/src/mozilla-central/xpcom/threads/nsThreadPool.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | #include "nsCOMArray.h" |
8 | | #include "nsIClassInfoImpl.h" |
9 | | #include "ThreadDelay.h" |
10 | | #include "nsThreadPool.h" |
11 | | #include "nsThreadManager.h" |
12 | | #include "nsThread.h" |
13 | | #include "nsMemory.h" |
14 | | #include "nsAutoPtr.h" |
15 | | #include "prinrval.h" |
16 | | #include "mozilla/Logging.h" |
17 | | #include "mozilla/SystemGroup.h" |
18 | | #include "nsThreadSyncDispatch.h" |
19 | | |
20 | | using namespace mozilla; |
21 | | |
22 | | static LazyLogModule sThreadPoolLog("nsThreadPool"); |
23 | | #ifdef LOG |
24 | | #undef LOG |
25 | | #endif |
26 | 21 | #define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args) |
27 | | |
28 | | // DESIGN: |
29 | | // o Allocate anonymous threads. |
30 | | // o Use nsThreadPool::Run as the main routine for each thread. |
31 | | // o Each thread waits on the event queue's monitor, checking for |
32 | | // pending events and rescheduling itself as an idle thread. |
33 | | |
34 | | #define DEFAULT_THREAD_LIMIT 4 |
35 | | #define DEFAULT_IDLE_THREAD_LIMIT 1 |
36 | | #define DEFAULT_IDLE_THREAD_TIMEOUT PR_SecondsToInterval(60) |
37 | | |
38 | | NS_IMPL_ADDREF(nsThreadPool) |
39 | | NS_IMPL_RELEASE(nsThreadPool) |
40 | | NS_IMPL_CLASSINFO(nsThreadPool, nullptr, nsIClassInfo::THREADSAFE, |
41 | | NS_THREADPOOL_CID) |
42 | | NS_IMPL_QUERY_INTERFACE_CI(nsThreadPool, nsIThreadPool, nsIEventTarget, |
43 | | nsIRunnable) |
44 | | NS_IMPL_CI_INTERFACE_GETTER(nsThreadPool, nsIThreadPool, nsIEventTarget) |
45 | | |
46 | | nsThreadPool::nsThreadPool() |
47 | | : mMutex("[nsThreadPool.mMutex]") |
48 | | , mEventsAvailable(mMutex, "[nsThreadPool.mEventsAvailable]") |
49 | | , mThreadLimit(DEFAULT_THREAD_LIMIT) |
50 | | , mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT) |
51 | | , mIdleThreadTimeout(DEFAULT_IDLE_THREAD_TIMEOUT) |
52 | | , mIdleCount(0) |
53 | | , mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE) |
54 | | , mShutdown(false) |
55 | 7 | { |
56 | 7 | LOG(("THRD-P(%p) constructor!!!\n", this)); |
57 | 7 | } |
58 | | |
59 | | nsThreadPool::~nsThreadPool() |
60 | 0 | { |
61 | 0 | // Threads keep a reference to the nsThreadPool until they return from Run() |
62 | 0 | // after removing themselves from mThreads. |
63 | 0 | MOZ_ASSERT(mThreads.IsEmpty()); |
64 | 0 | } |
65 | | |
66 | | nsresult |
67 | | nsThreadPool::PutEvent(nsIRunnable* aEvent) |
68 | 0 | { |
69 | 0 | nsCOMPtr<nsIRunnable> event(aEvent); |
70 | 0 | return PutEvent(event.forget(), 0); |
71 | 0 | } |
72 | | |
73 | | nsresult |
74 | | nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) |
75 | 0 | { |
76 | 0 | // Avoid spawning a new thread while holding the event queue lock... |
77 | 0 |
|
78 | 0 | bool spawnThread = false; |
79 | 0 | uint32_t stackSize = 0; |
80 | 0 | { |
81 | 0 | MutexAutoLock lock(mMutex); |
82 | 0 |
|
83 | 0 | if (NS_WARN_IF(mShutdown)) { |
84 | 0 | return NS_ERROR_NOT_AVAILABLE; |
85 | 0 | } |
86 | 0 | LOG(("THRD-P(%p) put [%d %d %d]\n", this, mIdleCount, mThreads.Count(), |
87 | 0 | mThreadLimit)); |
88 | 0 | MOZ_ASSERT(mIdleCount <= (uint32_t)mThreads.Count(), "oops"); |
89 | 0 |
|
90 | 0 | // Make sure we have a thread to service this event. |
91 | 0 | if (mThreads.Count() < (int32_t)mThreadLimit && |
92 | 0 | !(aFlags & NS_DISPATCH_AT_END) && |
93 | 0 | // Spawn a new thread if we don't have enough idle threads to serve |
94 | 0 | // pending events immediately. |
95 | 0 | mEvents.Count(lock) >= mIdleCount) { |
96 | 0 | spawnThread = true; |
97 | 0 | } |
98 | 0 |
|
99 | 0 | mEvents.PutEvent(std::move(aEvent), EventPriority::Normal, lock); |
100 | 0 | mEventsAvailable.Notify(); |
101 | 0 | stackSize = mStackSize; |
102 | 0 | } |
103 | 0 |
|
104 | 0 | auto delay = MakeScopeExit([&]() { |
105 | 0 | // Delay to encourage the receiving task to run before we do work. |
106 | 0 | DelayForChaosMode(ChaosFeature::TaskDispatching, 1000); |
107 | 0 | }); |
108 | 0 |
|
109 | 0 | LOG(("THRD-P(%p) put [spawn=%d]\n", this, spawnThread)); |
110 | 0 | if (!spawnThread) { |
111 | 0 | return NS_OK; |
112 | 0 | } |
113 | 0 | |
114 | 0 | nsCOMPtr<nsIThread> thread; |
115 | 0 | nsresult rv = NS_NewNamedThread(mThreadNaming.GetNextThreadName(mName), |
116 | 0 | getter_AddRefs(thread), nullptr, stackSize); |
117 | 0 | if (NS_WARN_IF(NS_FAILED(rv))) { |
118 | 0 | return NS_ERROR_UNEXPECTED; |
119 | 0 | } |
120 | 0 | |
121 | 0 | bool killThread = false; |
122 | 0 | { |
123 | 0 | MutexAutoLock lock(mMutex); |
124 | 0 | if (mThreads.Count() < (int32_t)mThreadLimit) { |
125 | 0 | mThreads.AppendObject(thread); |
126 | 0 | } else { |
127 | 0 | killThread = true; // okay, we don't need this thread anymore |
128 | 0 | } |
129 | 0 | } |
130 | 0 | LOG(("THRD-P(%p) put [%p kill=%d]\n", this, thread.get(), killThread)); |
131 | 0 | if (killThread) { |
132 | 0 | // We never dispatched any events to the thread, so we can shut it down |
133 | 0 | // asynchronously without worrying about anything. |
134 | 0 | ShutdownThread(thread); |
135 | 0 | } else { |
136 | 0 | thread->Dispatch(this, NS_DISPATCH_NORMAL); |
137 | 0 | } |
138 | 0 |
|
139 | 0 | return NS_OK; |
140 | 0 | } |
141 | | |
142 | | void |
143 | | nsThreadPool::ShutdownThread(nsIThread* aThread) |
144 | 0 | { |
145 | 0 | LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread)); |
146 | 0 |
|
147 | 0 | // This is either called by a threadpool thread that is out of work, or |
148 | 0 | // a thread that attempted to create a threadpool thread and raced in |
149 | 0 | // such a way that the newly created thread is no longer necessary. |
150 | 0 | // In the first case, we must go to another thread to shut aThread down |
151 | 0 | // (because it is the current thread). In the second case, we cannot |
152 | 0 | // synchronously shut down the current thread (because then Dispatch() would |
153 | 0 | // spin the event loop, and that could blow up the world), and asynchronous |
154 | 0 | // shutdown requires this thread have an event loop (and it may not, see bug |
155 | 0 | // 10204784). The simplest way to cover all cases is to asynchronously |
156 | 0 | // shutdown aThread from the main thread. |
157 | 0 | SystemGroup::Dispatch(TaskCategory::Other, NewRunnableMethod( |
158 | 0 | "nsIThread::AsyncShutdown", aThread, &nsIThread::AsyncShutdown)); |
159 | 0 | } |
160 | | |
161 | | NS_IMETHODIMP |
162 | | nsThreadPool::Run() |
163 | 0 | { |
164 | 0 | LOG(("THRD-P(%p) enter %s\n", this, mName.BeginReading())); |
165 | 0 |
|
166 | 0 | nsCOMPtr<nsIThread> current; |
167 | 0 | nsThreadManager::get().GetCurrentThread(getter_AddRefs(current)); |
168 | 0 |
|
169 | 0 | bool shutdownThreadOnExit = false; |
170 | 0 | bool exitThread = false; |
171 | 0 | bool wasIdle = false; |
172 | 0 | TimeStamp idleSince; |
173 | 0 |
|
174 | 0 | nsCOMPtr<nsIThreadPoolListener> listener; |
175 | 0 | { |
176 | 0 | MutexAutoLock lock(mMutex); |
177 | 0 | listener = mListener; |
178 | 0 | } |
179 | 0 |
|
180 | 0 | if (listener) { |
181 | 0 | listener->OnThreadCreated(); |
182 | 0 | } |
183 | 0 |
|
184 | 0 | do { |
185 | 0 | nsCOMPtr<nsIRunnable> event; |
186 | 0 | { |
187 | 0 | MutexAutoLock lock(mMutex); |
188 | 0 |
|
189 | 0 | event = mEvents.GetEvent(nullptr, lock); |
190 | 0 | if (!event) { |
191 | 0 | TimeStamp now = TimeStamp::Now(); |
192 | 0 | TimeDuration timeout = TimeDuration::FromMilliseconds(mIdleThreadTimeout); |
193 | 0 |
|
194 | 0 | // If we are shutting down, then don't keep any idle threads |
195 | 0 | if (mShutdown) { |
196 | 0 | exitThread = true; |
197 | 0 | } else { |
198 | 0 | if (wasIdle) { |
199 | 0 | // if too many idle threads or idle for too long, then bail. |
200 | 0 | if (mIdleCount > mIdleThreadLimit || |
201 | 0 | (mIdleThreadTimeout != UINT32_MAX && (now - idleSince) >= timeout)) { |
202 | 0 | exitThread = true; |
203 | 0 | } |
204 | 0 | } else { |
205 | 0 | // if would be too many idle threads... |
206 | 0 | if (mIdleCount == mIdleThreadLimit) { |
207 | 0 | exitThread = true; |
208 | 0 | } else { |
209 | 0 | ++mIdleCount; |
210 | 0 | idleSince = now; |
211 | 0 | wasIdle = true; |
212 | 0 | } |
213 | 0 | } |
214 | 0 | } |
215 | 0 |
|
216 | 0 | if (exitThread) { |
217 | 0 | if (wasIdle) { |
218 | 0 | --mIdleCount; |
219 | 0 | } |
220 | 0 | shutdownThreadOnExit = mThreads.RemoveObject(current); |
221 | 0 | } else { |
222 | 0 | AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE); |
223 | 0 |
|
224 | 0 | TimeDuration delta = timeout - (now - idleSince); |
225 | 0 | LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.BeginReading(), |
226 | 0 | delta.ToMilliseconds())); |
227 | 0 | mEventsAvailable.Wait(delta); |
228 | 0 | LOG(("THRD-P(%p) done waiting\n", this)); |
229 | 0 | } |
230 | 0 | } else if (wasIdle) { |
231 | 0 | wasIdle = false; |
232 | 0 | --mIdleCount; |
233 | 0 | } |
234 | 0 | } |
235 | 0 | if (event) { |
236 | 0 | LOG(("THRD-P(%p) %s running [%p]\n", this, mName.BeginReading(), event.get())); |
237 | 0 |
|
238 | 0 | // Delay event processing to encourage whoever dispatched this event |
239 | 0 | // to run. |
240 | 0 | DelayForChaosMode(ChaosFeature::TaskRunning, 1000); |
241 | 0 |
|
242 | 0 | event->Run(); |
243 | 0 | } |
244 | 0 | } while (!exitThread); |
245 | 0 |
|
246 | 0 | if (listener) { |
247 | 0 | listener->OnThreadShuttingDown(); |
248 | 0 | } |
249 | 0 |
|
250 | 0 | if (shutdownThreadOnExit) { |
251 | 0 | ShutdownThread(current); |
252 | 0 | } |
253 | 0 |
|
254 | 0 | LOG(("THRD-P(%p) leave\n", this)); |
255 | 0 | return NS_OK; |
256 | 0 | } |
257 | | |
258 | | NS_IMETHODIMP |
259 | | nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, uint32_t aFlags) |
260 | 0 | { |
261 | 0 | nsCOMPtr<nsIRunnable> event(aEvent); |
262 | 0 | return Dispatch(event.forget(), aFlags); |
263 | 0 | } |
264 | | |
265 | | NS_IMETHODIMP |
266 | | nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent, uint32_t aFlags) |
267 | 0 | { |
268 | 0 | LOG(("THRD-P(%p) dispatch [%p %x]\n", this, /* XXX aEvent*/ nullptr, aFlags)); |
269 | 0 |
|
270 | 0 | if (NS_WARN_IF(mShutdown)) { |
271 | 0 | return NS_ERROR_NOT_AVAILABLE; |
272 | 0 | } |
273 | 0 | |
274 | 0 | if (aFlags & DISPATCH_SYNC) { |
275 | 0 | nsCOMPtr<nsIThread> thread; |
276 | 0 | nsThreadManager::get().GetCurrentThread(getter_AddRefs(thread)); |
277 | 0 | if (NS_WARN_IF(!thread)) { |
278 | 0 | return NS_ERROR_NOT_AVAILABLE; |
279 | 0 | } |
280 | 0 | |
281 | 0 | RefPtr<nsThreadSyncDispatch> wrapper = |
282 | 0 | new nsThreadSyncDispatch(thread.forget(), std::move(aEvent)); |
283 | 0 | PutEvent(wrapper); |
284 | 0 |
|
285 | 0 | SpinEventLoopUntil([&, wrapper]() -> bool { |
286 | 0 | return !wrapper->IsPending(); |
287 | 0 | }); |
288 | 0 | } else { |
289 | 0 | NS_ASSERTION(aFlags == NS_DISPATCH_NORMAL || |
290 | 0 | aFlags == NS_DISPATCH_AT_END, "unexpected dispatch flags"); |
291 | 0 | PutEvent(std::move(aEvent), aFlags); |
292 | 0 | } |
293 | 0 | return NS_OK; |
294 | 0 | } |
295 | | |
296 | | NS_IMETHODIMP |
297 | | nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) |
298 | 0 | { |
299 | 0 | return NS_ERROR_NOT_IMPLEMENTED; |
300 | 0 | } |
301 | | |
302 | | NS_IMETHODIMP_(bool) |
303 | | nsThreadPool::IsOnCurrentThreadInfallible() |
304 | 0 | { |
305 | 0 | MutexAutoLock lock(mMutex); |
306 | 0 |
|
307 | 0 | nsIThread* thread = NS_GetCurrentThread(); |
308 | 0 | for (uint32_t i = 0; i < static_cast<uint32_t>(mThreads.Count()); ++i) { |
309 | 0 | if (mThreads[i] == thread) { |
310 | 0 | return true; |
311 | 0 | } |
312 | 0 | } |
313 | 0 | return false; |
314 | 0 | } |
315 | | |
316 | | NS_IMETHODIMP |
317 | | nsThreadPool::IsOnCurrentThread(bool* aResult) |
318 | 0 | { |
319 | 0 | MutexAutoLock lock(mMutex); |
320 | 0 | if (NS_WARN_IF(mShutdown)) { |
321 | 0 | return NS_ERROR_NOT_AVAILABLE; |
322 | 0 | } |
323 | 0 | |
324 | 0 | nsIThread* thread = NS_GetCurrentThread(); |
325 | 0 | for (uint32_t i = 0; i < static_cast<uint32_t>(mThreads.Count()); ++i) { |
326 | 0 | if (mThreads[i] == thread) { |
327 | 0 | *aResult = true; |
328 | 0 | return NS_OK; |
329 | 0 | } |
330 | 0 | } |
331 | 0 | *aResult = false; |
332 | 0 | return NS_OK; |
333 | 0 | } |
334 | | |
335 | | NS_IMETHODIMP |
336 | | nsThreadPool::Shutdown() |
337 | 0 | { |
338 | 0 | nsCOMArray<nsIThread> threads; |
339 | 0 | nsCOMPtr<nsIThreadPoolListener> listener; |
340 | 0 | { |
341 | 0 | MutexAutoLock lock(mMutex); |
342 | 0 | mShutdown = true; |
343 | 0 | mEventsAvailable.NotifyAll(); |
344 | 0 |
|
345 | 0 | threads.AppendObjects(mThreads); |
346 | 0 | mThreads.Clear(); |
347 | 0 |
|
348 | 0 | // Swap in a null listener so that we release the listener at the end of |
349 | 0 | // this method. The listener will be kept alive as long as the other threads |
350 | 0 | // that were created when it was set. |
351 | 0 | mListener.swap(listener); |
352 | 0 | } |
353 | 0 |
|
354 | 0 | // It's important that we shutdown the threads while outside the event queue |
355 | 0 | // monitor. Otherwise, we could end up dead-locking. |
356 | 0 |
|
357 | 0 | for (int32_t i = 0; i < threads.Count(); ++i) { |
358 | 0 | threads[i]->Shutdown(); |
359 | 0 | } |
360 | 0 |
|
361 | 0 | return NS_OK; |
362 | 0 | } |
363 | | |
364 | | NS_IMETHODIMP |
365 | | nsThreadPool::GetThreadLimit(uint32_t* aValue) |
366 | 0 | { |
367 | 0 | *aValue = mThreadLimit; |
368 | 0 | return NS_OK; |
369 | 0 | } |
370 | | |
371 | | NS_IMETHODIMP |
372 | | nsThreadPool::SetThreadLimit(uint32_t aValue) |
373 | 7 | { |
374 | 7 | MutexAutoLock lock(mMutex); |
375 | 7 | LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue)); |
376 | 7 | mThreadLimit = aValue; |
377 | 7 | if (mIdleThreadLimit > mThreadLimit) { |
378 | 0 | mIdleThreadLimit = mThreadLimit; |
379 | 0 | } |
380 | 7 | |
381 | 7 | if (static_cast<uint32_t>(mThreads.Count()) > mThreadLimit) { |
382 | 0 | mEventsAvailable.NotifyAll(); // wake up threads so they observe this change |
383 | 0 | } |
384 | 7 | return NS_OK; |
385 | 7 | } |
386 | | |
387 | | NS_IMETHODIMP |
388 | | nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) |
389 | 0 | { |
390 | 0 | *aValue = mIdleThreadLimit; |
391 | 0 | return NS_OK; |
392 | 0 | } |
393 | | |
394 | | NS_IMETHODIMP |
395 | | nsThreadPool::SetIdleThreadLimit(uint32_t aValue) |
396 | 7 | { |
397 | 7 | MutexAutoLock lock(mMutex); |
398 | 7 | LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue)); |
399 | 7 | mIdleThreadLimit = aValue; |
400 | 7 | if (mIdleThreadLimit > mThreadLimit) { |
401 | 3 | mIdleThreadLimit = mThreadLimit; |
402 | 3 | } |
403 | 7 | |
404 | 7 | // Do we need to kill some idle threads? |
405 | 7 | if (mIdleCount > mIdleThreadLimit) { |
406 | 0 | mEventsAvailable.NotifyAll(); // wake up threads so they observe this change |
407 | 0 | } |
408 | 7 | return NS_OK; |
409 | 7 | } |
410 | | |
411 | | NS_IMETHODIMP |
412 | | nsThreadPool::GetIdleThreadTimeout(uint32_t* aValue) |
413 | 0 | { |
414 | 0 | *aValue = mIdleThreadTimeout; |
415 | 0 | return NS_OK; |
416 | 0 | } |
417 | | |
418 | | NS_IMETHODIMP |
419 | | nsThreadPool::SetIdleThreadTimeout(uint32_t aValue) |
420 | 7 | { |
421 | 7 | MutexAutoLock lock(mMutex); |
422 | 7 | uint32_t oldTimeout = mIdleThreadTimeout; |
423 | 7 | mIdleThreadTimeout = aValue; |
424 | 7 | |
425 | 7 | // Do we need to notify any idle threads that their sleep time has shortened? |
426 | 7 | if (mIdleThreadTimeout < oldTimeout && mIdleCount > 0) { |
427 | 0 | mEventsAvailable.NotifyAll(); // wake up threads so they observe this change |
428 | 0 | } |
429 | 7 | return NS_OK; |
430 | 7 | } |
431 | | |
432 | | NS_IMETHODIMP |
433 | | nsThreadPool::GetThreadStackSize(uint32_t* aValue) |
434 | 0 | { |
435 | 0 | MutexAutoLock lock(mMutex); |
436 | 0 | *aValue = mStackSize; |
437 | 0 | return NS_OK; |
438 | 0 | } |
439 | | |
440 | | NS_IMETHODIMP |
441 | | nsThreadPool::SetThreadStackSize(uint32_t aValue) |
442 | 3 | { |
443 | 3 | MutexAutoLock lock(mMutex); |
444 | 3 | mStackSize = aValue; |
445 | 3 | return NS_OK; |
446 | 3 | } |
447 | | |
448 | | NS_IMETHODIMP |
449 | | nsThreadPool::GetListener(nsIThreadPoolListener** aListener) |
450 | 0 | { |
451 | 0 | MutexAutoLock lock(mMutex); |
452 | 0 | NS_IF_ADDREF(*aListener = mListener); |
453 | 0 | return NS_OK; |
454 | 0 | } |
455 | | |
456 | | NS_IMETHODIMP |
457 | | nsThreadPool::SetListener(nsIThreadPoolListener* aListener) |
458 | 0 | { |
459 | 0 | nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener); |
460 | 0 | { |
461 | 0 | MutexAutoLock lock(mMutex); |
462 | 0 | mListener.swap(swappedListener); |
463 | 0 | } |
464 | 0 | return NS_OK; |
465 | 0 | } |
466 | | |
467 | | NS_IMETHODIMP |
468 | | nsThreadPool::SetName(const nsACString& aName) |
469 | 7 | { |
470 | 7 | { |
471 | 7 | MutexAutoLock lock(mMutex); |
472 | 7 | if (mThreads.Count()) { |
473 | 0 | return NS_ERROR_NOT_AVAILABLE; |
474 | 0 | } |
475 | 7 | } |
476 | 7 | |
477 | 7 | mName = aName; |
478 | 7 | return NS_OK; |
479 | 7 | } |