/work/obj-fuzz/dist/include/nsCoord.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
2 | | /* vim: set ts=8 sts=2 et sw=2 tw=80: */ |
3 | | /* This Source Code Form is subject to the terms of the Mozilla Public |
4 | | * License, v. 2.0. If a copy of the MPL was not distributed with this |
5 | | * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
6 | | |
7 | | #ifndef NSCOORD_H |
8 | | #define NSCOORD_H |
9 | | |
10 | | #include "mozilla/FloatingPoint.h" |
11 | | |
12 | | #include "nsAlgorithm.h" |
13 | | #include "nscore.h" |
14 | | #include "nsMathUtils.h" |
15 | | #include <math.h> |
16 | | #include <float.h> |
17 | | #include <stdlib.h> |
18 | | |
19 | | #include "nsDebug.h" |
20 | | #include <algorithm> |
21 | | |
22 | | /* |
23 | | * Basic type used for the geometry classes. |
24 | | * |
25 | | * Normally all coordinates are maintained in an app unit coordinate |
26 | | * space. An app unit is 1/60th of a CSS device pixel, which is, in turn |
27 | | * an integer number of device pixels, such at the CSS DPI is as close to |
28 | | * 96dpi as possible. |
29 | | */ |
30 | | |
31 | | // This controls whether we're using integers or floats for coordinates. We |
32 | | // want to eventually use floats. |
33 | | //#define NS_COORD_IS_FLOAT |
34 | | |
35 | | #ifdef NS_COORD_IS_FLOAT |
36 | | typedef float nscoord; |
37 | | #define nscoord_MAX (mozilla::PositiveInfinity<float>()) |
38 | | #else |
39 | | typedef int32_t nscoord; |
40 | 18 | #define nscoord_MAX nscoord((1 << 30) - 1) |
41 | | #endif |
42 | | |
43 | 9 | #define nscoord_MIN (-nscoord_MAX) |
44 | | |
45 | | inline void VERIFY_COORD(nscoord aCoord) { |
46 | | #ifdef NS_COORD_IS_FLOAT |
47 | | NS_ASSERTION(floorf(aCoord) == aCoord, |
48 | | "Coords cannot have fractions"); |
49 | | #endif |
50 | | } |
51 | | |
52 | | /** |
53 | | * Divide aSpace by aN. Assign the resulting quotient to aQuotient and |
54 | | * return the remainder. |
55 | | */ |
56 | | inline nscoord NSCoordDivRem(nscoord aSpace, size_t aN, nscoord* aQuotient) |
57 | 0 | { |
58 | | #ifdef NS_COORD_IS_FLOAT |
59 | | *aQuotient = aSpace / aN; |
60 | | return 0.0f; |
61 | | #else |
62 | | div_t result = div(aSpace, aN); |
63 | 0 | *aQuotient = nscoord(result.quot); |
64 | 0 | return nscoord(result.rem); |
65 | 0 | #endif |
66 | 0 | } |
67 | | |
68 | 0 | inline nscoord NSCoordMulDiv(nscoord aMult1, nscoord aMult2, nscoord aDiv) { |
69 | | #ifdef NS_COORD_IS_FLOAT |
70 | | return (aMult1 * aMult2 / aDiv); |
71 | | #else |
72 | | return (int64_t(aMult1) * int64_t(aMult2) / int64_t(aDiv)); |
73 | 0 | #endif |
74 | 0 | } |
75 | | |
76 | | inline nscoord NSToCoordRound(float aValue) |
77 | | { |
78 | | #if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__) |
79 | | return NS_lroundup30(aValue); |
80 | | #else |
81 | | return nscoord(floorf(aValue + 0.5f)); |
82 | | #endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */ |
83 | | } |
84 | | |
85 | | inline nscoord NSToCoordRound(double aValue) |
86 | | { |
87 | | #if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__) |
88 | | return NS_lroundup30((float)aValue); |
89 | | #else |
90 | | return nscoord(floor(aValue + 0.5f)); |
91 | | #endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */ |
92 | | } |
93 | | |
94 | | inline nscoord NSToCoordRoundWithClamp(float aValue) |
95 | 9 | { |
96 | 9 | #ifndef NS_COORD_IS_FLOAT |
97 | 9 | // Bounds-check before converting out of float, to avoid overflow |
98 | 9 | if (aValue >= nscoord_MAX) { |
99 | 0 | return nscoord_MAX; |
100 | 0 | } |
101 | 9 | if (aValue <= nscoord_MIN) { |
102 | 0 | return nscoord_MIN; |
103 | 0 | } |
104 | 9 | #endif |
105 | 9 | return NSToCoordRound(aValue); |
106 | 9 | } |
107 | | |
108 | | /** |
109 | | * Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as |
110 | | * appropriate for the signs of aCoord and aScale. If requireNotNegative is |
111 | | * true, this method will enforce that aScale is not negative; use that |
112 | | * parametrization to get a check of that fact in debug builds. |
113 | | */ |
114 | | inline nscoord _nscoordSaturatingMultiply(nscoord aCoord, float aScale, |
115 | 0 | bool requireNotNegative) { |
116 | 0 | VERIFY_COORD(aCoord); |
117 | 0 | if (requireNotNegative) { |
118 | 0 | MOZ_ASSERT(aScale >= 0.0f, |
119 | 0 | "negative scaling factors must be handled manually"); |
120 | 0 | } |
121 | | #ifdef NS_COORD_IS_FLOAT |
122 | | return floorf(aCoord * aScale); |
123 | | #else |
124 | | float product = aCoord * aScale; |
125 | 0 | if (requireNotNegative ? aCoord > 0 : (aCoord > 0) == (aScale > 0)) |
126 | 0 | return NSToCoordRoundWithClamp(std::min<float>((float)nscoord_MAX, product)); |
127 | 0 | return NSToCoordRoundWithClamp(std::max<float>((float)nscoord_MIN, product)); |
128 | 0 | #endif |
129 | 0 | } |
130 | | |
131 | | /** |
132 | | * Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as |
133 | | * appropriate for the sign of aCoord. This method requires aScale to not be |
134 | | * negative; use this method when you know that aScale should never be |
135 | | * negative to get a sanity check of that invariant in debug builds. |
136 | | */ |
137 | 0 | inline nscoord NSCoordSaturatingNonnegativeMultiply(nscoord aCoord, float aScale) { |
138 | 0 | return _nscoordSaturatingMultiply(aCoord, aScale, true); |
139 | 0 | } |
140 | | |
141 | | /** |
142 | | * Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as |
143 | | * appropriate for the signs of aCoord and aScale. |
144 | | */ |
145 | 0 | inline nscoord NSCoordSaturatingMultiply(nscoord aCoord, float aScale) { |
146 | 0 | return _nscoordSaturatingMultiply(aCoord, aScale, false); |
147 | 0 | } |
148 | | |
149 | | /** |
150 | | * Returns a + b, capping the sum to nscoord_MAX. |
151 | | * |
152 | | * This function assumes that neither argument is nscoord_MIN. |
153 | | * |
154 | | * Note: If/when we start using floats for nscoords, this function won't be as |
155 | | * necessary. Normal float addition correctly handles adding with infinity, |
156 | | * assuming we aren't adding nscoord_MIN. (-infinity) |
157 | | */ |
158 | | inline nscoord |
159 | | NSCoordSaturatingAdd(nscoord a, nscoord b) |
160 | 0 | { |
161 | 0 | VERIFY_COORD(a); |
162 | 0 | VERIFY_COORD(b); |
163 | 0 |
|
164 | | #ifdef NS_COORD_IS_FLOAT |
165 | | // Float math correctly handles a+b, given that neither is -infinity. |
166 | | return a + b; |
167 | | #else |
168 | 0 | if (a == nscoord_MAX || b == nscoord_MAX) { |
169 | 0 | // infinity + anything = anything + infinity = infinity |
170 | 0 | return nscoord_MAX; |
171 | 0 | } else { |
172 | 0 | // a + b = a + b |
173 | 0 | // Cap the result, just in case we're dealing with numbers near nscoord_MAX |
174 | 0 | return std::min(nscoord_MAX, a + b); |
175 | 0 | } |
176 | 0 | #endif |
177 | 0 | } |
178 | | |
179 | | /** |
180 | | * Returns a - b, gracefully handling cases involving nscoord_MAX. |
181 | | * This function assumes that neither argument is nscoord_MIN. |
182 | | * |
183 | | * The behavior is as follows: |
184 | | * |
185 | | * a) infinity - infinity -> infMinusInfResult |
186 | | * b) N - infinity -> 0 (unexpected -- triggers NOTREACHED) |
187 | | * c) infinity - N -> infinity |
188 | | * d) N1 - N2 -> N1 - N2 |
189 | | * |
190 | | * Note: For float nscoords, cases (c) and (d) are handled by normal float |
191 | | * math. We still need to explicitly specify the behavior for cases (a) |
192 | | * and (b), though. (Under normal float math, those cases would return NaN |
193 | | * and -infinity, respectively.) |
194 | | */ |
195 | | inline nscoord |
196 | | NSCoordSaturatingSubtract(nscoord a, nscoord b, |
197 | | nscoord infMinusInfResult) |
198 | 0 | { |
199 | 0 | VERIFY_COORD(a); |
200 | 0 | VERIFY_COORD(b); |
201 | 0 |
|
202 | 0 | if (b == nscoord_MAX) { |
203 | 0 | if (a == nscoord_MAX) { |
204 | 0 | // case (a) |
205 | 0 | return infMinusInfResult; |
206 | 0 | } else { |
207 | 0 | // case (b) |
208 | 0 | MOZ_ASSERT_UNREACHABLE("Attempted to subtract [n - nscoord_MAX]"); |
209 | 0 | return 0; |
210 | 0 | } |
211 | 0 | } else { |
212 | | #ifdef NS_COORD_IS_FLOAT |
213 | | // case (c) and (d) for floats. (float math handles both) |
214 | | return a - b; |
215 | | #else |
216 | 0 | if (a == nscoord_MAX) { |
217 | 0 | // case (c) for integers |
218 | 0 | return nscoord_MAX; |
219 | 0 | } else { |
220 | 0 | // case (d) for integers |
221 | 0 | // Cap the result, in case we're dealing with numbers near nscoord_MAX |
222 | 0 | return std::min(nscoord_MAX, a - b); |
223 | 0 | } |
224 | 0 | #endif |
225 | 0 | } |
226 | 0 | } |
227 | | |
228 | | inline float NSCoordToFloat(nscoord aCoord) { |
229 | | VERIFY_COORD(aCoord); |
230 | | #ifdef NS_COORD_IS_FLOAT |
231 | | NS_ASSERTION(!mozilla::IsNaN(aCoord), "NaN encountered in float conversion"); |
232 | | #endif |
233 | | return (float)aCoord; |
234 | | } |
235 | | |
236 | | /* |
237 | | * Coord Rounding Functions |
238 | | */ |
239 | | inline nscoord NSToCoordFloor(float aValue) |
240 | | { |
241 | | return nscoord(floorf(aValue)); |
242 | | } |
243 | | |
244 | | inline nscoord NSToCoordFloor(double aValue) |
245 | | { |
246 | | return nscoord(floor(aValue)); |
247 | | } |
248 | | |
249 | | inline nscoord NSToCoordFloorClamped(float aValue) |
250 | 0 | { |
251 | 0 | #ifndef NS_COORD_IS_FLOAT |
252 | 0 | // Bounds-check before converting out of float, to avoid overflow |
253 | 0 | if (aValue >= nscoord_MAX) { |
254 | 0 | return nscoord_MAX; |
255 | 0 | } |
256 | 0 | if (aValue <= nscoord_MIN) { |
257 | 0 | return nscoord_MIN; |
258 | 0 | } |
259 | 0 | #endif |
260 | 0 | return NSToCoordFloor(aValue); |
261 | 0 | } |
262 | | |
263 | | inline nscoord NSToCoordCeil(float aValue) |
264 | | { |
265 | | return nscoord(ceilf(aValue)); |
266 | | } |
267 | | |
268 | | inline nscoord NSToCoordCeil(double aValue) |
269 | | { |
270 | | return nscoord(ceil(aValue)); |
271 | | } |
272 | | |
273 | | inline nscoord NSToCoordCeilClamped(double aValue) |
274 | 0 | { |
275 | 0 | #ifndef NS_COORD_IS_FLOAT |
276 | 0 | // Bounds-check before converting out of double, to avoid overflow |
277 | 0 | if (aValue >= nscoord_MAX) { |
278 | 0 | return nscoord_MAX; |
279 | 0 | } |
280 | 0 | if (aValue <= nscoord_MIN) { |
281 | 0 | return nscoord_MIN; |
282 | 0 | } |
283 | 0 | #endif |
284 | 0 | return NSToCoordCeil(aValue); |
285 | 0 | } |
286 | | |
287 | | // The NSToCoordTrunc* functions remove the fractional component of |
288 | | // aValue, and are thus equivalent to NSToCoordFloor* for positive |
289 | | // values and NSToCoordCeil* for negative values. |
290 | | |
291 | | inline nscoord NSToCoordTrunc(float aValue) |
292 | 0 | { |
293 | 0 | // There's no need to use truncf() since it matches the default |
294 | 0 | // rules for float to integer conversion. |
295 | 0 | return nscoord(aValue); |
296 | 0 | } |
297 | | |
298 | | inline nscoord NSToCoordTrunc(double aValue) |
299 | 0 | { |
300 | 0 | // There's no need to use trunc() since it matches the default |
301 | 0 | // rules for float to integer conversion. |
302 | 0 | return nscoord(aValue); |
303 | 0 | } |
304 | | |
305 | | inline nscoord NSToCoordTruncClamped(float aValue) |
306 | 0 | { |
307 | 0 | #ifndef NS_COORD_IS_FLOAT |
308 | 0 | // Bounds-check before converting out of float, to avoid overflow |
309 | 0 | if (aValue >= nscoord_MAX) { |
310 | 0 | return nscoord_MAX; |
311 | 0 | } |
312 | 0 | if (aValue <= nscoord_MIN) { |
313 | 0 | return nscoord_MIN; |
314 | 0 | } |
315 | 0 | #endif |
316 | 0 | return NSToCoordTrunc(aValue); |
317 | 0 | } |
318 | | |
319 | | inline nscoord NSToCoordTruncClamped(double aValue) |
320 | 0 | { |
321 | 0 | #ifndef NS_COORD_IS_FLOAT |
322 | 0 | // Bounds-check before converting out of double, to avoid overflow |
323 | 0 | if (aValue >= nscoord_MAX) { |
324 | 0 | return nscoord_MAX; |
325 | 0 | } |
326 | 0 | if (aValue <= nscoord_MIN) { |
327 | 0 | return nscoord_MIN; |
328 | 0 | } |
329 | 0 | #endif |
330 | 0 | return NSToCoordTrunc(aValue); |
331 | 0 | } |
332 | | |
333 | | /* |
334 | | * Int Rounding Functions |
335 | | */ |
336 | | inline int32_t NSToIntFloor(float aValue) |
337 | | { |
338 | | return int32_t(floorf(aValue)); |
339 | | } |
340 | | |
341 | | inline int32_t NSToIntCeil(float aValue) |
342 | | { |
343 | | return int32_t(ceilf(aValue)); |
344 | | } |
345 | | |
346 | | inline int32_t NSToIntRound(float aValue) |
347 | | { |
348 | | return NS_lroundf(aValue); |
349 | | } |
350 | | |
351 | | inline int32_t NSToIntRound(double aValue) |
352 | 0 | { |
353 | 0 | return NS_lround(aValue); |
354 | 0 | } |
355 | | |
356 | | inline int32_t NSToIntRoundUp(double aValue) |
357 | 0 | { |
358 | 0 | return int32_t(floor(aValue + 0.5)); |
359 | 0 | } |
360 | | |
361 | | /* |
362 | | * App Unit/Pixel conversions |
363 | | */ |
364 | | inline nscoord NSFloatPixelsToAppUnits(float aPixels, float aAppUnitsPerPixel) |
365 | 0 | { |
366 | 0 | return NSToCoordRoundWithClamp(aPixels * aAppUnitsPerPixel); |
367 | 0 | } |
368 | | |
369 | | inline nscoord NSIntPixelsToAppUnits(int32_t aPixels, int32_t aAppUnitsPerPixel) |
370 | | { |
371 | | // The cast to nscoord makes sure we don't overflow if we ever change |
372 | | // nscoord to float |
373 | | nscoord r = aPixels * (nscoord)aAppUnitsPerPixel; |
374 | | VERIFY_COORD(r); |
375 | | return r; |
376 | | } |
377 | | |
378 | | inline float NSAppUnitsToFloatPixels(nscoord aAppUnits, float aAppUnitsPerPixel) |
379 | | { |
380 | | return (float(aAppUnits) / aAppUnitsPerPixel); |
381 | | } |
382 | | |
383 | | inline double NSAppUnitsToDoublePixels(nscoord aAppUnits, double aAppUnitsPerPixel) |
384 | 0 | { |
385 | 0 | return (double(aAppUnits) / aAppUnitsPerPixel); |
386 | 0 | } |
387 | | |
388 | | inline int32_t NSAppUnitsToIntPixels(nscoord aAppUnits, float aAppUnitsPerPixel) |
389 | 0 | { |
390 | 0 | return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel); |
391 | 0 | } |
392 | | |
393 | | inline float NSCoordScale(nscoord aCoord, int32_t aFromAPP, int32_t aToAPP) |
394 | | { |
395 | | return (NSCoordToFloat(aCoord) * aToAPP) / aFromAPP; |
396 | | } |
397 | | |
398 | | /// handy constants |
399 | | #define TWIPS_PER_POINT_INT 20 |
400 | 0 | #define TWIPS_PER_POINT_FLOAT 20.0f |
401 | | #define POINTS_PER_INCH_INT 72 |
402 | 0 | #define POINTS_PER_INCH_FLOAT 72.0f |
403 | 0 | #define CM_PER_INCH_FLOAT 2.54f |
404 | 0 | #define MM_PER_INCH_FLOAT 25.4f |
405 | | |
406 | | /* |
407 | | * Twips/unit conversions |
408 | | */ |
409 | | inline float NSUnitsToTwips(float aValue, float aPointsPerUnit) |
410 | 0 | { |
411 | 0 | return aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT; |
412 | 0 | } |
413 | | |
414 | | inline float NSTwipsToUnits(float aTwips, float aUnitsPerPoint) |
415 | 0 | { |
416 | 0 | return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT)); |
417 | 0 | } |
418 | | |
419 | | /// Unit conversion macros |
420 | | //@{ |
421 | | #define NS_POINTS_TO_TWIPS(x) NSUnitsToTwips((x), 1.0f) |
422 | 0 | #define NS_INCHES_TO_TWIPS(x) NSUnitsToTwips((x), POINTS_PER_INCH_FLOAT) // 72 points per inch |
423 | | |
424 | 0 | #define NS_MILLIMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.03937f)) |
425 | | |
426 | | #define NS_POINTS_TO_INT_TWIPS(x) NSToIntRound(NS_POINTS_TO_TWIPS(x)) |
427 | 0 | #define NS_INCHES_TO_INT_TWIPS(x) NSToIntRound(NS_INCHES_TO_TWIPS(x)) |
428 | | |
429 | 0 | #define NS_TWIPS_TO_INCHES(x) NSTwipsToUnits((x), 1.0f / POINTS_PER_INCH_FLOAT) |
430 | | |
431 | | #define NS_TWIPS_TO_MILLIMETERS(x) NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.03937f)) |
432 | | //@} |
433 | | |
434 | | #endif /* NSCOORD_H */ |