAGER(mgr) \ |
2939 | 0 | mgr->mAmountFns.m##name = nullptr; \ |
2940 | 0 | return NS_OK; \ |
2941 | 0 | } Unexecuted instantiation: mozilla::UnregisterImagesContentUsedUncompressedDistinguishedAmount() Unexecuted instantiation: mozilla::UnregisterStorageSQLiteDistinguishedAmount() |
2942 | | |
2943 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeGCHeap) |
2944 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeTemporaryPeak) |
2945 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeRealmsSystem) |
2946 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, JSMainRuntimeRealmsUser) |
2947 | | |
2948 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, ImagesContentUsedUncompressed) |
2949 | | DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(ImagesContentUsedUncompressed) |
2950 | | |
2951 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, StorageSQLite) |
2952 | | DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT(StorageSQLite) |
2953 | | |
2954 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsVirtual) |
2955 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsCommitSpace) |
2956 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, LowMemoryEventsPhysical) |
2957 | | |
2958 | | DEFINE_REGISTER_DISTINGUISHED_AMOUNT(Infallible, GhostWindows) |
2959 | | |
2960 | | #undef DEFINE_REGISTER_DISTINGUISHED_AMOUNT |
2961 | | #undef DEFINE_UNREGISTER_DISTINGUISHED_AMOUNT |
2962 | | |
2963 | | #define DEFINE_REGISTER_SIZE_OF_TAB(name) \ |
2964 | | nsresult \ |
2965 | | Register##name##SizeOfTab(name##SizeOfTabFn aSizeOfTabFn) \ |
2966 | 6 | { \ |
2967 | 6 | GET_MEMORY_REPORTER_MANAGER(mgr) \ |
2968 | 6 | mgr->mSizeOfTabFns.m##name = aSizeOfTabFn; \ |
2969 | 6 | return NS_OK; \ |
2970 | 6 | } mozilla::RegisterJSSizeOfTab(nsresult (*)(JSObject*, unsigned long*, unsigned long*, unsigned long*, unsigned long*)) Line | Count | Source | 2966 | 3 | { \ | 2967 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2968 | 3 | mgr->mSizeOfTabFns.m##name = aSizeOfTabFn; \ | 2969 | 3 | return NS_OK; \ | 2970 | 3 | } |
mozilla::RegisterNonJSSizeOfTab(nsresult (*)(nsPIDOMWindowOuter*, unsigned long*, unsigned long*, unsigned long*)) Line | Count | Source | 2966 | 3 | { \ | 2967 | 3 | GET_MEMORY_REPORTER_MANAGER(mgr) \ | 2968 | 3 | mgr->mSizeOfTabFns.m##name = aSizeOfTabFn; \ | 2969 | 3 | return NS_OK; \ | 2970 | 3 | } |
|
2971 | | |
2972 | | DEFINE_REGISTER_SIZE_OF_TAB(JS); |
2973 | | DEFINE_REGISTER_SIZE_OF_TAB(NonJS); |
2974 | | |
2975 | | #undef DEFINE_REGISTER_SIZE_OF_TAB |
2976 | | |
2977 | | #undef GET_MEMORY_REPORTER_MANAGER |
2978 | | |
2979 | | } // namespace mozilla |