/src/fluent-bit/lib/librdkafka-2.4.0/src/rdxxhash.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * xxHash - Fast Hash algorithm |
3 | | * Copyright (C) 2012-2016, Yann Collet |
4 | | * |
5 | | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
6 | | * |
7 | | * Redistribution and use in source and binary forms, with or without |
8 | | * modification, are permitted provided that the following conditions are |
9 | | * met: |
10 | | * |
11 | | * * Redistributions of source code must retain the above copyright |
12 | | * notice, this list of conditions and the following disclaimer. |
13 | | * * Redistributions in binary form must reproduce the above |
14 | | * copyright notice, this list of conditions and the following disclaimer |
15 | | * in the documentation and/or other materials provided with the |
16 | | * distribution. |
17 | | * |
18 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | | * |
30 | | * You can contact the author at : |
31 | | * - xxHash homepage: http://www.xxhash.com |
32 | | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
33 | | */ |
34 | | |
35 | | |
36 | | /* ************************************* |
37 | | * Tuning parameters |
38 | | ***************************************/ |
39 | | /*!XXH_FORCE_MEMORY_ACCESS : |
40 | | * By default, access to unaligned memory is controlled by `memcpy()`, which is |
41 | | * safe and portable. Unfortunately, on some target/compiler combinations, the |
42 | | * generated assembly is sub-optimal. The below switch allow to select different |
43 | | * access method for improved performance. Method 0 (default) : use `memcpy()`. |
44 | | * Safe and portable. Method 1 : `__packed` statement. It depends on compiler |
45 | | * extension (ie, not portable). This method is safe if your compiler supports |
46 | | * it, and *generally* as fast or faster than `memcpy`. Method 2 : direct |
47 | | * access. This method doesn't depend on compiler but violate C standard. It can |
48 | | * generate buggy code on targets which do not support unaligned memory |
49 | | * accesses. But in some circumstances, it's the only known way to get the most |
50 | | * performance (ie GCC + ARMv6) See http://stackoverflow.com/a/32095106/646947 |
51 | | * for details. Prefer these methods in priority order (0 > 1 > 2) |
52 | | */ |
53 | | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line \ |
54 | | for example */ |
55 | | #if defined(__GNUC__) && \ |
56 | | (defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ |
57 | | defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \ |
58 | | defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__)) |
59 | | #define XXH_FORCE_MEMORY_ACCESS 2 |
60 | | #elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) || \ |
61 | | (defined(__GNUC__) && \ |
62 | | (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ |
63 | | defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \ |
64 | | defined(__ARM_ARCH_7S__))) |
65 | | #define XXH_FORCE_MEMORY_ACCESS 1 |
66 | | #endif |
67 | | #endif |
68 | | |
69 | | /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
70 | | * If input pointer is NULL, xxHash default behavior is to dereference it, |
71 | | * triggering a segfault. When this macro is enabled, xxHash actively checks |
72 | | * input for null pointer. It it is, result for null input pointers is the same |
73 | | * as a null-length input. |
74 | | */ |
75 | | #ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */ |
76 | | #define XXH_ACCEPT_NULL_INPUT_POINTER 0 |
77 | | #endif |
78 | | |
79 | | /*!XXH_FORCE_NATIVE_FORMAT : |
80 | | * By default, xxHash library provides endian-independent Hash values, based on |
81 | | * little-endian convention. Results are therefore identical for little-endian |
82 | | * and big-endian CPU. This comes at a performance cost for big-endian CPU, |
83 | | * since some swapping is required to emulate little-endian format. Should |
84 | | * endian-independence be of no importance for your application, you may set the |
85 | | * #define below to 1, to improve speed for Big-endian CPU. This option has no |
86 | | * impact on Little_Endian CPU. |
87 | | */ |
88 | | #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
89 | 0 | #define XXH_FORCE_NATIVE_FORMAT 0 |
90 | | #endif |
91 | | |
92 | | /*!XXH_FORCE_ALIGN_CHECK : |
93 | | * This is a minor performance trick, only useful with lots of very small keys. |
94 | | * It means : check for aligned/unaligned input. |
95 | | * The check costs one initial branch per hash; |
96 | | * set it to 0 when the input is guaranteed to be aligned, |
97 | | * or when alignment doesn't matter for performance. |
98 | | */ |
99 | | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
100 | | #if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || \ |
101 | | defined(_M_X64) |
102 | 0 | #define XXH_FORCE_ALIGN_CHECK 0 |
103 | | #else |
104 | | #define XXH_FORCE_ALIGN_CHECK 1 |
105 | | #endif |
106 | | #endif |
107 | | |
108 | | |
109 | | /* ************************************* |
110 | | * Includes & Memory related functions |
111 | | ***************************************/ |
112 | | /*! Modify the local functions below should you wish to use some other memory |
113 | | * routines for malloc(), free() */ |
114 | | #include "rd.h" |
115 | 0 | static void *XXH_malloc(size_t s) { |
116 | 0 | return rd_malloc(s); |
117 | 0 | } |
118 | 0 | static void XXH_free(void *p) { |
119 | 0 | rd_free(p); |
120 | 0 | } |
121 | | /*! and for memcpy() */ |
122 | | #include <string.h> |
123 | 0 | static void *XXH_memcpy(void *dest, const void *src, size_t size) { |
124 | 0 | return memcpy(dest, src, size); |
125 | 0 | } |
126 | | |
127 | | #include <assert.h> /* assert */ |
128 | | |
129 | | #define XXH_STATIC_LINKING_ONLY |
130 | | #include "rdxxhash.h" |
131 | | |
132 | | |
133 | | /* ************************************* |
134 | | * Compiler Specific Options |
135 | | ***************************************/ |
136 | | #ifdef _MSC_VER /* Visual Studio */ |
137 | | #pragma warning( \ |
138 | | disable : 4127) /* disable: C4127: conditional expression is constant */ |
139 | | #define FORCE_INLINE static __forceinline |
140 | | #else |
141 | | #if defined(__cplusplus) || \ |
142 | | defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
143 | | #ifdef __GNUC__ |
144 | | #define FORCE_INLINE static inline __attribute__((always_inline)) |
145 | | #else |
146 | | #define FORCE_INLINE static inline |
147 | | #endif |
148 | | #else |
149 | | #define FORCE_INLINE static |
150 | | #endif /* __STDC_VERSION__ */ |
151 | | #endif |
152 | | |
153 | | |
154 | | /* ************************************* |
155 | | * Basic Types |
156 | | ***************************************/ |
157 | | #ifndef MEM_MODULE |
158 | | #if !defined(__VMS) && \ |
159 | | (defined(__cplusplus) || \ |
160 | | (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) |
161 | | #include <stdint.h> |
162 | | typedef uint8_t BYTE; |
163 | | typedef uint16_t U16; |
164 | | typedef uint32_t U32; |
165 | | #else |
166 | | typedef unsigned char BYTE; |
167 | | typedef unsigned short U16; |
168 | | typedef unsigned int U32; |
169 | | #endif |
170 | | #endif |
171 | | |
172 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) |
173 | | |
174 | | /* Force direct memory access. Only works on CPU which support unaligned memory |
175 | | * access in hardware */ |
176 | | static U32 XXH_read32(const void *memPtr) { |
177 | | return *(const U32 *)memPtr; |
178 | | } |
179 | | |
180 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) |
181 | | |
182 | | /* __pack instructions are safer, but compiler specific, hence potentially |
183 | | * problematic for some compilers */ |
184 | | /* currently only defined for gcc and icc */ |
185 | | typedef union { |
186 | | U32 u32; |
187 | | } __attribute__((packed)) unalign; |
188 | | static U32 XXH_read32(const void *ptr) { |
189 | | return ((const unalign *)ptr)->u32; |
190 | | } |
191 | | |
192 | | #else |
193 | | |
194 | | /* portable and safe solution. Generally efficient. |
195 | | * see : http://stackoverflow.com/a/32095106/646947 |
196 | | */ |
197 | 0 | static U32 XXH_read32(const void *memPtr) { |
198 | 0 | U32 val; |
199 | 0 | memcpy(&val, memPtr, sizeof(val)); |
200 | 0 | return val; |
201 | 0 | } |
202 | | |
203 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
204 | | |
205 | | |
206 | | /* **************************************** |
207 | | * Compiler-specific Functions and Macros |
208 | | ******************************************/ |
209 | | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
210 | | |
211 | | /* Note : although _rotl exists for minGW (GCC under windows), performance seems |
212 | | * poor */ |
213 | | #if defined(_MSC_VER) |
214 | | #define XXH_rotl32(x, r) _rotl(x, r) |
215 | | #define XXH_rotl64(x, r) _rotl64(x, r) |
216 | | #else |
217 | 0 | #define XXH_rotl32(x, r) ((x << r) | (x >> (32 - r))) |
218 | 0 | #define XXH_rotl64(x, r) ((x << r) | (x >> (64 - r))) |
219 | | #endif |
220 | | |
221 | | #if defined(_MSC_VER) /* Visual Studio */ |
222 | | #define XXH_swap32 _byteswap_ulong |
223 | | #elif XXH_GCC_VERSION >= 403 |
224 | | #define XXH_swap32 __builtin_bswap32 |
225 | | #else |
226 | 0 | static U32 XXH_swap32(U32 x) { |
227 | 0 | return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) | |
228 | 0 | ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff); |
229 | 0 | } |
230 | | #endif |
231 | | |
232 | | |
233 | | /* ************************************* |
234 | | * Architecture Macros |
235 | | ***************************************/ |
236 | | typedef enum { XXH_bigEndian = 0, XXH_littleEndian = 1 } XXH_endianess; |
237 | | |
238 | | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler |
239 | | * command line */ |
240 | | #ifndef XXH_CPU_LITTLE_ENDIAN |
241 | 0 | static int XXH_isLittleEndian(void) { |
242 | 0 | const union { |
243 | 0 | U32 u; |
244 | 0 | BYTE c[4]; |
245 | 0 | } one = {1}; /* don't use static : performance detrimental */ |
246 | 0 | return one.c[0]; |
247 | 0 | } |
248 | 0 | #define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian() |
249 | | #endif |
250 | | |
251 | | |
252 | | /* *************************** |
253 | | * Memory reads |
254 | | *****************************/ |
255 | | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
256 | | |
257 | | FORCE_INLINE U32 XXH_readLE32_align(const void *ptr, |
258 | | XXH_endianess endian, |
259 | 0 | XXH_alignment align) { |
260 | 0 | if (align == XXH_unaligned) |
261 | 0 | return endian == XXH_littleEndian ? XXH_read32(ptr) |
262 | 0 | : XXH_swap32(XXH_read32(ptr)); |
263 | 0 | else |
264 | 0 | return endian == XXH_littleEndian |
265 | 0 | ? *(const U32 *)ptr |
266 | 0 | : XXH_swap32(*(const U32 *)ptr); |
267 | 0 | } |
268 | | |
269 | 0 | FORCE_INLINE U32 XXH_readLE32(const void *ptr, XXH_endianess endian) { |
270 | 0 | return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
271 | 0 | } |
272 | | |
273 | 0 | static U32 XXH_readBE32(const void *ptr) { |
274 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) |
275 | 0 | : XXH_read32(ptr); |
276 | 0 | } |
277 | | |
278 | | |
279 | | /* ************************************* |
280 | | * Macros |
281 | | ***************************************/ |
282 | | #define XXH_STATIC_ASSERT(c) \ |
283 | 0 | { \ |
284 | 0 | enum { XXH_sa = 1 / (int)(!!(c)) }; \ |
285 | 0 | } /* use after variable declarations */ |
286 | 0 | XXH_PUBLIC_API unsigned XXH_versionNumber(void) { |
287 | 0 | return XXH_VERSION_NUMBER; |
288 | 0 | } |
289 | | |
290 | | |
291 | | /* ******************************************************************* |
292 | | * 32-bit hash functions |
293 | | *********************************************************************/ |
294 | | static const U32 PRIME32_1 = 2654435761U; |
295 | | static const U32 PRIME32_2 = 2246822519U; |
296 | | static const U32 PRIME32_3 = 3266489917U; |
297 | | static const U32 PRIME32_4 = 668265263U; |
298 | | static const U32 PRIME32_5 = 374761393U; |
299 | | |
300 | 0 | static U32 XXH32_round(U32 seed, U32 input) { |
301 | 0 | seed += input * PRIME32_2; |
302 | 0 | seed = XXH_rotl32(seed, 13); |
303 | 0 | seed *= PRIME32_1; |
304 | 0 | return seed; |
305 | 0 | } |
306 | | |
307 | | /* mix all bits */ |
308 | 0 | static U32 XXH32_avalanche(U32 h32) { |
309 | 0 | h32 ^= h32 >> 15; |
310 | 0 | h32 *= PRIME32_2; |
311 | 0 | h32 ^= h32 >> 13; |
312 | 0 | h32 *= PRIME32_3; |
313 | 0 | h32 ^= h32 >> 16; |
314 | 0 | return (h32); |
315 | 0 | } |
316 | | |
317 | 0 | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
318 | | |
319 | | static U32 XXH32_finalize(U32 h32, |
320 | | const void *ptr, |
321 | | size_t len, |
322 | | XXH_endianess endian, |
323 | | XXH_alignment align) |
324 | | |
325 | 0 | { |
326 | 0 | const BYTE *p = (const BYTE *)ptr; |
327 | |
|
328 | 0 | #define PROCESS1 \ |
329 | 0 | h32 += (*p++) * PRIME32_5; \ |
330 | 0 | h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
331 | |
|
332 | 0 | #define PROCESS4 \ |
333 | 0 | h32 += XXH_get32bits(p) * PRIME32_3; \ |
334 | 0 | p += 4; \ |
335 | 0 | h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
336 | |
|
337 | 0 | switch (len & 15) /* or switch(bEnd - p) */ |
338 | 0 | { |
339 | 0 | case 12: |
340 | 0 | PROCESS4; |
341 | | /* fallthrough */ |
342 | 0 | case 8: |
343 | 0 | PROCESS4; |
344 | | /* fallthrough */ |
345 | 0 | case 4: |
346 | 0 | PROCESS4; |
347 | 0 | return XXH32_avalanche(h32); |
348 | | |
349 | 0 | case 13: |
350 | 0 | PROCESS4; |
351 | | /* fallthrough */ |
352 | 0 | case 9: |
353 | 0 | PROCESS4; |
354 | | /* fallthrough */ |
355 | 0 | case 5: |
356 | 0 | PROCESS4; |
357 | 0 | PROCESS1; |
358 | 0 | return XXH32_avalanche(h32); |
359 | | |
360 | 0 | case 14: |
361 | 0 | PROCESS4; |
362 | | /* fallthrough */ |
363 | 0 | case 10: |
364 | 0 | PROCESS4; |
365 | | /* fallthrough */ |
366 | 0 | case 6: |
367 | 0 | PROCESS4; |
368 | 0 | PROCESS1; |
369 | 0 | PROCESS1; |
370 | 0 | return XXH32_avalanche(h32); |
371 | | |
372 | 0 | case 15: |
373 | 0 | PROCESS4; |
374 | | /* fallthrough */ |
375 | 0 | case 11: |
376 | 0 | PROCESS4; |
377 | | /* fallthrough */ |
378 | 0 | case 7: |
379 | 0 | PROCESS4; |
380 | | /* fallthrough */ |
381 | 0 | case 3: |
382 | 0 | PROCESS1; |
383 | | /* fallthrough */ |
384 | 0 | case 2: |
385 | 0 | PROCESS1; |
386 | | /* fallthrough */ |
387 | 0 | case 1: |
388 | 0 | PROCESS1; |
389 | | /* fallthrough */ |
390 | 0 | case 0: |
391 | 0 | return XXH32_avalanche(h32); |
392 | 0 | } |
393 | 0 | assert(0); |
394 | 0 | return h32; /* reaching this point is deemed impossible */ |
395 | 0 | } |
396 | | |
397 | | |
398 | | FORCE_INLINE U32 XXH32_endian_align(const void *input, |
399 | | size_t len, |
400 | | U32 seed, |
401 | | XXH_endianess endian, |
402 | 0 | XXH_alignment align) { |
403 | 0 | const BYTE *p = (const BYTE *)input; |
404 | 0 | const BYTE *bEnd = p + len; |
405 | 0 | U32 h32; |
406 | |
|
407 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
408 | | (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
409 | | if (p == NULL) { |
410 | | len = 0; |
411 | | bEnd = p = (const BYTE *)(size_t)16; |
412 | | } |
413 | | #endif |
414 | |
|
415 | 0 | if (len >= 16) { |
416 | 0 | const BYTE *const limit = bEnd - 15; |
417 | 0 | U32 v1 = seed + PRIME32_1 + PRIME32_2; |
418 | 0 | U32 v2 = seed + PRIME32_2; |
419 | 0 | U32 v3 = seed + 0; |
420 | 0 | U32 v4 = seed - PRIME32_1; |
421 | |
|
422 | 0 | do { |
423 | 0 | v1 = XXH32_round(v1, XXH_get32bits(p)); |
424 | 0 | p += 4; |
425 | 0 | v2 = XXH32_round(v2, XXH_get32bits(p)); |
426 | 0 | p += 4; |
427 | 0 | v3 = XXH32_round(v3, XXH_get32bits(p)); |
428 | 0 | p += 4; |
429 | 0 | v4 = XXH32_round(v4, XXH_get32bits(p)); |
430 | 0 | p += 4; |
431 | 0 | } while (p < limit); |
432 | |
|
433 | 0 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + |
434 | 0 | XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
435 | 0 | } else { |
436 | 0 | h32 = seed + PRIME32_5; |
437 | 0 | } |
438 | |
|
439 | 0 | h32 += (U32)len; |
440 | |
|
441 | 0 | return XXH32_finalize(h32, p, len & 15, endian, align); |
442 | 0 | } |
443 | | |
444 | | |
445 | | XXH_PUBLIC_API unsigned int |
446 | 0 | XXH32(const void *input, size_t len, unsigned int seed) { |
447 | | #if 0 |
448 | | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
449 | | XXH32_state_t state; |
450 | | XXH32_reset(&state, seed); |
451 | | XXH32_update(&state, input, len); |
452 | | return XXH32_digest(&state); |
453 | | #else |
454 | 0 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
455 | |
|
456 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
457 | 0 | if ((((size_t)input) & 3) == |
458 | 0 | 0) { /* Input is 4-bytes aligned, leverage the speed benefit |
459 | | */ |
460 | 0 | if ((endian_detected == XXH_littleEndian) || |
461 | 0 | XXH_FORCE_NATIVE_FORMAT) |
462 | 0 | return XXH32_endian_align(input, len, seed, |
463 | 0 | XXH_littleEndian, |
464 | 0 | XXH_aligned); |
465 | 0 | else |
466 | 0 | return XXH32_endian_align(input, len, seed, |
467 | 0 | XXH_bigEndian, |
468 | 0 | XXH_aligned); |
469 | 0 | } |
470 | 0 | } |
471 | | |
472 | 0 | if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
473 | 0 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, |
474 | 0 | XXH_unaligned); |
475 | 0 | else |
476 | 0 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, |
477 | 0 | XXH_unaligned); |
478 | 0 | #endif |
479 | 0 | } |
480 | | |
481 | | |
482 | | |
483 | | /*====== Hash streaming ======*/ |
484 | | |
485 | 0 | XXH_PUBLIC_API XXH32_state_t *XXH32_createState(void) { |
486 | 0 | return (XXH32_state_t *)XXH_malloc(sizeof(XXH32_state_t)); |
487 | 0 | } |
488 | 0 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr) { |
489 | 0 | XXH_free(statePtr); |
490 | 0 | return XXH_OK; |
491 | 0 | } |
492 | | |
493 | | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t *dstState, |
494 | 0 | const XXH32_state_t *srcState) { |
495 | 0 | memcpy(dstState, srcState, sizeof(*dstState)); |
496 | 0 | } |
497 | | |
498 | | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t *statePtr, |
499 | 0 | unsigned int seed) { |
500 | 0 | XXH32_state_t state; /* using a local state to memcpy() in order to |
501 | | avoid strict-aliasing warnings */ |
502 | 0 | memset(&state, 0, sizeof(state)); |
503 | 0 | state.v1 = seed + PRIME32_1 + PRIME32_2; |
504 | 0 | state.v2 = seed + PRIME32_2; |
505 | 0 | state.v3 = seed + 0; |
506 | 0 | state.v4 = seed - PRIME32_1; |
507 | | /* do not write into reserved, planned to be removed in a future version |
508 | | */ |
509 | 0 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
510 | 0 | return XXH_OK; |
511 | 0 | } |
512 | | |
513 | | |
514 | | FORCE_INLINE XXH_errorcode XXH32_update_endian(XXH32_state_t *state, |
515 | | const void *input, |
516 | | size_t len, |
517 | 0 | XXH_endianess endian) { |
518 | 0 | if (input == NULL) |
519 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
520 | | (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
521 | | return XXH_OK; |
522 | | #else |
523 | 0 | return XXH_ERROR; |
524 | 0 | #endif |
525 | | |
526 | 0 | { |
527 | 0 | const BYTE *p = (const BYTE *)input; |
528 | 0 | const BYTE *const bEnd = p + len; |
529 | |
|
530 | 0 | state->total_len_32 += (unsigned)len; |
531 | 0 | state->large_len |= (len >= 16) | (state->total_len_32 >= 16); |
532 | |
|
533 | 0 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
534 | 0 | XXH_memcpy((BYTE *)(state->mem32) + state->memsize, |
535 | 0 | input, len); |
536 | 0 | state->memsize += (unsigned)len; |
537 | 0 | return XXH_OK; |
538 | 0 | } |
539 | | |
540 | 0 | if (state->memsize) { /* some data left from previous update */ |
541 | 0 | XXH_memcpy((BYTE *)(state->mem32) + state->memsize, |
542 | 0 | input, 16 - state->memsize); |
543 | 0 | { |
544 | 0 | const U32 *p32 = state->mem32; |
545 | 0 | state->v1 = XXH32_round( |
546 | 0 | state->v1, XXH_readLE32(p32, endian)); |
547 | 0 | p32++; |
548 | 0 | state->v2 = XXH32_round( |
549 | 0 | state->v2, XXH_readLE32(p32, endian)); |
550 | 0 | p32++; |
551 | 0 | state->v3 = XXH32_round( |
552 | 0 | state->v3, XXH_readLE32(p32, endian)); |
553 | 0 | p32++; |
554 | 0 | state->v4 = XXH32_round( |
555 | 0 | state->v4, XXH_readLE32(p32, endian)); |
556 | 0 | } |
557 | 0 | p += 16 - state->memsize; |
558 | 0 | state->memsize = 0; |
559 | 0 | } |
560 | |
|
561 | 0 | if (p <= bEnd - 16) { |
562 | 0 | const BYTE *const limit = bEnd - 16; |
563 | 0 | U32 v1 = state->v1; |
564 | 0 | U32 v2 = state->v2; |
565 | 0 | U32 v3 = state->v3; |
566 | 0 | U32 v4 = state->v4; |
567 | |
|
568 | 0 | do { |
569 | 0 | v1 = XXH32_round(v1, XXH_readLE32(p, endian)); |
570 | 0 | p += 4; |
571 | 0 | v2 = XXH32_round(v2, XXH_readLE32(p, endian)); |
572 | 0 | p += 4; |
573 | 0 | v3 = XXH32_round(v3, XXH_readLE32(p, endian)); |
574 | 0 | p += 4; |
575 | 0 | v4 = XXH32_round(v4, XXH_readLE32(p, endian)); |
576 | 0 | p += 4; |
577 | 0 | } while (p <= limit); |
578 | |
|
579 | 0 | state->v1 = v1; |
580 | 0 | state->v2 = v2; |
581 | 0 | state->v3 = v3; |
582 | 0 | state->v4 = v4; |
583 | 0 | } |
584 | |
|
585 | 0 | if (p < bEnd) { |
586 | 0 | XXH_memcpy(state->mem32, p, (size_t)(bEnd - p)); |
587 | 0 | state->memsize = (unsigned)(bEnd - p); |
588 | 0 | } |
589 | 0 | } |
590 | | |
591 | 0 | return XXH_OK; |
592 | 0 | } |
593 | | |
594 | | |
595 | | XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t *state_in, |
596 | | const void *input, |
597 | 0 | size_t len) { |
598 | 0 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
599 | |
|
600 | 0 | if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
601 | 0 | return XXH32_update_endian(state_in, input, len, |
602 | 0 | XXH_littleEndian); |
603 | 0 | else |
604 | 0 | return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
605 | 0 | } |
606 | | |
607 | | |
608 | | FORCE_INLINE U32 XXH32_digest_endian(const XXH32_state_t *state, |
609 | 0 | XXH_endianess endian) { |
610 | 0 | U32 h32; |
611 | |
|
612 | 0 | if (state->large_len) { |
613 | 0 | h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + |
614 | 0 | XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
615 | 0 | } else { |
616 | 0 | h32 = state->v3 /* == seed */ + PRIME32_5; |
617 | 0 | } |
618 | |
|
619 | 0 | h32 += state->total_len_32; |
620 | |
|
621 | 0 | return XXH32_finalize(h32, state->mem32, state->memsize, endian, |
622 | 0 | XXH_aligned); |
623 | 0 | } |
624 | | |
625 | | |
626 | 0 | XXH_PUBLIC_API unsigned int XXH32_digest(const XXH32_state_t *state_in) { |
627 | 0 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
628 | |
|
629 | 0 | if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
630 | 0 | return XXH32_digest_endian(state_in, XXH_littleEndian); |
631 | 0 | else |
632 | 0 | return XXH32_digest_endian(state_in, XXH_bigEndian); |
633 | 0 | } |
634 | | |
635 | | |
636 | | /*====== Canonical representation ======*/ |
637 | | |
638 | | /*! Default XXH result types are basic unsigned 32 and 64 bits. |
639 | | * The canonical representation follows human-readable write convention, aka |
640 | | * big-endian (large digits first). These functions allow transformation of hash |
641 | | * result into and from its canonical format. This way, hash values can be |
642 | | * written into a file or buffer, remaining comparable across different systems. |
643 | | */ |
644 | | |
645 | | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t *dst, |
646 | 0 | XXH32_hash_t hash) { |
647 | 0 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
648 | 0 | if (XXH_CPU_LITTLE_ENDIAN) |
649 | 0 | hash = XXH_swap32(hash); |
650 | 0 | memcpy(dst, &hash, sizeof(*dst)); |
651 | 0 | } |
652 | | |
653 | | XXH_PUBLIC_API XXH32_hash_t |
654 | 0 | XXH32_hashFromCanonical(const XXH32_canonical_t *src) { |
655 | 0 | return XXH_readBE32(src); |
656 | 0 | } |
657 | | |
658 | | |
659 | | #ifndef XXH_NO_LONG_LONG |
660 | | |
661 | | /* ******************************************************************* |
662 | | * 64-bit hash functions |
663 | | *********************************************************************/ |
664 | | |
665 | | /*====== Memory access ======*/ |
666 | | |
667 | | #ifndef MEM_MODULE |
668 | | #define MEM_MODULE |
669 | | #if !defined(__VMS) && \ |
670 | | (defined(__cplusplus) || \ |
671 | | (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)) |
672 | | #include <stdint.h> |
673 | | typedef uint64_t U64; |
674 | | #else |
675 | | /* if compiler doesn't support unsigned long long, replace by another 64-bit |
676 | | * type */ |
677 | | typedef unsigned long long U64; |
678 | | #endif |
679 | | #endif |
680 | | |
681 | | |
682 | | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2)) |
683 | | |
684 | | /* Force direct memory access. Only works on CPU which support unaligned memory |
685 | | * access in hardware */ |
686 | | static U64 XXH_read64(const void *memPtr) { |
687 | | return *(const U64 *)memPtr; |
688 | | } |
689 | | |
690 | | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1)) |
691 | | |
692 | | /* __pack instructions are safer, but compiler specific, hence potentially |
693 | | * problematic for some compilers */ |
694 | | /* currently only defined for gcc and icc */ |
695 | | typedef union { |
696 | | U32 u32; |
697 | | U64 u64; |
698 | | } __attribute__((packed)) unalign64; |
699 | | static U64 XXH_read64(const void *ptr) { |
700 | | return ((const unalign64 *)ptr)->u64; |
701 | | } |
702 | | |
703 | | #else |
704 | | |
705 | | /* portable and safe solution. Generally efficient. |
706 | | * see : http://stackoverflow.com/a/32095106/646947 |
707 | | */ |
708 | | |
709 | 0 | static U64 XXH_read64(const void *memPtr) { |
710 | 0 | U64 val; |
711 | 0 | memcpy(&val, memPtr, sizeof(val)); |
712 | 0 | return val; |
713 | 0 | } |
714 | | |
715 | | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
716 | | |
717 | | #if defined(_MSC_VER) /* Visual Studio */ |
718 | | #define XXH_swap64 _byteswap_uint64 |
719 | | #elif XXH_GCC_VERSION >= 403 |
720 | | #define XXH_swap64 __builtin_bswap64 |
721 | | #else |
722 | 0 | static U64 XXH_swap64(U64 x) { |
723 | 0 | return ((x << 56) & 0xff00000000000000ULL) | |
724 | 0 | ((x << 40) & 0x00ff000000000000ULL) | |
725 | 0 | ((x << 24) & 0x0000ff0000000000ULL) | |
726 | 0 | ((x << 8) & 0x000000ff00000000ULL) | |
727 | 0 | ((x >> 8) & 0x00000000ff000000ULL) | |
728 | 0 | ((x >> 24) & 0x0000000000ff0000ULL) | |
729 | 0 | ((x >> 40) & 0x000000000000ff00ULL) | |
730 | 0 | ((x >> 56) & 0x00000000000000ffULL); |
731 | 0 | } |
732 | | #endif |
733 | | |
734 | | FORCE_INLINE U64 XXH_readLE64_align(const void *ptr, |
735 | | XXH_endianess endian, |
736 | 0 | XXH_alignment align) { |
737 | 0 | if (align == XXH_unaligned) |
738 | 0 | return endian == XXH_littleEndian ? XXH_read64(ptr) |
739 | 0 | : XXH_swap64(XXH_read64(ptr)); |
740 | 0 | else |
741 | 0 | return endian == XXH_littleEndian |
742 | 0 | ? *(const U64 *)ptr |
743 | 0 | : XXH_swap64(*(const U64 *)ptr); |
744 | 0 | } |
745 | | |
746 | 0 | FORCE_INLINE U64 XXH_readLE64(const void *ptr, XXH_endianess endian) { |
747 | 0 | return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
748 | 0 | } |
749 | | |
750 | 0 | static U64 XXH_readBE64(const void *ptr) { |
751 | 0 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) |
752 | 0 | : XXH_read64(ptr); |
753 | 0 | } |
754 | | |
755 | | |
756 | | /*====== xxh64 ======*/ |
757 | | |
758 | | static const U64 PRIME64_1 = 11400714785074694791ULL; |
759 | | static const U64 PRIME64_2 = 14029467366897019727ULL; |
760 | | static const U64 PRIME64_3 = 1609587929392839161ULL; |
761 | | static const U64 PRIME64_4 = 9650029242287828579ULL; |
762 | | static const U64 PRIME64_5 = 2870177450012600261ULL; |
763 | | |
764 | 0 | static U64 XXH64_round(U64 acc, U64 input) { |
765 | 0 | acc += input * PRIME64_2; |
766 | 0 | acc = XXH_rotl64(acc, 31); |
767 | 0 | acc *= PRIME64_1; |
768 | 0 | return acc; |
769 | 0 | } |
770 | | |
771 | 0 | static U64 XXH64_mergeRound(U64 acc, U64 val) { |
772 | 0 | val = XXH64_round(0, val); |
773 | 0 | acc ^= val; |
774 | 0 | acc = acc * PRIME64_1 + PRIME64_4; |
775 | 0 | return acc; |
776 | 0 | } |
777 | | |
778 | 0 | static U64 XXH64_avalanche(U64 h64) { |
779 | 0 | h64 ^= h64 >> 33; |
780 | 0 | h64 *= PRIME64_2; |
781 | 0 | h64 ^= h64 >> 29; |
782 | 0 | h64 *= PRIME64_3; |
783 | 0 | h64 ^= h64 >> 32; |
784 | 0 | return h64; |
785 | 0 | } |
786 | | |
787 | | |
788 | 0 | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
789 | | |
790 | | static U64 XXH64_finalize(U64 h64, |
791 | | const void *ptr, |
792 | | size_t len, |
793 | | XXH_endianess endian, |
794 | 0 | XXH_alignment align) { |
795 | 0 | const BYTE *p = (const BYTE *)ptr; |
796 | |
|
797 | 0 | #define PROCESS1_64 \ |
798 | 0 | h64 ^= (*p++) * PRIME64_5; \ |
799 | 0 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
800 | |
|
801 | 0 | #define PROCESS4_64 \ |
802 | 0 | h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; \ |
803 | 0 | p += 4; \ |
804 | 0 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
805 | |
|
806 | 0 | #define PROCESS8_64 \ |
807 | 0 | { \ |
808 | 0 | U64 const k1 = XXH64_round(0, XXH_get64bits(p)); \ |
809 | 0 | p += 8; \ |
810 | 0 | h64 ^= k1; \ |
811 | 0 | h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; \ |
812 | 0 | } |
813 | |
|
814 | 0 | switch (len & 31) { |
815 | 0 | case 24: |
816 | 0 | PROCESS8_64; |
817 | | /* fallthrough */ |
818 | 0 | case 16: |
819 | 0 | PROCESS8_64; |
820 | | /* fallthrough */ |
821 | 0 | case 8: |
822 | 0 | PROCESS8_64; |
823 | 0 | return XXH64_avalanche(h64); |
824 | | |
825 | 0 | case 28: |
826 | 0 | PROCESS8_64; |
827 | | /* fallthrough */ |
828 | 0 | case 20: |
829 | 0 | PROCESS8_64; |
830 | | /* fallthrough */ |
831 | 0 | case 12: |
832 | 0 | PROCESS8_64; |
833 | | /* fallthrough */ |
834 | 0 | case 4: |
835 | 0 | PROCESS4_64; |
836 | 0 | return XXH64_avalanche(h64); |
837 | | |
838 | 0 | case 25: |
839 | 0 | PROCESS8_64; |
840 | | /* fallthrough */ |
841 | 0 | case 17: |
842 | 0 | PROCESS8_64; |
843 | | /* fallthrough */ |
844 | 0 | case 9: |
845 | 0 | PROCESS8_64; |
846 | 0 | PROCESS1_64; |
847 | 0 | return XXH64_avalanche(h64); |
848 | | |
849 | 0 | case 29: |
850 | 0 | PROCESS8_64; |
851 | | /* fallthrough */ |
852 | 0 | case 21: |
853 | 0 | PROCESS8_64; |
854 | | /* fallthrough */ |
855 | 0 | case 13: |
856 | 0 | PROCESS8_64; |
857 | | /* fallthrough */ |
858 | 0 | case 5: |
859 | 0 | PROCESS4_64; |
860 | 0 | PROCESS1_64; |
861 | 0 | return XXH64_avalanche(h64); |
862 | | |
863 | 0 | case 26: |
864 | 0 | PROCESS8_64; |
865 | | /* fallthrough */ |
866 | 0 | case 18: |
867 | 0 | PROCESS8_64; |
868 | | /* fallthrough */ |
869 | 0 | case 10: |
870 | 0 | PROCESS8_64; |
871 | 0 | PROCESS1_64; |
872 | 0 | PROCESS1_64; |
873 | 0 | return XXH64_avalanche(h64); |
874 | | |
875 | 0 | case 30: |
876 | 0 | PROCESS8_64; |
877 | | /* fallthrough */ |
878 | 0 | case 22: |
879 | 0 | PROCESS8_64; |
880 | | /* fallthrough */ |
881 | 0 | case 14: |
882 | 0 | PROCESS8_64; |
883 | | /* fallthrough */ |
884 | 0 | case 6: |
885 | 0 | PROCESS4_64; |
886 | 0 | PROCESS1_64; |
887 | 0 | PROCESS1_64; |
888 | 0 | return XXH64_avalanche(h64); |
889 | | |
890 | 0 | case 27: |
891 | 0 | PROCESS8_64; |
892 | | /* fallthrough */ |
893 | 0 | case 19: |
894 | 0 | PROCESS8_64; |
895 | | /* fallthrough */ |
896 | 0 | case 11: |
897 | 0 | PROCESS8_64; |
898 | 0 | PROCESS1_64; |
899 | 0 | PROCESS1_64; |
900 | 0 | PROCESS1_64; |
901 | 0 | return XXH64_avalanche(h64); |
902 | | |
903 | 0 | case 31: |
904 | 0 | PROCESS8_64; |
905 | | /* fallthrough */ |
906 | 0 | case 23: |
907 | 0 | PROCESS8_64; |
908 | | /* fallthrough */ |
909 | 0 | case 15: |
910 | 0 | PROCESS8_64; |
911 | | /* fallthrough */ |
912 | 0 | case 7: |
913 | 0 | PROCESS4_64; |
914 | | /* fallthrough */ |
915 | 0 | case 3: |
916 | 0 | PROCESS1_64; |
917 | | /* fallthrough */ |
918 | 0 | case 2: |
919 | 0 | PROCESS1_64; |
920 | | /* fallthrough */ |
921 | 0 | case 1: |
922 | 0 | PROCESS1_64; |
923 | | /* fallthrough */ |
924 | 0 | case 0: |
925 | 0 | return XXH64_avalanche(h64); |
926 | 0 | } |
927 | | |
928 | | /* impossible to reach */ |
929 | 0 | assert(0); |
930 | 0 | return 0; /* unreachable, but some compilers complain without it */ |
931 | 0 | } |
932 | | |
933 | | FORCE_INLINE U64 XXH64_endian_align(const void *input, |
934 | | size_t len, |
935 | | U64 seed, |
936 | | XXH_endianess endian, |
937 | 0 | XXH_alignment align) { |
938 | 0 | const BYTE *p = (const BYTE *)input; |
939 | 0 | const BYTE *bEnd = p + len; |
940 | 0 | U64 h64; |
941 | |
|
942 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
943 | | (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
944 | | if (p == NULL) { |
945 | | len = 0; |
946 | | bEnd = p = (const BYTE *)(size_t)32; |
947 | | } |
948 | | #endif |
949 | |
|
950 | 0 | if (len >= 32) { |
951 | 0 | const BYTE *const limit = bEnd - 32; |
952 | 0 | U64 v1 = seed + PRIME64_1 + PRIME64_2; |
953 | 0 | U64 v2 = seed + PRIME64_2; |
954 | 0 | U64 v3 = seed + 0; |
955 | 0 | U64 v4 = seed - PRIME64_1; |
956 | |
|
957 | 0 | do { |
958 | 0 | v1 = XXH64_round(v1, XXH_get64bits(p)); |
959 | 0 | p += 8; |
960 | 0 | v2 = XXH64_round(v2, XXH_get64bits(p)); |
961 | 0 | p += 8; |
962 | 0 | v3 = XXH64_round(v3, XXH_get64bits(p)); |
963 | 0 | p += 8; |
964 | 0 | v4 = XXH64_round(v4, XXH_get64bits(p)); |
965 | 0 | p += 8; |
966 | 0 | } while (p <= limit); |
967 | |
|
968 | 0 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + |
969 | 0 | XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
970 | 0 | h64 = XXH64_mergeRound(h64, v1); |
971 | 0 | h64 = XXH64_mergeRound(h64, v2); |
972 | 0 | h64 = XXH64_mergeRound(h64, v3); |
973 | 0 | h64 = XXH64_mergeRound(h64, v4); |
974 | |
|
975 | 0 | } else { |
976 | 0 | h64 = seed + PRIME64_5; |
977 | 0 | } |
978 | |
|
979 | 0 | h64 += (U64)len; |
980 | |
|
981 | 0 | return XXH64_finalize(h64, p, len, endian, align); |
982 | 0 | } |
983 | | |
984 | | |
985 | | XXH_PUBLIC_API unsigned long long |
986 | 0 | XXH64(const void *input, size_t len, unsigned long long seed) { |
987 | | #if 0 |
988 | | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
989 | | XXH64_state_t state; |
990 | | XXH64_reset(&state, seed); |
991 | | XXH64_update(&state, input, len); |
992 | | return XXH64_digest(&state); |
993 | | #else |
994 | 0 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
995 | |
|
996 | 0 | if (XXH_FORCE_ALIGN_CHECK) { |
997 | 0 | if ((((size_t)input) & 7) == |
998 | 0 | 0) { /* Input is aligned, let's leverage the speed advantage |
999 | | */ |
1000 | 0 | if ((endian_detected == XXH_littleEndian) || |
1001 | 0 | XXH_FORCE_NATIVE_FORMAT) |
1002 | 0 | return XXH64_endian_align(input, len, seed, |
1003 | 0 | XXH_littleEndian, |
1004 | 0 | XXH_aligned); |
1005 | 0 | else |
1006 | 0 | return XXH64_endian_align(input, len, seed, |
1007 | 0 | XXH_bigEndian, |
1008 | 0 | XXH_aligned); |
1009 | 0 | } |
1010 | 0 | } |
1011 | | |
1012 | 0 | if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
1013 | 0 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, |
1014 | 0 | XXH_unaligned); |
1015 | 0 | else |
1016 | 0 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, |
1017 | 0 | XXH_unaligned); |
1018 | 0 | #endif |
1019 | 0 | } |
1020 | | |
1021 | | /*====== Hash Streaming ======*/ |
1022 | | |
1023 | 0 | XXH_PUBLIC_API XXH64_state_t *XXH64_createState(void) { |
1024 | 0 | return (XXH64_state_t *)XXH_malloc(sizeof(XXH64_state_t)); |
1025 | 0 | } |
1026 | 0 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr) { |
1027 | 0 | XXH_free(statePtr); |
1028 | 0 | return XXH_OK; |
1029 | 0 | } |
1030 | | |
1031 | | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t *dstState, |
1032 | 0 | const XXH64_state_t *srcState) { |
1033 | 0 | memcpy(dstState, srcState, sizeof(*dstState)); |
1034 | 0 | } |
1035 | | |
1036 | | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t *statePtr, |
1037 | 0 | unsigned long long seed) { |
1038 | 0 | XXH64_state_t state; /* using a local state to memcpy() in order to |
1039 | | avoid strict-aliasing warnings */ |
1040 | 0 | memset(&state, 0, sizeof(state)); |
1041 | 0 | state.v1 = seed + PRIME64_1 + PRIME64_2; |
1042 | 0 | state.v2 = seed + PRIME64_2; |
1043 | 0 | state.v3 = seed + 0; |
1044 | 0 | state.v4 = seed - PRIME64_1; |
1045 | | /* do not write into reserved, planned to be removed in a future version |
1046 | | */ |
1047 | 0 | memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved)); |
1048 | 0 | return XXH_OK; |
1049 | 0 | } |
1050 | | |
1051 | | FORCE_INLINE XXH_errorcode XXH64_update_endian(XXH64_state_t *state, |
1052 | | const void *input, |
1053 | | size_t len, |
1054 | 0 | XXH_endianess endian) { |
1055 | 0 | if (input == NULL) |
1056 | | #if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && \ |
1057 | | (XXH_ACCEPT_NULL_INPUT_POINTER >= 1) |
1058 | | return XXH_OK; |
1059 | | #else |
1060 | 0 | return XXH_ERROR; |
1061 | 0 | #endif |
1062 | | |
1063 | 0 | { |
1064 | 0 | const BYTE *p = (const BYTE *)input; |
1065 | 0 | const BYTE *const bEnd = p + len; |
1066 | |
|
1067 | 0 | state->total_len += len; |
1068 | |
|
1069 | 0 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
1070 | 0 | XXH_memcpy(((BYTE *)state->mem64) + state->memsize, |
1071 | 0 | input, len); |
1072 | 0 | state->memsize += (U32)len; |
1073 | 0 | return XXH_OK; |
1074 | 0 | } |
1075 | | |
1076 | 0 | if (state->memsize) { /* tmp buffer is full */ |
1077 | 0 | XXH_memcpy(((BYTE *)state->mem64) + state->memsize, |
1078 | 0 | input, 32 - state->memsize); |
1079 | 0 | state->v1 = XXH64_round( |
1080 | 0 | state->v1, XXH_readLE64(state->mem64 + 0, endian)); |
1081 | 0 | state->v2 = XXH64_round( |
1082 | 0 | state->v2, XXH_readLE64(state->mem64 + 1, endian)); |
1083 | 0 | state->v3 = XXH64_round( |
1084 | 0 | state->v3, XXH_readLE64(state->mem64 + 2, endian)); |
1085 | 0 | state->v4 = XXH64_round( |
1086 | 0 | state->v4, XXH_readLE64(state->mem64 + 3, endian)); |
1087 | 0 | p += 32 - state->memsize; |
1088 | 0 | state->memsize = 0; |
1089 | 0 | } |
1090 | |
|
1091 | 0 | if (p + 32 <= bEnd) { |
1092 | 0 | const BYTE *const limit = bEnd - 32; |
1093 | 0 | U64 v1 = state->v1; |
1094 | 0 | U64 v2 = state->v2; |
1095 | 0 | U64 v3 = state->v3; |
1096 | 0 | U64 v4 = state->v4; |
1097 | |
|
1098 | 0 | do { |
1099 | 0 | v1 = XXH64_round(v1, XXH_readLE64(p, endian)); |
1100 | 0 | p += 8; |
1101 | 0 | v2 = XXH64_round(v2, XXH_readLE64(p, endian)); |
1102 | 0 | p += 8; |
1103 | 0 | v3 = XXH64_round(v3, XXH_readLE64(p, endian)); |
1104 | 0 | p += 8; |
1105 | 0 | v4 = XXH64_round(v4, XXH_readLE64(p, endian)); |
1106 | 0 | p += 8; |
1107 | 0 | } while (p <= limit); |
1108 | |
|
1109 | 0 | state->v1 = v1; |
1110 | 0 | state->v2 = v2; |
1111 | 0 | state->v3 = v3; |
1112 | 0 | state->v4 = v4; |
1113 | 0 | } |
1114 | |
|
1115 | 0 | if (p < bEnd) { |
1116 | 0 | XXH_memcpy(state->mem64, p, (size_t)(bEnd - p)); |
1117 | 0 | state->memsize = (unsigned)(bEnd - p); |
1118 | 0 | } |
1119 | 0 | } |
1120 | | |
1121 | 0 | return XXH_OK; |
1122 | 0 | } |
1123 | | |
1124 | | XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t *state_in, |
1125 | | const void *input, |
1126 | 0 | size_t len) { |
1127 | 0 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
1128 | |
|
1129 | 0 | if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
1130 | 0 | return XXH64_update_endian(state_in, input, len, |
1131 | 0 | XXH_littleEndian); |
1132 | 0 | else |
1133 | 0 | return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
1134 | 0 | } |
1135 | | |
1136 | | FORCE_INLINE U64 XXH64_digest_endian(const XXH64_state_t *state, |
1137 | 0 | XXH_endianess endian) { |
1138 | 0 | U64 h64; |
1139 | |
|
1140 | 0 | if (state->total_len >= 32) { |
1141 | 0 | U64 const v1 = state->v1; |
1142 | 0 | U64 const v2 = state->v2; |
1143 | 0 | U64 const v3 = state->v3; |
1144 | 0 | U64 const v4 = state->v4; |
1145 | |
|
1146 | 0 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + |
1147 | 0 | XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
1148 | 0 | h64 = XXH64_mergeRound(h64, v1); |
1149 | 0 | h64 = XXH64_mergeRound(h64, v2); |
1150 | 0 | h64 = XXH64_mergeRound(h64, v3); |
1151 | 0 | h64 = XXH64_mergeRound(h64, v4); |
1152 | 0 | } else { |
1153 | 0 | h64 = state->v3 /*seed*/ + PRIME64_5; |
1154 | 0 | } |
1155 | |
|
1156 | 0 | h64 += (U64)state->total_len; |
1157 | |
|
1158 | 0 | return XXH64_finalize(h64, state->mem64, (size_t)state->total_len, |
1159 | 0 | endian, XXH_aligned); |
1160 | 0 | } |
1161 | | |
1162 | 0 | XXH_PUBLIC_API unsigned long long XXH64_digest(const XXH64_state_t *state_in) { |
1163 | 0 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
1164 | |
|
1165 | 0 | if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
1166 | 0 | return XXH64_digest_endian(state_in, XXH_littleEndian); |
1167 | 0 | else |
1168 | 0 | return XXH64_digest_endian(state_in, XXH_bigEndian); |
1169 | 0 | } |
1170 | | |
1171 | | |
1172 | | /*====== Canonical representation ======*/ |
1173 | | |
1174 | | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst, |
1175 | 0 | XXH64_hash_t hash) { |
1176 | 0 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
1177 | 0 | if (XXH_CPU_LITTLE_ENDIAN) |
1178 | 0 | hash = XXH_swap64(hash); |
1179 | 0 | memcpy(dst, &hash, sizeof(*dst)); |
1180 | 0 | } |
1181 | | |
1182 | | XXH_PUBLIC_API XXH64_hash_t |
1183 | 0 | XXH64_hashFromCanonical(const XXH64_canonical_t *src) { |
1184 | 0 | return XXH_readBE64(src); |
1185 | 0 | } |
1186 | | |
1187 | | #endif /* XXH_NO_LONG_LONG */ |