Coverage Report

Created: 2018-09-25 14:53

/work/obj-fuzz/dist/include/nsMathUtils.h
Line
Count
Source (jump to first uncovered line)
1
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
3
/* This Source Code Form is subject to the terms of the Mozilla Public
4
 * License, v. 2.0. If a copy of the MPL was not distributed with this
5
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6
7
#ifndef nsMathUtils_h__
8
#define nsMathUtils_h__
9
10
#include "nscore.h"
11
#include <cmath>
12
#include <float.h>
13
14
#if defined(XP_SOLARIS)
15
#include <ieeefp.h>
16
#endif
17
18
/*
19
 * round
20
 */
21
inline double
22
NS_round(double aNum)
23
0
{
24
0
  return aNum >= 0.0 ? floor(aNum + 0.5) : ceil(aNum - 0.5);
25
0
}
26
inline float
27
NS_roundf(float aNum)
28
0
{
29
0
  return aNum >= 0.0f ? floorf(aNum + 0.5f) : ceilf(aNum - 0.5f);
30
0
}
31
inline int32_t
32
NS_lround(double aNum)
33
0
{
34
0
  return aNum >= 0.0 ? int32_t(aNum + 0.5) : int32_t(aNum - 0.5);
35
0
}
36
37
/* NS_roundup30 rounds towards infinity for positive and       */
38
/* negative numbers.                                           */
39
40
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__) && !defined(__clang__)
41
inline int32_t NS_lroundup30(float x)
42
{
43
  /* Code derived from Laurent de Soras' paper at             */
44
  /* http://ldesoras.free.fr/doc/articles/rounding_en.pdf     */
45
46
  /* Rounding up on Windows is expensive using the float to   */
47
  /* int conversion and the floor function. A faster          */
48
  /* approach is to use f87 rounding while assuming the       */
49
  /* default rounding mode of rounding to the nearest         */
50
  /* integer. This rounding mode, however, actually rounds    */
51
  /* to the nearest integer so we add the floating point      */
52
  /* number to itself and add our rounding factor before      */
53
  /* doing the conversion to an integer. We then do a right   */
54
  /* shift of one bit on the integer to divide by two.        */
55
56
  /* This routine doesn't handle numbers larger in magnitude  */
57
  /* than 2^30 but this is fine for NSToCoordRound because    */
58
  /* Coords are limited to 2^30 in magnitude.                 */
59
60
  static const double round_to_nearest = 0.5f;
61
  int i;
62
63
  __asm {
64
    fld     x                   ; load fp argument
65
    fadd    st, st(0)           ; double it
66
    fadd    round_to_nearest    ; add the rounding factor
67
    fistp   dword ptr i         ; convert the result to int
68
  }
69
  return i >> 1;                /* divide by 2 */
70
}
71
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
72
73
inline int32_t
74
NS_lroundf(float aNum)
75
0
{
76
0
  return aNum >= 0.0f ? int32_t(aNum + 0.5f) : int32_t(aNum - 0.5f);
77
0
}
78
79
/*
80
 * hypot.  We don't need a super accurate version of this, if a platform
81
 * turns up with none of the possibilities below it would be okay to fall
82
 * back to sqrt(x*x + y*y).
83
 */
84
inline double
85
NS_hypot(double aNum1, double aNum2)
86
0
{
87
0
#ifdef __GNUC__
88
0
  return __builtin_hypot(aNum1, aNum2);
89
#elif defined _WIN32
90
  return _hypot(aNum1, aNum2);
91
#else
92
  return hypot(aNum1, aNum2);
93
#endif
94
}
95
96
/**
97
 * Check whether a floating point number is finite (not +/-infinity and not a
98
 * NaN value).
99
 */
100
inline bool
101
NS_finite(double aNum)
102
0
{
103
0
#ifdef WIN32
104
0
  // NOTE: '!!' casts an int to bool without spamming MSVC warning C4800.
105
0
  return !!_finite(aNum);
106
0
#else
107
0
  return std::isfinite(aNum);
108
0
#endif
109
0
}
110
111
/**
112
 * Returns the result of the modulo of x by y using a floored division.
113
 * fmod(x, y) is using a truncated division.
114
 * The main difference is that the result of this method will have the sign of
115
 * y while the result of fmod(x, y) will have the sign of x.
116
 */
117
inline double
118
NS_floorModulo(double aNum1, double aNum2)
119
0
{
120
0
  return (aNum1 - aNum2 * floor(aNum1 / aNum2));
121
0
}
122
123
#endif