/src/flac/src/libFLAC/md5.c
Line | Count | Source (jump to first uncovered line) |
1 | | #ifdef HAVE_CONFIG_H |
2 | | # include <config.h> |
3 | | #endif |
4 | | |
5 | | #include <stdlib.h> /* for malloc() */ |
6 | | #include <string.h> /* for memcpy() */ |
7 | | |
8 | | #include "private/md5.h" |
9 | | #include "share/alloc.h" |
10 | | #include "share/compat.h" |
11 | | #include "share/endswap.h" |
12 | | |
13 | | /* |
14 | | * This code implements the MD5 message-digest algorithm. |
15 | | * The algorithm is due to Ron Rivest. This code was |
16 | | * written by Colin Plumb in 1993, no copyright is claimed. |
17 | | * This code is in the public domain; do with it what you wish. |
18 | | * |
19 | | * Equivalent code is available from RSA Data Security, Inc. |
20 | | * This code has been tested against that, and is equivalent, |
21 | | * except that you don't need to include two pages of legalese |
22 | | * with every copy. |
23 | | * |
24 | | * To compute the message digest of a chunk of bytes, declare an |
25 | | * MD5Context structure, pass it to MD5Init, call MD5Update as |
26 | | * needed on buffers full of bytes, and then call MD5Final, which |
27 | | * will fill a supplied 16-byte array with the digest. |
28 | | * |
29 | | * Changed so as no longer to depend on Colin Plumb's `usual.h' header |
30 | | * definitions; now uses stuff from dpkg's config.h. |
31 | | * - Ian Jackson <ijackson@nyx.cs.du.edu>. |
32 | | * Still in the public domain. |
33 | | * |
34 | | * Josh Coalson: made some changes to integrate with libFLAC. |
35 | | * Still in the public domain. |
36 | | */ |
37 | | |
38 | | /* The four core functions - F1 is optimized somewhat */ |
39 | | |
40 | | /* #define F1(x, y, z) (x & y | ~x & z) */ |
41 | 763k | #define F1(x, y, z) (z ^ (x & (y ^ z))) |
42 | 381k | #define F2(x, y, z) F1(z, x, y) |
43 | 381k | #define F3(x, y, z) (x ^ y ^ z) |
44 | 381k | #define F4(x, y, z) (y ^ (x | ~z)) |
45 | | |
46 | | /* This is the central step in the MD5 algorithm. */ |
47 | | #define MD5STEP(f,w,x,y,z,in,s) \ |
48 | 1.52M | (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x) |
49 | | |
50 | | /* |
51 | | * The core of the MD5 algorithm, this alters an existing MD5 hash to |
52 | | * reflect the addition of 16 longwords of new data. MD5Update blocks |
53 | | * the data and converts bytes into longwords for this routine. |
54 | | */ |
55 | | |
56 | | #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
57 | | /* This tremendously speeds up undefined behaviour fuzzing */ |
58 | | __attribute__((no_sanitize("unsigned-integer-overflow"))) |
59 | | #endif |
60 | | static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16]) |
61 | 23.8k | { |
62 | 23.8k | register FLAC__uint32 a, b, c, d; |
63 | | |
64 | 23.8k | a = buf[0]; |
65 | 23.8k | b = buf[1]; |
66 | 23.8k | c = buf[2]; |
67 | 23.8k | d = buf[3]; |
68 | | |
69 | 23.8k | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); |
70 | 23.8k | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); |
71 | 23.8k | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); |
72 | 23.8k | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); |
73 | 23.8k | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); |
74 | 23.8k | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); |
75 | 23.8k | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); |
76 | 23.8k | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); |
77 | 23.8k | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); |
78 | 23.8k | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); |
79 | 23.8k | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
80 | 23.8k | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
81 | 23.8k | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
82 | 23.8k | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
83 | 23.8k | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
84 | 23.8k | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
85 | | |
86 | 23.8k | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); |
87 | 23.8k | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); |
88 | 23.8k | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
89 | 23.8k | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); |
90 | 23.8k | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); |
91 | 23.8k | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
92 | 23.8k | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
93 | 23.8k | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); |
94 | 23.8k | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); |
95 | 23.8k | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
96 | 23.8k | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); |
97 | 23.8k | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); |
98 | 23.8k | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
99 | 23.8k | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); |
100 | 23.8k | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); |
101 | 23.8k | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
102 | | |
103 | 23.8k | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); |
104 | 23.8k | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); |
105 | 23.8k | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
106 | 23.8k | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
107 | 23.8k | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); |
108 | 23.8k | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); |
109 | 23.8k | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); |
110 | 23.8k | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
111 | 23.8k | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
112 | 23.8k | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); |
113 | 23.8k | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); |
114 | 23.8k | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); |
115 | 23.8k | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); |
116 | 23.8k | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
117 | 23.8k | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
118 | 23.8k | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); |
119 | | |
120 | 23.8k | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); |
121 | 23.8k | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); |
122 | 23.8k | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
123 | 23.8k | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); |
124 | 23.8k | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
125 | 23.8k | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); |
126 | 23.8k | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
127 | 23.8k | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); |
128 | 23.8k | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); |
129 | 23.8k | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
130 | 23.8k | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); |
131 | 23.8k | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
132 | 23.8k | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); |
133 | 23.8k | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
134 | 23.8k | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); |
135 | 23.8k | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); |
136 | | |
137 | 23.8k | buf[0] += a; |
138 | 23.8k | buf[1] += b; |
139 | 23.8k | buf[2] += c; |
140 | 23.8k | buf[3] += d; |
141 | 23.8k | } |
142 | | |
143 | | #if WORDS_BIGENDIAN |
144 | | //@@@@@@ OPT: use bswap/intrinsics |
145 | | static void byteSwap(FLAC__uint32 *buf, uint32_t words) |
146 | | { |
147 | | register FLAC__uint32 x; |
148 | | do { |
149 | | x = *buf; |
150 | | x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); |
151 | | *buf++ = (x >> 16) | (x << 16); |
152 | | } while (--words); |
153 | | } |
154 | | static void byteSwapX16(FLAC__uint32 *buf) |
155 | | { |
156 | | register FLAC__uint32 x; |
157 | | |
158 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
159 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
160 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
161 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
162 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
163 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
164 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
165 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
166 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
167 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
168 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
169 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
170 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
171 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
172 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16); |
173 | | x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16); |
174 | | } |
175 | | #else |
176 | | #define byteSwap(buf, words) |
177 | | #define byteSwapX16(buf) |
178 | | #endif |
179 | | |
180 | | /* |
181 | | * Update context to reflect the concatenation of another buffer full |
182 | | * of bytes. |
183 | | */ |
184 | | static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, uint32_t len) |
185 | 0 | { |
186 | 0 | FLAC__uint32 t; |
187 | | |
188 | | /* Update byte count */ |
189 | |
|
190 | 0 | t = ctx->bytes[0]; |
191 | 0 | if ((ctx->bytes[0] = t + len) < t) |
192 | 0 | ctx->bytes[1]++; /* Carry from low to high */ |
193 | |
|
194 | 0 | t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */ |
195 | 0 | if (t > len) { |
196 | 0 | memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len); |
197 | 0 | return; |
198 | 0 | } |
199 | | /* First chunk is an odd size */ |
200 | 0 | memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t); |
201 | 0 | byteSwapX16(ctx->in); |
202 | 0 | FLAC__MD5Transform(ctx->buf, ctx->in); |
203 | 0 | buf += t; |
204 | 0 | len -= t; |
205 | | |
206 | | /* Process data in 64-byte chunks */ |
207 | 0 | while (len >= 64) { |
208 | 0 | memcpy(ctx->in, buf, 64); |
209 | 0 | byteSwapX16(ctx->in); |
210 | 0 | FLAC__MD5Transform(ctx->buf, ctx->in); |
211 | 0 | buf += 64; |
212 | 0 | len -= 64; |
213 | 0 | } |
214 | | |
215 | | /* Handle any remaining bytes of data. */ |
216 | 0 | memcpy(ctx->in, buf, len); |
217 | 0 | } |
218 | | |
219 | | /* |
220 | | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
221 | | * initialization constants. |
222 | | */ |
223 | | void FLAC__MD5Init(FLAC__MD5Context *ctx) |
224 | 23.8k | { |
225 | 23.8k | ctx->buf[0] = 0x67452301; |
226 | 23.8k | ctx->buf[1] = 0xefcdab89; |
227 | 23.8k | ctx->buf[2] = 0x98badcfe; |
228 | 23.8k | ctx->buf[3] = 0x10325476; |
229 | | |
230 | 23.8k | ctx->bytes[0] = 0; |
231 | 23.8k | ctx->bytes[1] = 0; |
232 | | |
233 | 23.8k | ctx->internal_buf.p8 = 0; |
234 | 23.8k | ctx->capacity = 0; |
235 | 23.8k | } |
236 | | |
237 | | /* |
238 | | * Final wrapup - pad to 64-byte boundary with the bit pattern |
239 | | * 1 0* (64-bit count of bits processed, MSB-first) |
240 | | */ |
241 | | void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx) |
242 | 23.8k | { |
243 | 23.8k | int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */ |
244 | 23.8k | FLAC__byte *p = (FLAC__byte *)ctx->in + count; |
245 | | |
246 | | /* Set the first char of padding to 0x80. There is always room. */ |
247 | 23.8k | *p++ = 0x80; |
248 | | |
249 | | /* Bytes of padding needed to make 56 bytes (-8..55) */ |
250 | 23.8k | count = 56 - 1 - count; |
251 | | |
252 | 23.8k | if (count < 0) { /* Padding forces an extra block */ |
253 | 0 | memset(p, 0, count + 8); |
254 | 0 | byteSwapX16(ctx->in); |
255 | 0 | FLAC__MD5Transform(ctx->buf, ctx->in); |
256 | 0 | p = (FLAC__byte *)ctx->in; |
257 | 0 | count = 56; |
258 | 0 | } |
259 | 23.8k | memset(p, 0, count); |
260 | 23.8k | byteSwap(ctx->in, 14); |
261 | | |
262 | | /* Append length in bits and transform */ |
263 | 23.8k | ctx->in[14] = ctx->bytes[0] << 3; |
264 | 23.8k | ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29; |
265 | 23.8k | FLAC__MD5Transform(ctx->buf, ctx->in); |
266 | | |
267 | 23.8k | byteSwap(ctx->buf, 4); |
268 | 23.8k | memcpy(digest, ctx->buf, 16); |
269 | 23.8k | if (0 != ctx->internal_buf.p8) { |
270 | 0 | free(ctx->internal_buf.p8); |
271 | 0 | ctx->internal_buf.p8 = 0; |
272 | 0 | ctx->capacity = 0; |
273 | 0 | } |
274 | 23.8k | memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
275 | 23.8k | } |
276 | | |
277 | | /* |
278 | | * Convert the incoming audio signal to a byte stream |
279 | | */ |
280 | | static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample) |
281 | 0 | { |
282 | 0 | FLAC__byte *buf_ = mbuf->p8; |
283 | 0 | FLAC__int16 *buf16 = mbuf->p16; |
284 | 0 | FLAC__int32 *buf32 = mbuf->p32; |
285 | 0 | FLAC__int32 a_word; |
286 | 0 | uint32_t channel, sample; |
287 | | |
288 | | /* Storage in the output buffer, buf, is little endian. */ |
289 | |
|
290 | 0 | #define BYTES_CHANNEL_SELECTOR(bytes, channels) (bytes * 100 + channels) |
291 | | |
292 | | /* First do the most commonly used combinations. */ |
293 | 0 | switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) { |
294 | | /* One byte per sample. */ |
295 | 0 | case (BYTES_CHANNEL_SELECTOR (1, 1)): |
296 | 0 | for (sample = 0; sample < samples; sample++) |
297 | 0 | *buf_++ = signal[0][sample]; |
298 | 0 | return; |
299 | | |
300 | 0 | case (BYTES_CHANNEL_SELECTOR (1, 2)): |
301 | 0 | for (sample = 0; sample < samples; sample++) { |
302 | 0 | *buf_++ = signal[0][sample]; |
303 | 0 | *buf_++ = signal[1][sample]; |
304 | 0 | } |
305 | 0 | return; |
306 | | |
307 | 0 | case (BYTES_CHANNEL_SELECTOR (1, 4)): |
308 | 0 | for (sample = 0; sample < samples; sample++) { |
309 | 0 | *buf_++ = signal[0][sample]; |
310 | 0 | *buf_++ = signal[1][sample]; |
311 | 0 | *buf_++ = signal[2][sample]; |
312 | 0 | *buf_++ = signal[3][sample]; |
313 | 0 | } |
314 | 0 | return; |
315 | | |
316 | 0 | case (BYTES_CHANNEL_SELECTOR (1, 6)): |
317 | 0 | for (sample = 0; sample < samples; sample++) { |
318 | 0 | *buf_++ = signal[0][sample]; |
319 | 0 | *buf_++ = signal[1][sample]; |
320 | 0 | *buf_++ = signal[2][sample]; |
321 | 0 | *buf_++ = signal[3][sample]; |
322 | 0 | *buf_++ = signal[4][sample]; |
323 | 0 | *buf_++ = signal[5][sample]; |
324 | 0 | } |
325 | 0 | return; |
326 | | |
327 | 0 | case (BYTES_CHANNEL_SELECTOR (1, 8)): |
328 | 0 | for (sample = 0; sample < samples; sample++) { |
329 | 0 | *buf_++ = signal[0][sample]; |
330 | 0 | *buf_++ = signal[1][sample]; |
331 | 0 | *buf_++ = signal[2][sample]; |
332 | 0 | *buf_++ = signal[3][sample]; |
333 | 0 | *buf_++ = signal[4][sample]; |
334 | 0 | *buf_++ = signal[5][sample]; |
335 | 0 | *buf_++ = signal[6][sample]; |
336 | 0 | *buf_++ = signal[7][sample]; |
337 | 0 | } |
338 | 0 | return; |
339 | | |
340 | | /* Two bytes per sample. */ |
341 | 0 | case (BYTES_CHANNEL_SELECTOR (2, 1)): |
342 | 0 | for (sample = 0; sample < samples; sample++) |
343 | 0 | *buf16++ = H2LE_16(signal[0][sample]); |
344 | 0 | return; |
345 | | |
346 | 0 | case (BYTES_CHANNEL_SELECTOR (2, 2)): |
347 | 0 | for (sample = 0; sample < samples; sample++) { |
348 | 0 | *buf16++ = H2LE_16(signal[0][sample]); |
349 | 0 | *buf16++ = H2LE_16(signal[1][sample]); |
350 | 0 | } |
351 | 0 | return; |
352 | | |
353 | 0 | case (BYTES_CHANNEL_SELECTOR (2, 4)): |
354 | 0 | for (sample = 0; sample < samples; sample++) { |
355 | 0 | *buf16++ = H2LE_16(signal[0][sample]); |
356 | 0 | *buf16++ = H2LE_16(signal[1][sample]); |
357 | 0 | *buf16++ = H2LE_16(signal[2][sample]); |
358 | 0 | *buf16++ = H2LE_16(signal[3][sample]); |
359 | 0 | } |
360 | 0 | return; |
361 | | |
362 | 0 | case (BYTES_CHANNEL_SELECTOR (2, 6)): |
363 | 0 | for (sample = 0; sample < samples; sample++) { |
364 | 0 | *buf16++ = H2LE_16(signal[0][sample]); |
365 | 0 | *buf16++ = H2LE_16(signal[1][sample]); |
366 | 0 | *buf16++ = H2LE_16(signal[2][sample]); |
367 | 0 | *buf16++ = H2LE_16(signal[3][sample]); |
368 | 0 | *buf16++ = H2LE_16(signal[4][sample]); |
369 | 0 | *buf16++ = H2LE_16(signal[5][sample]); |
370 | 0 | } |
371 | 0 | return; |
372 | | |
373 | 0 | case (BYTES_CHANNEL_SELECTOR (2, 8)): |
374 | 0 | for (sample = 0; sample < samples; sample++) { |
375 | 0 | *buf16++ = H2LE_16(signal[0][sample]); |
376 | 0 | *buf16++ = H2LE_16(signal[1][sample]); |
377 | 0 | *buf16++ = H2LE_16(signal[2][sample]); |
378 | 0 | *buf16++ = H2LE_16(signal[3][sample]); |
379 | 0 | *buf16++ = H2LE_16(signal[4][sample]); |
380 | 0 | *buf16++ = H2LE_16(signal[5][sample]); |
381 | 0 | *buf16++ = H2LE_16(signal[6][sample]); |
382 | 0 | *buf16++ = H2LE_16(signal[7][sample]); |
383 | 0 | } |
384 | 0 | return; |
385 | | |
386 | | /* Three bytes per sample. */ |
387 | 0 | case (BYTES_CHANNEL_SELECTOR (3, 1)): |
388 | 0 | for (sample = 0; sample < samples; sample++) { |
389 | 0 | a_word = signal[0][sample]; |
390 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
391 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
392 | 0 | *buf_++ = (FLAC__byte)a_word; |
393 | 0 | } |
394 | 0 | return; |
395 | | |
396 | 0 | case (BYTES_CHANNEL_SELECTOR (3, 2)): |
397 | 0 | for (sample = 0; sample < samples; sample++) { |
398 | 0 | a_word = signal[0][sample]; |
399 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
400 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
401 | 0 | *buf_++ = (FLAC__byte)a_word; |
402 | 0 | a_word = signal[1][sample]; |
403 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
404 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
405 | 0 | *buf_++ = (FLAC__byte)a_word; |
406 | 0 | } |
407 | 0 | return; |
408 | | |
409 | | /* Four bytes per sample. */ |
410 | 0 | case (BYTES_CHANNEL_SELECTOR (4, 1)): |
411 | 0 | for (sample = 0; sample < samples; sample++) |
412 | 0 | *buf32++ = H2LE_32(signal[0][sample]); |
413 | 0 | return; |
414 | | |
415 | 0 | case (BYTES_CHANNEL_SELECTOR (4, 2)): |
416 | 0 | for (sample = 0; sample < samples; sample++) { |
417 | 0 | *buf32++ = H2LE_32(signal[0][sample]); |
418 | 0 | *buf32++ = H2LE_32(signal[1][sample]); |
419 | 0 | } |
420 | 0 | return; |
421 | | |
422 | 0 | case (BYTES_CHANNEL_SELECTOR (4, 4)): |
423 | 0 | for (sample = 0; sample < samples; sample++) { |
424 | 0 | *buf32++ = H2LE_32(signal[0][sample]); |
425 | 0 | *buf32++ = H2LE_32(signal[1][sample]); |
426 | 0 | *buf32++ = H2LE_32(signal[2][sample]); |
427 | 0 | *buf32++ = H2LE_32(signal[3][sample]); |
428 | 0 | } |
429 | 0 | return; |
430 | | |
431 | 0 | case (BYTES_CHANNEL_SELECTOR (4, 6)): |
432 | 0 | for (sample = 0; sample < samples; sample++) { |
433 | 0 | *buf32++ = H2LE_32(signal[0][sample]); |
434 | 0 | *buf32++ = H2LE_32(signal[1][sample]); |
435 | 0 | *buf32++ = H2LE_32(signal[2][sample]); |
436 | 0 | *buf32++ = H2LE_32(signal[3][sample]); |
437 | 0 | *buf32++ = H2LE_32(signal[4][sample]); |
438 | 0 | *buf32++ = H2LE_32(signal[5][sample]); |
439 | 0 | } |
440 | 0 | return; |
441 | | |
442 | 0 | case (BYTES_CHANNEL_SELECTOR (4, 8)): |
443 | 0 | for (sample = 0; sample < samples; sample++) { |
444 | 0 | *buf32++ = H2LE_32(signal[0][sample]); |
445 | 0 | *buf32++ = H2LE_32(signal[1][sample]); |
446 | 0 | *buf32++ = H2LE_32(signal[2][sample]); |
447 | 0 | *buf32++ = H2LE_32(signal[3][sample]); |
448 | 0 | *buf32++ = H2LE_32(signal[4][sample]); |
449 | 0 | *buf32++ = H2LE_32(signal[5][sample]); |
450 | 0 | *buf32++ = H2LE_32(signal[6][sample]); |
451 | 0 | *buf32++ = H2LE_32(signal[7][sample]); |
452 | 0 | } |
453 | 0 | return; |
454 | | |
455 | 0 | default: |
456 | 0 | break; |
457 | 0 | } |
458 | | |
459 | | /* General version. */ |
460 | 0 | switch (bytes_per_sample) { |
461 | 0 | case 1: |
462 | 0 | for (sample = 0; sample < samples; sample++) |
463 | 0 | for (channel = 0; channel < channels; channel++) |
464 | 0 | *buf_++ = signal[channel][sample]; |
465 | 0 | return; |
466 | | |
467 | 0 | case 2: |
468 | 0 | for (sample = 0; sample < samples; sample++) |
469 | 0 | for (channel = 0; channel < channels; channel++) |
470 | 0 | *buf16++ = H2LE_16(signal[channel][sample]); |
471 | 0 | return; |
472 | | |
473 | 0 | case 3: |
474 | 0 | for (sample = 0; sample < samples; sample++) |
475 | 0 | for (channel = 0; channel < channels; channel++) { |
476 | 0 | a_word = signal[channel][sample]; |
477 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
478 | 0 | *buf_++ = (FLAC__byte)a_word; a_word >>= 8; |
479 | 0 | *buf_++ = (FLAC__byte)a_word; |
480 | 0 | } |
481 | 0 | return; |
482 | | |
483 | 0 | case 4: |
484 | 0 | for (sample = 0; sample < samples; sample++) |
485 | 0 | for (channel = 0; channel < channels; channel++) |
486 | 0 | *buf32++ = H2LE_32(signal[channel][sample]); |
487 | 0 | return; |
488 | | |
489 | 0 | default: |
490 | 0 | break; |
491 | 0 | } |
492 | 0 | } |
493 | | |
494 | | /* |
495 | | * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it. |
496 | | */ |
497 | | FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample) |
498 | 0 | { |
499 | 0 | const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample; |
500 | | |
501 | | /* overflow check */ |
502 | 0 | if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample) |
503 | 0 | return false; |
504 | 0 | if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples) |
505 | 0 | return false; |
506 | | |
507 | 0 | if (ctx->capacity < bytes_needed) { |
508 | 0 | if (0 == (ctx->internal_buf.p8 = safe_realloc_(ctx->internal_buf.p8, bytes_needed))) { |
509 | 0 | if (0 == (ctx->internal_buf.p8 = safe_malloc_(bytes_needed))) { |
510 | 0 | ctx->capacity = 0; |
511 | 0 | return false; |
512 | 0 | } |
513 | 0 | } |
514 | 0 | ctx->capacity = bytes_needed; |
515 | 0 | } |
516 | | |
517 | 0 | format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample); |
518 | |
|
519 | 0 | FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed); |
520 | |
|
521 | 0 | return true; |
522 | 0 | } |