Coverage Report

Created: 2018-09-25 14:53

/work/obj-fuzz/dist/include/double-conversion/double-conversion.h
Line
Count
Source (jump to first uncovered line)
1
// Copyright 2012 the V8 project authors. All rights reserved.
2
// Redistribution and use in source and binary forms, with or without
3
// modification, are permitted provided that the following conditions are
4
// met:
5
//
6
//     * Redistributions of source code must retain the above copyright
7
//       notice, this list of conditions and the following disclaimer.
8
//     * Redistributions in binary form must reproduce the above
9
//       copyright notice, this list of conditions and the following
10
//       disclaimer in the documentation and/or other materials provided
11
//       with the distribution.
12
//     * Neither the name of Google Inc. nor the names of its
13
//       contributors may be used to endorse or promote products derived
14
//       from this software without specific prior written permission.
15
//
16
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
29
#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
30
31
#include "mozilla/Types.h"
32
#include <double-conversion/utils.h>
33
34
namespace double_conversion {
35
36
class DoubleToStringConverter {
37
 public:
38
  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
39
  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
40
  // function returns false.
41
  static const int kMaxFixedDigitsBeforePoint = 60;
42
  static const int kMaxFixedDigitsAfterPoint = 60;
43
44
  // When calling ToExponential with a requested_digits
45
  // parameter > kMaxExponentialDigits then the function returns false.
46
  static const int kMaxExponentialDigits = 120;
47
48
  // When calling ToPrecision with a requested_digits
49
  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
50
  // then the function returns false.
51
  static const int kMinPrecisionDigits = 1;
52
  static const int kMaxPrecisionDigits = 120;
53
54
  enum Flags {
55
    NO_FLAGS = 0,
56
    EMIT_POSITIVE_EXPONENT_SIGN = 1,
57
    EMIT_TRAILING_DECIMAL_POINT = 2,
58
    EMIT_TRAILING_ZERO_AFTER_POINT = 4,
59
    UNIQUE_ZERO = 8
60
  };
61
62
  // Flags should be a bit-or combination of the possible Flags-enum.
63
  //  - NO_FLAGS: no special flags.
64
  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
65
  //    form, emits a '+' for positive exponents. Example: 1.2e+2.
66
  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
67
  //    converted into decimal format then a trailing decimal point is appended.
68
  //    Example: 2345.0 is converted to "2345.".
69
  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
70
  //    emits a trailing '0'-character. This flag requires the
71
  //    EXMIT_TRAILING_DECIMAL_POINT flag.
72
  //    Example: 2345.0 is converted to "2345.0".
73
  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
74
  //
75
  // Infinity symbol and nan_symbol provide the string representation for these
76
  // special values. If the string is NULL and the special value is encountered
77
  // then the conversion functions return false.
78
  //
79
  // The exponent_character is used in exponential representations. It is
80
  // usually 'e' or 'E'.
81
  //
82
  // When converting to the shortest representation the converter will
83
  // represent input numbers in decimal format if they are in the interval
84
  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
85
  //    (lower boundary included, greater boundary excluded).
86
  // Example: with decimal_in_shortest_low = -6 and
87
  //               decimal_in_shortest_high = 21:
88
  //   ToShortest(0.000001)  -> "0.000001"
89
  //   ToShortest(0.0000001) -> "1e-7"
90
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
91
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
92
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
93
  //
94
  // When converting to precision mode the converter may add
95
  // max_leading_padding_zeroes before returning the number in exponential
96
  // format.
97
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
98
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
99
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
100
  // Similarily the converter may add up to
101
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
102
  // returning an exponential representation. A zero added by the
103
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
104
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
105
  //   ToPrecision(230.0, 2) -> "230"
106
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
107
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
108
  DoubleToStringConverter(int flags,
109
                          const char* infinity_symbol,
110
                          const char* nan_symbol,
111
                          char exponent_character,
112
                          int decimal_in_shortest_low,
113
                          int decimal_in_shortest_high,
114
                          int max_leading_padding_zeroes_in_precision_mode,
115
                          int max_trailing_padding_zeroes_in_precision_mode)
116
      : flags_(flags),
117
        infinity_symbol_(infinity_symbol),
118
        nan_symbol_(nan_symbol),
119
        exponent_character_(exponent_character),
120
        decimal_in_shortest_low_(decimal_in_shortest_low),
121
        decimal_in_shortest_high_(decimal_in_shortest_high),
122
        max_leading_padding_zeroes_in_precision_mode_(
123
            max_leading_padding_zeroes_in_precision_mode),
124
        max_trailing_padding_zeroes_in_precision_mode_(
125
0
            max_trailing_padding_zeroes_in_precision_mode) {
126
0
    // When 'trailing zero after the point' is set, then 'trailing point'
127
0
    // must be set too.
128
0
    ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
129
0
        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
130
0
  }
131
132
  // Returns a converter following the EcmaScript specification.
133
  static MFBT_API const DoubleToStringConverter& EcmaScriptConverter();
134
135
  // Computes the shortest string of digits that correctly represent the input
136
  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
137
  // (see constructor) it then either returns a decimal representation, or an
138
  // exponential representation.
139
  // Example with decimal_in_shortest_low = -6,
140
  //              decimal_in_shortest_high = 21,
141
  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
142
  //              EMIT_TRAILING_DECIMAL_POINT deactived:
143
  //   ToShortest(0.000001)  -> "0.000001"
144
  //   ToShortest(0.0000001) -> "1e-7"
145
  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
146
  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
147
  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
148
  //
149
  // Note: the conversion may round the output if the returned string
150
  // is accurate enough to uniquely identify the input-number.
151
  // For example the most precise representation of the double 9e59 equals
152
  // "899999999999999918767229449717619953810131273674690656206848", but
153
  // the converter will return the shorter (but still correct) "9e59".
154
  //
155
  // Returns true if the conversion succeeds. The conversion always succeeds
156
  // except when the input value is special and no infinity_symbol or
157
  // nan_symbol has been given to the constructor.
158
0
  bool ToShortest(double value, StringBuilder* result_builder) const {
159
0
    return ToShortestIeeeNumber(value, result_builder, SHORTEST);
160
0
  }
161
162
  // Same as ToShortest, but for single-precision floats.
163
0
  bool ToShortestSingle(float value, StringBuilder* result_builder) const {
164
0
    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
165
0
  }
166
167
168
  // Computes a decimal representation with a fixed number of digits after the
169
  // decimal point. The last emitted digit is rounded.
170
  //
171
  // Examples:
172
  //   ToFixed(3.12, 1) -> "3.1"
173
  //   ToFixed(3.1415, 3) -> "3.142"
174
  //   ToFixed(1234.56789, 4) -> "1234.5679"
175
  //   ToFixed(1.23, 5) -> "1.23000"
176
  //   ToFixed(0.1, 4) -> "0.1000"
177
  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
178
  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
179
  //   ToFixed(0.1, 17) -> "0.10000000000000001"
180
  //
181
  // If requested_digits equals 0, then the tail of the result depends on
182
  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
183
  // Examples, for requested_digits == 0,
184
  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
185
  //    - false and false: then 123.45 -> 123
186
  //                             0.678 -> 1
187
  //    - true and false: then 123.45 -> 123.
188
  //                            0.678 -> 1.
189
  //    - true and true: then 123.45 -> 123.0
190
  //                           0.678 -> 1.0
191
  //
192
  // Returns true if the conversion succeeds. The conversion always succeeds
193
  // except for the following cases:
194
  //   - the input value is special and no infinity_symbol or nan_symbol has
195
  //     been provided to the constructor,
196
  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
197
  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
198
  // The last two conditions imply that the result will never contain more than
199
  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
200
  // (one additional character for the sign, and one for the decimal point).
201
  MFBT_API bool ToFixed(double value,
202
               int requested_digits,
203
               StringBuilder* result_builder) const;
204
205
  // Computes a representation in exponential format with requested_digits
206
  // after the decimal point. The last emitted digit is rounded.
207
  // If requested_digits equals -1, then the shortest exponential representation
208
  // is computed.
209
  //
210
  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
211
  //               exponent_character set to 'e'.
212
  //   ToExponential(3.12, 1) -> "3.1e0"
213
  //   ToExponential(5.0, 3) -> "5.000e0"
214
  //   ToExponential(0.001, 2) -> "1.00e-3"
215
  //   ToExponential(3.1415, -1) -> "3.1415e0"
216
  //   ToExponential(3.1415, 4) -> "3.1415e0"
217
  //   ToExponential(3.1415, 3) -> "3.142e0"
218
  //   ToExponential(123456789000000, 3) -> "1.235e14"
219
  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
220
  //   ToExponential(1000000000000000019884624838656.0, 32) ->
221
  //                     "1.00000000000000001988462483865600e30"
222
  //   ToExponential(1234, 0) -> "1e3"
223
  //
224
  // Returns true if the conversion succeeds. The conversion always succeeds
225
  // except for the following cases:
226
  //   - the input value is special and no infinity_symbol or nan_symbol has
227
  //     been provided to the constructor,
228
  //   - 'requested_digits' > kMaxExponentialDigits.
229
  // The last condition implies that the result will never contain more than
230
  // kMaxExponentialDigits + 8 characters (the sign, the digit before the
231
  // decimal point, the decimal point, the exponent character, the
232
  // exponent's sign, and at most 3 exponent digits).
233
  MFBT_API bool ToExponential(double value,
234
                     int requested_digits,
235
                     StringBuilder* result_builder) const;
236
237
  // Computes 'precision' leading digits of the given 'value' and returns them
238
  // either in exponential or decimal format, depending on
239
  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
240
  // constructor).
241
  // The last computed digit is rounded.
242
  //
243
  // Example with max_leading_padding_zeroes_in_precision_mode = 6.
244
  //   ToPrecision(0.0000012345, 2) -> "0.0000012"
245
  //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
246
  // Similarily the converter may add up to
247
  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
248
  // returning an exponential representation. A zero added by the
249
  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
250
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
251
  //   ToPrecision(230.0, 2) -> "230"
252
  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
253
  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
254
  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
255
  //    EMIT_TRAILING_ZERO_AFTER_POINT:
256
  //   ToPrecision(123450.0, 6) -> "123450"
257
  //   ToPrecision(123450.0, 5) -> "123450"
258
  //   ToPrecision(123450.0, 4) -> "123500"
259
  //   ToPrecision(123450.0, 3) -> "123000"
260
  //   ToPrecision(123450.0, 2) -> "1.2e5"
261
  //
262
  // Returns true if the conversion succeeds. The conversion always succeeds
263
  // except for the following cases:
264
  //   - the input value is special and no infinity_symbol or nan_symbol has
265
  //     been provided to the constructor,
266
  //   - precision < kMinPericisionDigits
267
  //   - precision > kMaxPrecisionDigits
268
  // The last condition implies that the result will never contain more than
269
  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
270
  // exponent character, the exponent's sign, and at most 3 exponent digits).
271
  MFBT_API bool ToPrecision(double value,
272
                   int precision,
273
                   bool* used_exponential_notation,
274
                   StringBuilder* result_builder) const;
275
276
  enum DtoaMode {
277
    // Produce the shortest correct representation.
278
    // For example the output of 0.299999999999999988897 is (the less accurate
279
    // but correct) 0.3.
280
    SHORTEST,
281
    // Same as SHORTEST, but for single-precision floats.
282
    SHORTEST_SINGLE,
283
    // Produce a fixed number of digits after the decimal point.
284
    // For instance fixed(0.1, 4) becomes 0.1000
285
    // If the input number is big, the output will be big.
286
    FIXED,
287
    // Fixed number of digits (independent of the decimal point).
288
    PRECISION
289
  };
290
291
  // The maximal number of digits that are needed to emit a double in base 10.
292
  // A higher precision can be achieved by using more digits, but the shortest
293
  // accurate representation of any double will never use more digits than
294
  // kBase10MaximalLength.
295
  // Note that DoubleToAscii null-terminates its input. So the given buffer
296
  // should be at least kBase10MaximalLength + 1 characters long.
297
  static const MFBT_DATA int kBase10MaximalLength = 17;
298
299
  // Converts the given double 'v' to digit characters. 'v' must not be NaN,
300
  // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
301
  // applies to 'v' after it has been casted to a single-precision float. That
302
  // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
303
  // -Infinity.
304
  //
305
  // The result should be interpreted as buffer * 10^(point-length).
306
  //
307
  // The digits are written to the buffer in the platform's charset, which is
308
  // often UTF-8 (with ASCII-range digits) but may be another charset, such
309
  // as EBCDIC.
310
  //
311
  // The output depends on the given mode:
312
  //  - SHORTEST: produce the least amount of digits for which the internal
313
  //   identity requirement is still satisfied. If the digits are printed
314
  //   (together with the correct exponent) then reading this number will give
315
  //   'v' again. The buffer will choose the representation that is closest to
316
  //   'v'. If there are two at the same distance, than the one farther away
317
  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
318
  //   In this mode the 'requested_digits' parameter is ignored.
319
  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
320
  //  - FIXED: produces digits necessary to print a given number with
321
  //   'requested_digits' digits after the decimal point. The produced digits
322
  //   might be too short in which case the caller has to fill the remainder
323
  //   with '0's.
324
  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
325
  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
326
  //   toFixed(0.15, 2) thus returns buffer="2", point=0.
327
  //   The returned buffer may contain digits that would be truncated from the
328
  //   shortest representation of the input.
329
  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
330
  //   Even though the length of produced digits usually equals
331
  //   'requested_digits', the function is allowed to return fewer digits, in
332
  //   which case the caller has to fill the missing digits with '0's.
333
  //   Halfway cases are again rounded away from 0.
334
  // DoubleToAscii expects the given buffer to be big enough to hold all
335
  // digits and a terminating null-character. In SHORTEST-mode it expects a
336
  // buffer of at least kBase10MaximalLength + 1. In all other modes the
337
  // requested_digits parameter and the padding-zeroes limit the size of the
338
  // output. Don't forget the decimal point, the exponent character and the
339
  // terminating null-character when computing the maximal output size.
340
  // The given length is only used in debug mode to ensure the buffer is big
341
  // enough.
342
  static MFBT_API void DoubleToAscii(double v,
343
                            DtoaMode mode,
344
                            int requested_digits,
345
                            char* buffer,
346
                            int buffer_length,
347
                            bool* sign,
348
                            int* length,
349
                            int* point);
350
351
 private:
352
  // Implementation for ToShortest and ToShortestSingle.
353
  MFBT_API bool ToShortestIeeeNumber(double value,
354
                            StringBuilder* result_builder,
355
                            DtoaMode mode) const;
356
357
  // If the value is a special value (NaN or Infinity) constructs the
358
  // corresponding string using the configured infinity/nan-symbol.
359
  // If either of them is NULL or the value is not special then the
360
  // function returns false.
361
  MFBT_API bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
362
  // Constructs an exponential representation (i.e. 1.234e56).
363
  // The given exponent assumes a decimal point after the first decimal digit.
364
  MFBT_API void CreateExponentialRepresentation(const char* decimal_digits,
365
                                       int length,
366
                                       int exponent,
367
                                       StringBuilder* result_builder) const;
368
  // Creates a decimal representation (i.e 1234.5678).
369
  MFBT_API void CreateDecimalRepresentation(const char* decimal_digits,
370
                                   int length,
371
                                   int decimal_point,
372
                                   int digits_after_point,
373
                                   StringBuilder* result_builder) const;
374
375
  const int flags_;
376
  const char* const infinity_symbol_;
377
  const char* const nan_symbol_;
378
  const char exponent_character_;
379
  const int decimal_in_shortest_low_;
380
  const int decimal_in_shortest_high_;
381
  const int max_leading_padding_zeroes_in_precision_mode_;
382
  const int max_trailing_padding_zeroes_in_precision_mode_;
383
384
  DC_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
385
};
386
387
388
class StringToDoubleConverter {
389
 public:
390
  // Enumeration for allowing octals and ignoring junk when converting
391
  // strings to numbers.
392
  enum Flags {
393
    NO_FLAGS = 0,
394
    ALLOW_HEX = 1,
395
    ALLOW_OCTALS = 2,
396
    ALLOW_TRAILING_JUNK = 4,
397
    ALLOW_LEADING_SPACES = 8,
398
    ALLOW_TRAILING_SPACES = 16,
399
    ALLOW_SPACES_AFTER_SIGN = 32,
400
    ALLOW_CASE_INSENSIBILITY = 64,
401
  };
402
403
  // Flags should be a bit-or combination of the possible Flags-enum.
404
  //  - NO_FLAGS: no special flags.
405
  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
406
  //      Ex: StringToDouble("0x1234") -> 4660.0
407
  //          In StringToDouble("0x1234.56") the characters ".56" are trailing
408
  //          junk. The result of the call is hence dependent on
409
  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
410
  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
411
  //      the string will not be parsed as "0" followed by junk.
412
  //
413
  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
414
  //      If a sequence of octal digits starts with '0', then the number is
415
  //      read as octal integer. Octal numbers may only be integers.
416
  //      Ex: StringToDouble("01234") -> 668.0
417
  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
418
  //                                               // digits.
419
  //          In StringToDouble("01234.56") the characters ".56" are trailing
420
  //          junk. The result of the call is hence dependent on
421
  //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
422
  //          In StringToDouble("01234e56") the characters "e56" are trailing
423
  //          junk, too.
424
  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
425
  //      a double literal.
426
  //  - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces,
427
  //                          new-lines, and tabs.
428
  //  - ALLOW_TRAILING_SPACES: ignore trailing whitespace.
429
  //  - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
430
  //       Ex: StringToDouble("-   123.2") -> -123.2.
431
  //           StringToDouble("+   123.2") -> 123.2
432
  //  - ALLOW_CASE_INSENSIBILITY: ignore case of characters for special values:
433
  //      infinity and nan.
434
  //
435
  // empty_string_value is returned when an empty string is given as input.
436
  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
437
  // containing only spaces is converted to the 'empty_string_value', too.
438
  //
439
  // junk_string_value is returned when
440
  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
441
  //     part of a double-literal) is found.
442
  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
443
  //     double literal.
444
  //
445
  // infinity_symbol and nan_symbol are strings that are used to detect
446
  // inputs that represent infinity and NaN. They can be null, in which case
447
  // they are ignored.
448
  // The conversion routine first reads any possible signs. Then it compares the
449
  // following character of the input-string with the first character of
450
  // the infinity, and nan-symbol. If either matches, the function assumes, that
451
  // a match has been found, and expects the following input characters to match
452
  // the remaining characters of the special-value symbol.
453
  // This means that the following restrictions apply to special-value symbols:
454
  //  - they must not start with signs ('+', or '-'),
455
  //  - they must not have the same first character.
456
  //  - they must not start with digits.
457
  //
458
  // Examples:
459
  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
460
  //  empty_string_value = 0.0,
461
  //  junk_string_value = NaN,
462
  //  infinity_symbol = "infinity",
463
  //  nan_symbol = "nan":
464
  //    StringToDouble("0x1234") -> 4660.0.
465
  //    StringToDouble("0x1234K") -> 4660.0.
466
  //    StringToDouble("") -> 0.0  // empty_string_value.
467
  //    StringToDouble(" ") -> NaN  // junk_string_value.
468
  //    StringToDouble(" 1") -> NaN  // junk_string_value.
469
  //    StringToDouble("0x") -> NaN  // junk_string_value.
470
  //    StringToDouble("-123.45") -> -123.45.
471
  //    StringToDouble("--123.45") -> NaN  // junk_string_value.
472
  //    StringToDouble("123e45") -> 123e45.
473
  //    StringToDouble("123E45") -> 123e45.
474
  //    StringToDouble("123e+45") -> 123e45.
475
  //    StringToDouble("123E-45") -> 123e-45.
476
  //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
477
  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
478
  //    StringToDouble("+NaN") -> NaN  // NaN string literal.
479
  //    StringToDouble("-infinity") -> -inf.  // infinity literal.
480
  //    StringToDouble("Infinity") -> NaN  // junk_string_value.
481
  //
482
  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
483
  //  empty_string_value = 0.0,
484
  //  junk_string_value = NaN,
485
  //  infinity_symbol = NULL,
486
  //  nan_symbol = NULL:
487
  //    StringToDouble("0x1234") -> NaN  // junk_string_value.
488
  //    StringToDouble("01234") -> 668.0.
489
  //    StringToDouble("") -> 0.0  // empty_string_value.
490
  //    StringToDouble(" ") -> 0.0  // empty_string_value.
491
  //    StringToDouble(" 1") -> 1.0
492
  //    StringToDouble("0x") -> NaN  // junk_string_value.
493
  //    StringToDouble("0123e45") -> NaN  // junk_string_value.
494
  //    StringToDouble("01239E45") -> 1239e45.
495
  //    StringToDouble("-infinity") -> NaN  // junk_string_value.
496
  //    StringToDouble("NaN") -> NaN  // junk_string_value.
497
  StringToDoubleConverter(int flags,
498
                          double empty_string_value,
499
                          double junk_string_value,
500
                          const char* infinity_symbol,
501
                          const char* nan_symbol)
502
      : flags_(flags),
503
        empty_string_value_(empty_string_value),
504
        junk_string_value_(junk_string_value),
505
        infinity_symbol_(infinity_symbol),
506
0
        nan_symbol_(nan_symbol) {
507
0
  }
508
509
  // Performs the conversion.
510
  // The output parameter 'processed_characters_count' is set to the number
511
  // of characters that have been processed to read the number.
512
  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
513
  // in the 'processed_characters_count'. Trailing junk is never included.
514
  double StringToDouble(const char* buffer,
515
                        int length,
516
                        int* processed_characters_count) const;
517
518
  // Same as StringToDouble above but for 16 bit characters.
519
  double StringToDouble(const uc16* buffer,
520
                        int length,
521
                        int* processed_characters_count) const;
522
523
  // Same as StringToDouble but reads a float.
524
  // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
525
  // due to potential double-rounding.
526
  float StringToFloat(const char* buffer,
527
                      int length,
528
                      int* processed_characters_count) const;
529
530
  // Same as StringToFloat above but for 16 bit characters.
531
  float StringToFloat(const uc16* buffer,
532
                      int length,
533
                      int* processed_characters_count) const;
534
535
 private:
536
  const int flags_;
537
  const double empty_string_value_;
538
  const double junk_string_value_;
539
  const char* const infinity_symbol_;
540
  const char* const nan_symbol_;
541
542
  template <class Iterator>
543
  double StringToIeee(Iterator start_pointer,
544
                      int length,
545
                      bool read_as_double,
546
                      int* processed_characters_count) const;
547
548
  DC_DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
549
};
550
551
}  // namespace double_conversion
552
553
#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_