/src/flac/src/libFLAC/fixed.c
Line | Count | Source |
1 | | /* libFLAC - Free Lossless Audio Codec library |
2 | | * Copyright (C) 2000-2009 Josh Coalson |
3 | | * Copyright (C) 2011-2025 Xiph.Org Foundation |
4 | | * |
5 | | * Redistribution and use in source and binary forms, with or without |
6 | | * modification, are permitted provided that the following conditions |
7 | | * are met: |
8 | | * |
9 | | * - Redistributions of source code must retain the above copyright |
10 | | * notice, this list of conditions and the following disclaimer. |
11 | | * |
12 | | * - Redistributions in binary form must reproduce the above copyright |
13 | | * notice, this list of conditions and the following disclaimer in the |
14 | | * documentation and/or other materials provided with the distribution. |
15 | | * |
16 | | * - Neither the name of the Xiph.org Foundation nor the names of its |
17 | | * contributors may be used to endorse or promote products derived from |
18 | | * this software without specific prior written permission. |
19 | | * |
20 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
21 | | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
22 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
23 | | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
24 | | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
25 | | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
26 | | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
27 | | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
28 | | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
29 | | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
30 | | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
31 | | */ |
32 | | |
33 | | #ifdef HAVE_CONFIG_H |
34 | | # include <config.h> |
35 | | #endif |
36 | | |
37 | | #include <math.h> |
38 | | #include <string.h> |
39 | | #include "share/compat.h" |
40 | | #include "private/bitmath.h" |
41 | | #include "private/fixed.h" |
42 | | #include "private/macros.h" |
43 | | #include "FLAC/assert.h" |
44 | | |
45 | | #ifdef local_abs |
46 | | #undef local_abs |
47 | | #endif |
48 | 0 | #define local_abs(x) ((uint32_t)((x)<0? -(x) : (x))) |
49 | | |
50 | | #ifdef local_abs64 |
51 | | #undef local_abs64 |
52 | | #endif |
53 | 0 | #define local_abs64(x) ((uint64_t)((x)<0? -(x) : (x))) |
54 | | |
55 | | #ifdef FLAC__INTEGER_ONLY_LIBRARY |
56 | | /* rbps stands for residual bits per sample |
57 | | * |
58 | | * (ln(2) * err) |
59 | | * rbps = log (-----------) |
60 | | * 2 ( n ) |
61 | | */ |
62 | | static FLAC__fixedpoint local__compute_rbps_integerized(FLAC__uint32 err, FLAC__uint32 n) |
63 | | { |
64 | | FLAC__uint32 rbps; |
65 | | uint32_t bits; /* the number of bits required to represent a number */ |
66 | | int fracbits; /* the number of bits of rbps that comprise the fractional part */ |
67 | | |
68 | | FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint)); |
69 | | FLAC__ASSERT(err > 0); |
70 | | FLAC__ASSERT(n > 0); |
71 | | |
72 | | FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE); |
73 | | if(err <= n) |
74 | | return 0; |
75 | | /* |
76 | | * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1. |
77 | | * These allow us later to know we won't lose too much precision in the |
78 | | * fixed-point division (err<<fracbits)/n. |
79 | | */ |
80 | | |
81 | | fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2(err)+1); |
82 | | |
83 | | err <<= fracbits; |
84 | | err /= n; |
85 | | /* err now holds err/n with fracbits fractional bits */ |
86 | | |
87 | | /* |
88 | | * Whittle err down to 16 bits max. 16 significant bits is enough for |
89 | | * our purposes. |
90 | | */ |
91 | | FLAC__ASSERT(err > 0); |
92 | | bits = FLAC__bitmath_ilog2(err)+1; |
93 | | if(bits > 16) { |
94 | | err >>= (bits-16); |
95 | | fracbits -= (bits-16); |
96 | | } |
97 | | rbps = (FLAC__uint32)err; |
98 | | |
99 | | /* Multiply by fixed-point version of ln(2), with 16 fractional bits */ |
100 | | rbps *= FLAC__FP_LN2; |
101 | | fracbits += 16; |
102 | | FLAC__ASSERT(fracbits >= 0); |
103 | | |
104 | | /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */ |
105 | | { |
106 | | const int f = fracbits & 3; |
107 | | if(f) { |
108 | | rbps >>= f; |
109 | | fracbits -= f; |
110 | | } |
111 | | } |
112 | | |
113 | | rbps = FLAC__fixedpoint_log2(rbps, fracbits, (uint32_t)(-1)); |
114 | | |
115 | | if(rbps == 0) |
116 | | return 0; |
117 | | |
118 | | /* |
119 | | * The return value must have 16 fractional bits. Since the whole part |
120 | | * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits |
121 | | * must be >= -3, these assertion allows us to be able to shift rbps |
122 | | * left if necessary to get 16 fracbits without losing any bits of the |
123 | | * whole part of rbps. |
124 | | * |
125 | | * There is a slight chance due to accumulated error that the whole part |
126 | | * will require 6 bits, so we use 6 in the assertion. Really though as |
127 | | * long as it fits in 13 bits (32 - (16 - (-3))) we are fine. |
128 | | */ |
129 | | FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6); |
130 | | FLAC__ASSERT(fracbits >= -3); |
131 | | |
132 | | /* now shift the decimal point into place */ |
133 | | if(fracbits < 16) |
134 | | return rbps << (16-fracbits); |
135 | | else if(fracbits > 16) |
136 | | return rbps >> (fracbits-16); |
137 | | else |
138 | | return rbps; |
139 | | } |
140 | | |
141 | | static FLAC__fixedpoint local__compute_rbps_wide_integerized(FLAC__uint64 err, FLAC__uint32 n) |
142 | | { |
143 | | FLAC__uint32 rbps; |
144 | | uint32_t bits; /* the number of bits required to represent a number */ |
145 | | int fracbits; /* the number of bits of rbps that comprise the fractional part */ |
146 | | |
147 | | FLAC__ASSERT(sizeof(rbps) == sizeof(FLAC__fixedpoint)); |
148 | | FLAC__ASSERT(err > 0); |
149 | | FLAC__ASSERT(n > 0); |
150 | | |
151 | | FLAC__ASSERT(n <= FLAC__MAX_BLOCK_SIZE); |
152 | | if(err <= n) |
153 | | return 0; |
154 | | /* |
155 | | * The above two things tell us 1) n fits in 16 bits; 2) err/n > 1. |
156 | | * These allow us later to know we won't lose too much precision in the |
157 | | * fixed-point division (err<<fracbits)/n. |
158 | | */ |
159 | | |
160 | | fracbits = (8*sizeof(err)) - (FLAC__bitmath_ilog2_wide(err)+1); |
161 | | |
162 | | err <<= fracbits; |
163 | | err /= n; |
164 | | /* err now holds err/n with fracbits fractional bits */ |
165 | | |
166 | | /* |
167 | | * Whittle err down to 16 bits max. 16 significant bits is enough for |
168 | | * our purposes. |
169 | | */ |
170 | | FLAC__ASSERT(err > 0); |
171 | | bits = FLAC__bitmath_ilog2_wide(err)+1; |
172 | | if(bits > 16) { |
173 | | err >>= (bits-16); |
174 | | fracbits -= (bits-16); |
175 | | } |
176 | | rbps = (FLAC__uint32)err; |
177 | | |
178 | | /* Multiply by fixed-point version of ln(2), with 16 fractional bits */ |
179 | | rbps *= FLAC__FP_LN2; |
180 | | fracbits += 16; |
181 | | FLAC__ASSERT(fracbits >= 0); |
182 | | |
183 | | /* FLAC__fixedpoint_log2 requires fracbits%4 to be 0 */ |
184 | | { |
185 | | const int f = fracbits & 3; |
186 | | if(f) { |
187 | | rbps >>= f; |
188 | | fracbits -= f; |
189 | | } |
190 | | } |
191 | | |
192 | | rbps = FLAC__fixedpoint_log2(rbps, fracbits, (uint32_t)(-1)); |
193 | | |
194 | | if(rbps == 0) |
195 | | return 0; |
196 | | |
197 | | /* |
198 | | * The return value must have 16 fractional bits. Since the whole part |
199 | | * of the base-2 log of a 32 bit number must fit in 5 bits, and fracbits |
200 | | * must be >= -3, these assertion allows us to be able to shift rbps |
201 | | * left if necessary to get 16 fracbits without losing any bits of the |
202 | | * whole part of rbps. |
203 | | * |
204 | | * There is a slight chance due to accumulated error that the whole part |
205 | | * will require 6 bits, so we use 6 in the assertion. Really though as |
206 | | * long as it fits in 13 bits (32 - (16 - (-3))) we are fine. |
207 | | */ |
208 | | FLAC__ASSERT((int)FLAC__bitmath_ilog2(rbps)+1 <= fracbits + 6); |
209 | | FLAC__ASSERT(fracbits >= -3); |
210 | | |
211 | | /* now shift the decimal point into place */ |
212 | | if(fracbits < 16) |
213 | | return rbps << (16-fracbits); |
214 | | else if(fracbits > 16) |
215 | | return rbps >> (fracbits-16); |
216 | | else |
217 | | return rbps; |
218 | | } |
219 | | #endif |
220 | | |
221 | | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
222 | | uint32_t FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
223 | | #else |
224 | | uint32_t FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
225 | | #endif |
226 | 0 | { |
227 | 0 | FLAC__uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; |
228 | 0 | uint32_t order; |
229 | | #if 0 |
230 | | /* This code has been around a long time, and was written when compilers weren't able |
231 | | * to vectorize code. These days, compilers are better in optimizing the next block |
232 | | * which is also much more readable |
233 | | */ |
234 | | FLAC__int32 last_error_0 = data[-1]; |
235 | | FLAC__int32 last_error_1 = data[-1] - data[-2]; |
236 | | FLAC__int32 last_error_2 = last_error_1 - (data[-2] - data[-3]); |
237 | | FLAC__int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]); |
238 | | FLAC__int32 error, save; |
239 | | uint32_t i; |
240 | | /* total_error_* are 64-bits to avoid overflow when encoding |
241 | | * erratic signals when the bits-per-sample and blocksize are |
242 | | * large. |
243 | | */ |
244 | | for(i = 0; i < data_len; i++) { |
245 | | error = data[i] ; total_error_0 += local_abs(error); save = error; |
246 | | error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; |
247 | | error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; |
248 | | error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; |
249 | | error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; |
250 | | } |
251 | | #else |
252 | 0 | int i; |
253 | 0 | for(i = 0; i < (int)data_len; i++) { |
254 | 0 | total_error_0 += local_abs(data[i]); |
255 | 0 | total_error_1 += local_abs(data[i] - data[i-1]); |
256 | 0 | total_error_2 += local_abs(data[i] - 2 * data[i-1] + data[i-2]); |
257 | 0 | total_error_3 += local_abs(data[i] - 3 * data[i-1] + 3 * data[i-2] - data[i-3]); |
258 | 0 | total_error_4 += local_abs(data[i] - 4 * data[i-1] + 6 * data[i-2] - 4 * data[i-3] + data[i-4]); |
259 | 0 | } |
260 | 0 | #endif |
261 | | |
262 | | |
263 | | /* prefer lower order */ |
264 | 0 | if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) |
265 | 0 | order = 0; |
266 | 0 | else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4)) |
267 | 0 | order = 1; |
268 | 0 | else if(total_error_2 <= flac_min(total_error_3, total_error_4)) |
269 | 0 | order = 2; |
270 | 0 | else if(total_error_3 <= total_error_4) |
271 | 0 | order = 3; |
272 | 0 | else |
273 | 0 | order = 4; |
274 | | |
275 | | /* Estimate the expected number of bits per residual signal sample. */ |
276 | | /* 'total_error*' is linearly related to the variance of the residual */ |
277 | | /* signal, so we use it directly to compute E(|x|) */ |
278 | 0 | FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
279 | 0 | FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
280 | 0 | FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
281 | 0 | FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
282 | 0 | FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
283 | 0 | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
284 | 0 | residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); |
285 | 0 | residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); |
286 | 0 | residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); |
287 | 0 | residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); |
288 | 0 | residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); |
289 | | #else |
290 | | residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_integerized(total_error_0, data_len) : 0; |
291 | | residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_integerized(total_error_1, data_len) : 0; |
292 | | residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_integerized(total_error_2, data_len) : 0; |
293 | | residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_integerized(total_error_3, data_len) : 0; |
294 | | residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_integerized(total_error_4, data_len) : 0; |
295 | | #endif |
296 | |
|
297 | 0 | return order; |
298 | 0 | } |
299 | | |
300 | | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
301 | | uint32_t FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
302 | | #else |
303 | | uint32_t FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
304 | | #endif |
305 | 0 | { |
306 | 0 | FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0; |
307 | 0 | uint32_t order; |
308 | 0 | int i; |
309 | |
|
310 | 0 | for(i = 0; i < (int)data_len; i++) { |
311 | 0 | total_error_0 += local_abs(data[i]); |
312 | 0 | total_error_1 += local_abs(data[i] - data[i-1]); |
313 | 0 | total_error_2 += local_abs(data[i] - 2 * data[i-1] + data[i-2]); |
314 | 0 | total_error_3 += local_abs(data[i] - 3 * data[i-1] + 3 * data[i-2] - data[i-3]); |
315 | 0 | total_error_4 += local_abs(data[i] - 4 * data[i-1] + 6 * data[i-2] - 4 * data[i-3] + data[i-4]); |
316 | 0 | } |
317 | | |
318 | | /* prefer lower order */ |
319 | 0 | if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) |
320 | 0 | order = 0; |
321 | 0 | else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4)) |
322 | 0 | order = 1; |
323 | 0 | else if(total_error_2 <= flac_min(total_error_3, total_error_4)) |
324 | 0 | order = 2; |
325 | 0 | else if(total_error_3 <= total_error_4) |
326 | 0 | order = 3; |
327 | 0 | else |
328 | 0 | order = 4; |
329 | | |
330 | | /* Estimate the expected number of bits per residual signal sample. */ |
331 | | /* 'total_error*' is linearly related to the variance of the residual */ |
332 | | /* signal, so we use it directly to compute E(|x|) */ |
333 | 0 | FLAC__ASSERT(data_len > 0 || total_error_0 == 0); |
334 | 0 | FLAC__ASSERT(data_len > 0 || total_error_1 == 0); |
335 | 0 | FLAC__ASSERT(data_len > 0 || total_error_2 == 0); |
336 | 0 | FLAC__ASSERT(data_len > 0 || total_error_3 == 0); |
337 | 0 | FLAC__ASSERT(data_len > 0 || total_error_4 == 0); |
338 | 0 | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
339 | 0 | residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); |
340 | 0 | residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); |
341 | 0 | residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); |
342 | 0 | residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); |
343 | 0 | residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); |
344 | | #else |
345 | | residual_bits_per_sample[0] = (total_error_0 > 0) ? local__compute_rbps_wide_integerized(total_error_0, data_len) : 0; |
346 | | residual_bits_per_sample[1] = (total_error_1 > 0) ? local__compute_rbps_wide_integerized(total_error_1, data_len) : 0; |
347 | | residual_bits_per_sample[2] = (total_error_2 > 0) ? local__compute_rbps_wide_integerized(total_error_2, data_len) : 0; |
348 | | residual_bits_per_sample[3] = (total_error_3 > 0) ? local__compute_rbps_wide_integerized(total_error_3, data_len) : 0; |
349 | | residual_bits_per_sample[4] = (total_error_4 > 0) ? local__compute_rbps_wide_integerized(total_error_4, data_len) : 0; |
350 | | #endif |
351 | |
|
352 | 0 | return order; |
353 | 0 | } |
354 | | |
355 | | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
356 | 0 | #define CHECK_ORDER_IS_VALID(macro_order) \ |
357 | 0 | if(order_##macro_order##_is_valid && total_error_##macro_order < smallest_error) { \ |
358 | 0 | order = macro_order; \ |
359 | 0 | smallest_error = total_error_##macro_order ; \ |
360 | 0 | residual_bits_per_sample[ macro_order ] = (float)((total_error_##macro_order > 0) ? log(M_LN2 * (double)total_error_##macro_order / (double)data_len) / M_LN2 : 0.0); \ |
361 | 0 | } \ |
362 | 0 | else \ |
363 | 0 | residual_bits_per_sample[ macro_order ] = 34.0f; |
364 | | #else |
365 | | #define CHECK_ORDER_IS_VALID(macro_order) \ |
366 | | if(order_##macro_order##_is_valid && total_error_##macro_order < smallest_error) { \ |
367 | | order = macro_order; \ |
368 | | smallest_error = total_error_##macro_order ; \ |
369 | | residual_bits_per_sample[ macro_order ] = (total_error_##macro_order > 0) ? local__compute_rbps_wide_integerized(total_error_##macro_order, data_len) : 0; \ |
370 | | } \ |
371 | | else \ |
372 | | residual_bits_per_sample[ macro_order ] = 34 * FLAC__FP_ONE; |
373 | | #endif |
374 | | |
375 | | |
376 | | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
377 | | uint32_t FLAC__fixed_compute_best_predictor_limit_residual(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
378 | | #else |
379 | | uint32_t FLAC__fixed_compute_best_predictor_limit_residual(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
380 | | #endif |
381 | 0 | { |
382 | 0 | FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0, smallest_error = UINT64_MAX; |
383 | 0 | FLAC__uint64 error_0, error_1, error_2, error_3, error_4; |
384 | 0 | FLAC__bool order_0_is_valid = true, order_1_is_valid = true, order_2_is_valid = true, order_3_is_valid = true, order_4_is_valid = true; |
385 | 0 | uint32_t order = 0; |
386 | 0 | int i; |
387 | |
|
388 | 0 | for(i = -4; i < (int)data_len; i++) { |
389 | 0 | error_0 = local_abs64((FLAC__int64)data[i]); |
390 | 0 | error_1 = (i > -4) ? local_abs64((FLAC__int64)data[i] - data[i-1]) : 0 ; |
391 | 0 | error_2 = (i > -3) ? local_abs64((FLAC__int64)data[i] - 2 * (FLAC__int64)data[i-1] + data[i-2]) : 0; |
392 | 0 | error_3 = (i > -2) ? local_abs64((FLAC__int64)data[i] - 3 * (FLAC__int64)data[i-1] + 3 * (FLAC__int64)data[i-2] - data[i-3]) : 0; |
393 | 0 | error_4 = (i > -1) ? local_abs64((FLAC__int64)data[i] - 4 * (FLAC__int64)data[i-1] + 6 * (FLAC__int64)data[i-2] - 4 * (FLAC__int64)data[i-3] + data[i-4]) : 0; |
394 | |
|
395 | 0 | total_error_0 += error_0; |
396 | 0 | total_error_1 += error_1; |
397 | 0 | total_error_2 += error_2; |
398 | 0 | total_error_3 += error_3; |
399 | 0 | total_error_4 += error_4; |
400 | | |
401 | | /* residual must not be INT32_MIN because abs(INT32_MIN) is undefined */ |
402 | 0 | if(error_0 > INT32_MAX) |
403 | 0 | order_0_is_valid = false; |
404 | 0 | if(error_1 > INT32_MAX) |
405 | 0 | order_1_is_valid = false; |
406 | 0 | if(error_2 > INT32_MAX) |
407 | 0 | order_2_is_valid = false; |
408 | 0 | if(error_3 > INT32_MAX) |
409 | 0 | order_3_is_valid = false; |
410 | 0 | if(error_4 > INT32_MAX) |
411 | 0 | order_4_is_valid = false; |
412 | 0 | } |
413 | |
|
414 | 0 | CHECK_ORDER_IS_VALID(0); |
415 | 0 | CHECK_ORDER_IS_VALID(1); |
416 | 0 | CHECK_ORDER_IS_VALID(2); |
417 | 0 | CHECK_ORDER_IS_VALID(3); |
418 | 0 | CHECK_ORDER_IS_VALID(4); |
419 | |
|
420 | 0 | return order; |
421 | 0 | } |
422 | | |
423 | | #ifndef FLAC__INTEGER_ONLY_LIBRARY |
424 | | uint32_t FLAC__fixed_compute_best_predictor_limit_residual_33bit(const FLAC__int64 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
425 | | #else |
426 | | uint32_t FLAC__fixed_compute_best_predictor_limit_residual_33bit(const FLAC__int64 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]) |
427 | | #endif |
428 | 0 | { |
429 | 0 | FLAC__uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0, smallest_error = UINT64_MAX; |
430 | 0 | FLAC__uint64 error_0, error_1, error_2, error_3, error_4; |
431 | 0 | FLAC__bool order_0_is_valid = true, order_1_is_valid = true, order_2_is_valid = true, order_3_is_valid = true, order_4_is_valid = true; |
432 | 0 | uint32_t order = 0; |
433 | 0 | int i; |
434 | |
|
435 | 0 | for(i = -4; i < (int)data_len; i++) { |
436 | 0 | error_0 = local_abs64(data[i]); |
437 | 0 | error_1 = (i > -4) ? local_abs64(data[i] - data[i-1]) : 0 ; |
438 | 0 | error_2 = (i > -3) ? local_abs64(data[i] - 2 * data[i-1] + data[i-2]) : 0; |
439 | 0 | error_3 = (i > -2) ? local_abs64(data[i] - 3 * data[i-1] + 3 * data[i-2] - data[i-3]) : 0; |
440 | 0 | error_4 = (i > -1) ? local_abs64(data[i] - 4 * data[i-1] + 6 * data[i-2] - 4 * data[i-3] + data[i-4]) : 0; |
441 | |
|
442 | 0 | total_error_0 += error_0; |
443 | 0 | total_error_1 += error_1; |
444 | 0 | total_error_2 += error_2; |
445 | 0 | total_error_3 += error_3; |
446 | 0 | total_error_4 += error_4; |
447 | | |
448 | | /* residual must not be INT32_MIN because abs(INT32_MIN) is undefined */ |
449 | 0 | if(error_0 > INT32_MAX) |
450 | 0 | order_0_is_valid = false; |
451 | 0 | if(error_1 > INT32_MAX) |
452 | 0 | order_1_is_valid = false; |
453 | 0 | if(error_2 > INT32_MAX) |
454 | 0 | order_2_is_valid = false; |
455 | 0 | if(error_3 > INT32_MAX) |
456 | 0 | order_3_is_valid = false; |
457 | 0 | if(error_4 > INT32_MAX) |
458 | 0 | order_4_is_valid = false; |
459 | 0 | } |
460 | |
|
461 | 0 | CHECK_ORDER_IS_VALID(0); |
462 | 0 | CHECK_ORDER_IS_VALID(1); |
463 | 0 | CHECK_ORDER_IS_VALID(2); |
464 | 0 | CHECK_ORDER_IS_VALID(3); |
465 | 0 | CHECK_ORDER_IS_VALID(4); |
466 | |
|
467 | 0 | return order; |
468 | 0 | } |
469 | | |
470 | | void FLAC__fixed_compute_residual(const FLAC__int32 data[], uint32_t data_len, uint32_t order, FLAC__int32 residual[]) |
471 | 0 | { |
472 | 0 | const int idata_len = (int)data_len; |
473 | 0 | int i; |
474 | |
|
475 | 0 | switch(order) { |
476 | 0 | case 0: |
477 | 0 | FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); |
478 | 0 | memcpy(residual, data, sizeof(residual[0])*data_len); |
479 | 0 | break; |
480 | 0 | case 1: |
481 | 0 | for(i = 0; i < idata_len; i++) |
482 | 0 | residual[i] = data[i] - data[i-1]; |
483 | 0 | break; |
484 | 0 | case 2: |
485 | 0 | for(i = 0; i < idata_len; i++) |
486 | 0 | residual[i] = data[i] - 2*data[i-1] + data[i-2]; |
487 | 0 | break; |
488 | 0 | case 3: |
489 | 0 | for(i = 0; i < idata_len; i++) |
490 | 0 | residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3]; |
491 | 0 | break; |
492 | 0 | case 4: |
493 | 0 | for(i = 0; i < idata_len; i++) |
494 | 0 | residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4]; |
495 | 0 | break; |
496 | 0 | default: |
497 | 0 | FLAC__ASSERT(0); |
498 | 0 | } |
499 | 0 | } |
500 | | |
501 | | void FLAC__fixed_compute_residual_wide(const FLAC__int32 data[], uint32_t data_len, uint32_t order, FLAC__int32 residual[]) |
502 | 0 | { |
503 | 0 | const int idata_len = (int)data_len; |
504 | 0 | int i; |
505 | |
|
506 | 0 | switch(order) { |
507 | 0 | case 0: |
508 | 0 | FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); |
509 | 0 | memcpy(residual, data, sizeof(residual[0])*data_len); |
510 | 0 | break; |
511 | 0 | case 1: |
512 | 0 | for(i = 0; i < idata_len; i++) |
513 | 0 | residual[i] = (FLAC__int64)data[i] - data[i-1]; |
514 | 0 | break; |
515 | 0 | case 2: |
516 | 0 | for(i = 0; i < idata_len; i++) |
517 | 0 | residual[i] = (FLAC__int64)data[i] - 2*(FLAC__int64)data[i-1] + data[i-2]; |
518 | 0 | break; |
519 | 0 | case 3: |
520 | 0 | for(i = 0; i < idata_len; i++) |
521 | 0 | residual[i] = (FLAC__int64)data[i] - 3*(FLAC__int64)data[i-1] + 3*(FLAC__int64)data[i-2] - data[i-3]; |
522 | 0 | break; |
523 | 0 | case 4: |
524 | 0 | for(i = 0; i < idata_len; i++) |
525 | 0 | residual[i] = (FLAC__int64)data[i] - 4*(FLAC__int64)data[i-1] + 6*(FLAC__int64)data[i-2] - 4*(FLAC__int64)data[i-3] + data[i-4]; |
526 | 0 | break; |
527 | 0 | default: |
528 | 0 | FLAC__ASSERT(0); |
529 | 0 | } |
530 | 0 | } |
531 | | |
532 | | void FLAC__fixed_compute_residual_wide_33bit(const FLAC__int64 data[], uint32_t data_len, uint32_t order, FLAC__int32 residual[]) |
533 | 0 | { |
534 | 0 | const int idata_len = (int)data_len; |
535 | 0 | int i; |
536 | |
|
537 | 0 | switch(order) { |
538 | 0 | case 0: |
539 | 0 | for(i = 0; i < idata_len; i++) |
540 | 0 | residual[i] = data[i]; |
541 | 0 | break; |
542 | 0 | case 1: |
543 | 0 | for(i = 0; i < idata_len; i++) |
544 | 0 | residual[i] = data[i] - data[i-1]; |
545 | 0 | break; |
546 | 0 | case 2: |
547 | 0 | for(i = 0; i < idata_len; i++) |
548 | 0 | residual[i] = data[i] - 2*data[i-1] + data[i-2]; |
549 | 0 | break; |
550 | 0 | case 3: |
551 | 0 | for(i = 0; i < idata_len; i++) |
552 | 0 | residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3]; |
553 | 0 | break; |
554 | 0 | case 4: |
555 | 0 | for(i = 0; i < idata_len; i++) |
556 | 0 | residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4]; |
557 | 0 | break; |
558 | 0 | default: |
559 | 0 | FLAC__ASSERT(0); |
560 | 0 | } |
561 | 0 | } |
562 | | |
563 | | #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && !defined(FUZZING_BUILD_MODE_FLAC_SANITIZE_SIGNED_INTEGER_OVERFLOW) |
564 | | /* The attribute below is to silence the undefined sanitizer of oss-fuzz. |
565 | | * Because fuzzing feeds bogus predictors and residual samples to the |
566 | | * decoder, having overflows in this section is unavoidable. Also, |
567 | | * because the calculated values are audio path only, there is no |
568 | | * potential for security problems */ |
569 | | __attribute__((no_sanitize("signed-integer-overflow"))) |
570 | | #endif |
571 | | void FLAC__fixed_restore_signal(const FLAC__int32 residual[], uint32_t data_len, uint32_t order, FLAC__int32 data[]) |
572 | 7.24k | { |
573 | 7.24k | int i, idata_len = (int)data_len; |
574 | | |
575 | 7.24k | switch(order) { |
576 | 731 | case 0: |
577 | 731 | FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); |
578 | 731 | memcpy(data, residual, sizeof(residual[0])*data_len); |
579 | 731 | break; |
580 | 873 | case 1: |
581 | 4.37M | for(i = 0; i < idata_len; i++) |
582 | 4.37M | data[i] = residual[i] + data[i-1]; |
583 | 873 | break; |
584 | 1.04k | case 2: |
585 | 253k | for(i = 0; i < idata_len; i++) |
586 | 252k | data[i] = residual[i] + 2*data[i-1] - data[i-2]; |
587 | 1.04k | break; |
588 | 1.85k | case 3: |
589 | 441k | for(i = 0; i < idata_len; i++) |
590 | 439k | data[i] = residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3]; |
591 | 1.85k | break; |
592 | 2.74k | case 4: |
593 | 314k | for(i = 0; i < idata_len; i++) |
594 | 312k | data[i] = residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4]; |
595 | 2.74k | break; |
596 | 0 | default: |
597 | 0 | FLAC__ASSERT(0); |
598 | 7.24k | } |
599 | 7.24k | } |
600 | | |
601 | | void FLAC__fixed_restore_signal_wide(const FLAC__int32 residual[], uint32_t data_len, uint32_t order, FLAC__int32 data[]) |
602 | 4.26k | { |
603 | 4.26k | int i, idata_len = (int)data_len; |
604 | | |
605 | 4.26k | switch(order) { |
606 | 0 | case 0: |
607 | 0 | FLAC__ASSERT(sizeof(residual[0]) == sizeof(data[0])); |
608 | 0 | memcpy(data, residual, sizeof(residual[0])*data_len); |
609 | 0 | break; |
610 | 716 | case 1: |
611 | 179k | for(i = 0; i < idata_len; i++) |
612 | 179k | data[i] = (FLAC__int64)residual[i] + (FLAC__int64)data[i-1]; |
613 | 716 | break; |
614 | 464 | case 2: |
615 | 1.27M | for(i = 0; i < idata_len; i++) |
616 | 1.27M | data[i] = (FLAC__int64)residual[i] + 2*(FLAC__int64)data[i-1] - (FLAC__int64)data[i-2]; |
617 | 464 | break; |
618 | 2.31k | case 3: |
619 | 477k | for(i = 0; i < idata_len; i++) |
620 | 475k | data[i] = (FLAC__int64)residual[i] + 3*(FLAC__int64)data[i-1] - 3*(FLAC__int64)data[i-2] + (FLAC__int64)data[i-3]; |
621 | 2.31k | break; |
622 | 770 | case 4: |
623 | 3.97M | for(i = 0; i < idata_len; i++) |
624 | 3.97M | data[i] = (FLAC__int64)residual[i] + 4*(FLAC__int64)data[i-1] - 6*(FLAC__int64)data[i-2] + 4*(FLAC__int64)data[i-3] - (FLAC__int64)data[i-4]; |
625 | 770 | break; |
626 | 0 | default: |
627 | 0 | FLAC__ASSERT(0); |
628 | 4.26k | } |
629 | 4.26k | } |
630 | | |
631 | | #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && !defined(FUZZING_BUILD_MODE_FLAC_SANITIZE_SIGNED_INTEGER_OVERFLOW) |
632 | | /* The attribute below is to silence the undefined sanitizer of oss-fuzz. |
633 | | * Because fuzzing feeds bogus predictors and residual samples to the |
634 | | * decoder, having overflows in this section is unavoidable. Also, |
635 | | * because the calculated values are audio path only, there is no |
636 | | * potential for security problems */ |
637 | | __attribute__((no_sanitize("signed-integer-overflow"))) |
638 | | #endif |
639 | | void FLAC__fixed_restore_signal_wide_33bit(const FLAC__int32 residual[], uint32_t data_len, uint32_t order, FLAC__int64 data[]) |
640 | 1.50k | { |
641 | 1.50k | int i, idata_len = (int)data_len; |
642 | | |
643 | 1.50k | switch(order) { |
644 | 531 | case 0: |
645 | 830k | for(i = 0; i < idata_len; i++) |
646 | 829k | data[i] = residual[i]; |
647 | 531 | break; |
648 | 257 | case 1: |
649 | 284k | for(i = 0; i < idata_len; i++) |
650 | 284k | data[i] = (FLAC__int64)residual[i] + data[i-1]; |
651 | 257 | break; |
652 | 216 | case 2: |
653 | 476k | for(i = 0; i < idata_len; i++) |
654 | 475k | data[i] = (FLAC__int64)residual[i] + 2*data[i-1] - data[i-2]; |
655 | 216 | break; |
656 | 174 | case 3: |
657 | 19.2k | for(i = 0; i < idata_len; i++) |
658 | 19.0k | data[i] = (FLAC__int64)residual[i] + 3*data[i-1] - 3*data[i-2] + data[i-3]; |
659 | 174 | break; |
660 | 325 | case 4: |
661 | 99.0k | for(i = 0; i < idata_len; i++) |
662 | 98.7k | data[i] = (FLAC__int64)residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4]; |
663 | 325 | break; |
664 | 0 | default: |
665 | 0 | FLAC__ASSERT(0); |
666 | 1.50k | } |
667 | 1.50k | } |