Coverage Report

Created: 2024-09-19 07:08

/src/fluent-bit/lib/librdkafka-2.4.0/src/rdxxhash.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 *  xxHash - Fast Hash algorithm
3
 *  Copyright (C) 2012-2016, Yann Collet
4
 *
5
 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6
 *
7
 *  Redistribution and use in source and binary forms, with or without
8
 *  modification, are permitted provided that the following conditions are
9
 *  met:
10
 *
11
 *  * Redistributions of source code must retain the above copyright
12
 *  notice, this list of conditions and the following disclaimer.
13
 *  * Redistributions in binary form must reproduce the above
14
 *  copyright notice, this list of conditions and the following disclaimer
15
 *  in the documentation and/or other materials provided with the
16
 *  distribution.
17
 *
18
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
 *
30
 *  You can contact the author at :
31
 *  - xxHash homepage: http://www.xxhash.com
32
 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
33
 */
34
35
36
/* *************************************
37
 *  Tuning parameters
38
 ***************************************/
39
/*!XXH_FORCE_MEMORY_ACCESS :
40
 * By default, access to unaligned memory is controlled by `memcpy()`, which is
41
 * safe and portable. Unfortunately, on some target/compiler combinations, the
42
 * generated assembly is sub-optimal. The below switch allow to select different
43
 * access method for improved performance. Method 0 (default) : use `memcpy()`.
44
 * Safe and portable. Method 1 : `__packed` statement. It depends on compiler
45
 * extension (ie, not portable). This method is safe if your compiler supports
46
 * it, and *generally* as fast or faster than `memcpy`. Method 2 : direct
47
 * access. This method doesn't depend on compiler but violate C standard. It can
48
 * generate buggy code on targets which do not support unaligned memory
49
 * accesses. But in some circumstances, it's the only known way to get the most
50
 * performance (ie GCC + ARMv6) See http://stackoverflow.com/a/32095106/646947
51
 * for details. Prefer these methods in priority order (0 > 1 > 2)
52
 */
53
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line  \
54
                                   for example */
55
#if defined(__GNUC__) &&                                                       \
56
    (defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) ||                    \
57
     defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) ||                   \
58
     defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__))
59
#define XXH_FORCE_MEMORY_ACCESS 2
60
#elif (defined(__INTEL_COMPILER) && !defined(_WIN32)) ||                       \
61
    (defined(__GNUC__) &&                                                      \
62
     (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) ||                   \
63
      defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) ||                  \
64
      defined(__ARM_ARCH_7S__)))
65
#define XXH_FORCE_MEMORY_ACCESS 1
66
#endif
67
#endif
68
69
/*!XXH_ACCEPT_NULL_INPUT_POINTER :
70
 * If input pointer is NULL, xxHash default behavior is to dereference it,
71
 * triggering a segfault. When this macro is enabled, xxHash actively checks
72
 * input for null pointer. It it is, result for null input pointers is the same
73
 * as a null-length input.
74
 */
75
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER /* can be defined externally */
76
#define XXH_ACCEPT_NULL_INPUT_POINTER 0
77
#endif
78
79
/*!XXH_FORCE_NATIVE_FORMAT :
80
 * By default, xxHash library provides endian-independent Hash values, based on
81
 * little-endian convention. Results are therefore identical for little-endian
82
 * and big-endian CPU. This comes at a performance cost for big-endian CPU,
83
 * since some swapping is required to emulate little-endian format. Should
84
 * endian-independence be of no importance for your application, you may set the
85
 * #define below to 1, to improve speed for Big-endian CPU. This option has no
86
 * impact on Little_Endian CPU.
87
 */
88
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
89
0
#define XXH_FORCE_NATIVE_FORMAT 0
90
#endif
91
92
/*!XXH_FORCE_ALIGN_CHECK :
93
 * This is a minor performance trick, only useful with lots of very small keys.
94
 * It means : check for aligned/unaligned input.
95
 * The check costs one initial branch per hash;
96
 * set it to 0 when the input is guaranteed to be aligned,
97
 * or when alignment doesn't matter for performance.
98
 */
99
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
100
#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) ||              \
101
    defined(_M_X64)
102
0
#define XXH_FORCE_ALIGN_CHECK 0
103
#else
104
#define XXH_FORCE_ALIGN_CHECK 1
105
#endif
106
#endif
107
108
109
/* *************************************
110
 *  Includes & Memory related functions
111
 ***************************************/
112
/*! Modify the local functions below should you wish to use some other memory
113
 * routines for malloc(), free() */
114
#include "rd.h"
115
0
static void *XXH_malloc(size_t s) {
116
0
        return rd_malloc(s);
117
0
}
118
0
static void XXH_free(void *p) {
119
0
        rd_free(p);
120
0
}
121
/*! and for memcpy() */
122
#include <string.h>
123
0
static void *XXH_memcpy(void *dest, const void *src, size_t size) {
124
0
        return memcpy(dest, src, size);
125
0
}
126
127
#include <assert.h> /* assert */
128
129
#define XXH_STATIC_LINKING_ONLY
130
#include "rdxxhash.h"
131
132
133
/* *************************************
134
 *  Compiler Specific Options
135
 ***************************************/
136
#ifdef _MSC_VER /* Visual Studio */
137
#pragma warning(                                                               \
138
    disable : 4127) /* disable: C4127: conditional expression is constant */
139
#define FORCE_INLINE static __forceinline
140
#else
141
#if defined(__cplusplus) ||                                                    \
142
    defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
143
#ifdef __GNUC__
144
#define FORCE_INLINE static inline __attribute__((always_inline))
145
#else
146
#define FORCE_INLINE static inline
147
#endif
148
#else
149
#define FORCE_INLINE static
150
#endif /* __STDC_VERSION__ */
151
#endif
152
153
154
/* *************************************
155
 *  Basic Types
156
 ***************************************/
157
#ifndef MEM_MODULE
158
#if !defined(__VMS) &&                                                         \
159
    (defined(__cplusplus) ||                                                   \
160
     (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
161
#include <stdint.h>
162
typedef uint8_t BYTE;
163
typedef uint16_t U16;
164
typedef uint32_t U32;
165
#else
166
typedef unsigned char BYTE;
167
typedef unsigned short U16;
168
typedef unsigned int U32;
169
#endif
170
#endif
171
172
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2))
173
174
/* Force direct memory access. Only works on CPU which support unaligned memory
175
 * access in hardware */
176
static U32 XXH_read32(const void *memPtr) {
177
        return *(const U32 *)memPtr;
178
}
179
180
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1))
181
182
/* __pack instructions are safer, but compiler specific, hence potentially
183
 * problematic for some compilers */
184
/* currently only defined for gcc and icc */
185
typedef union {
186
        U32 u32;
187
} __attribute__((packed)) unalign;
188
static U32 XXH_read32(const void *ptr) {
189
        return ((const unalign *)ptr)->u32;
190
}
191
192
#else
193
194
/* portable and safe solution. Generally efficient.
195
 * see : http://stackoverflow.com/a/32095106/646947
196
 */
197
0
static U32 XXH_read32(const void *memPtr) {
198
0
        U32 val;
199
0
        memcpy(&val, memPtr, sizeof(val));
200
0
        return val;
201
0
}
202
203
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
204
205
206
/* ****************************************
207
 *  Compiler-specific Functions and Macros
208
 ******************************************/
209
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
210
211
/* Note : although _rotl exists for minGW (GCC under windows), performance seems
212
 * poor */
213
#if defined(_MSC_VER)
214
#define XXH_rotl32(x, r) _rotl(x, r)
215
#define XXH_rotl64(x, r) _rotl64(x, r)
216
#else
217
0
#define XXH_rotl32(x, r) ((x << r) | (x >> (32 - r)))
218
0
#define XXH_rotl64(x, r) ((x << r) | (x >> (64 - r)))
219
#endif
220
221
#if defined(_MSC_VER) /* Visual Studio */
222
#define XXH_swap32 _byteswap_ulong
223
#elif XXH_GCC_VERSION >= 403
224
#define XXH_swap32 __builtin_bswap32
225
#else
226
0
static U32 XXH_swap32(U32 x) {
227
0
        return ((x << 24) & 0xff000000) | ((x << 8) & 0x00ff0000) |
228
0
               ((x >> 8) & 0x0000ff00) | ((x >> 24) & 0x000000ff);
229
0
}
230
#endif
231
232
233
/* *************************************
234
 *  Architecture Macros
235
 ***************************************/
236
typedef enum { XXH_bigEndian = 0, XXH_littleEndian = 1 } XXH_endianess;
237
238
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler
239
 * command line */
240
#ifndef XXH_CPU_LITTLE_ENDIAN
241
0
static int XXH_isLittleEndian(void) {
242
0
        const union {
243
0
                U32 u;
244
0
                BYTE c[4];
245
0
        } one = {1}; /* don't use static : performance detrimental  */
246
0
        return one.c[0];
247
0
}
248
0
#define XXH_CPU_LITTLE_ENDIAN XXH_isLittleEndian()
249
#endif
250
251
252
/* ***************************
253
 *  Memory reads
254
 *****************************/
255
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
256
257
FORCE_INLINE U32 XXH_readLE32_align(const void *ptr,
258
                                    XXH_endianess endian,
259
0
                                    XXH_alignment align) {
260
0
        if (align == XXH_unaligned)
261
0
                return endian == XXH_littleEndian ? XXH_read32(ptr)
262
0
                                                  : XXH_swap32(XXH_read32(ptr));
263
0
        else
264
0
                return endian == XXH_littleEndian
265
0
                           ? *(const U32 *)ptr
266
0
                           : XXH_swap32(*(const U32 *)ptr);
267
0
}
268
269
0
FORCE_INLINE U32 XXH_readLE32(const void *ptr, XXH_endianess endian) {
270
0
        return XXH_readLE32_align(ptr, endian, XXH_unaligned);
271
0
}
272
273
0
static U32 XXH_readBE32(const void *ptr) {
274
0
        return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr))
275
0
                                     : XXH_read32(ptr);
276
0
}
277
278
279
/* *************************************
280
 *  Macros
281
 ***************************************/
282
#define XXH_STATIC_ASSERT(c)                                                   \
283
0
        {                                                                      \
284
0
                enum { XXH_sa = 1 / (int)(!!(c)) };                            \
285
0
        } /* use after variable declarations */
286
0
XXH_PUBLIC_API unsigned XXH_versionNumber(void) {
287
0
        return XXH_VERSION_NUMBER;
288
0
}
289
290
291
/* *******************************************************************
292
 *  32-bit hash functions
293
 *********************************************************************/
294
static const U32 PRIME32_1 = 2654435761U;
295
static const U32 PRIME32_2 = 2246822519U;
296
static const U32 PRIME32_3 = 3266489917U;
297
static const U32 PRIME32_4 = 668265263U;
298
static const U32 PRIME32_5 = 374761393U;
299
300
0
static U32 XXH32_round(U32 seed, U32 input) {
301
0
        seed += input * PRIME32_2;
302
0
        seed = XXH_rotl32(seed, 13);
303
0
        seed *= PRIME32_1;
304
0
        return seed;
305
0
}
306
307
/* mix all bits */
308
0
static U32 XXH32_avalanche(U32 h32) {
309
0
        h32 ^= h32 >> 15;
310
0
        h32 *= PRIME32_2;
311
0
        h32 ^= h32 >> 13;
312
0
        h32 *= PRIME32_3;
313
0
        h32 ^= h32 >> 16;
314
0
        return (h32);
315
0
}
316
317
0
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
318
319
static U32 XXH32_finalize(U32 h32,
320
                          const void *ptr,
321
                          size_t len,
322
                          XXH_endianess endian,
323
                          XXH_alignment align)
324
325
0
{
326
0
        const BYTE *p = (const BYTE *)ptr;
327
328
0
#define PROCESS1                                                               \
329
0
        h32 += (*p++) * PRIME32_5;                                             \
330
0
        h32 = XXH_rotl32(h32, 11) * PRIME32_1;
331
332
0
#define PROCESS4                                                               \
333
0
        h32 += XXH_get32bits(p) * PRIME32_3;                                   \
334
0
        p += 4;                                                                \
335
0
        h32 = XXH_rotl32(h32, 17) * PRIME32_4;
336
337
0
        switch (len & 15) /* or switch(bEnd - p) */
338
0
        {
339
0
        case 12:
340
0
                PROCESS4;
341
                /* fallthrough */
342
0
        case 8:
343
0
                PROCESS4;
344
                /* fallthrough */
345
0
        case 4:
346
0
                PROCESS4;
347
0
                return XXH32_avalanche(h32);
348
349
0
        case 13:
350
0
                PROCESS4;
351
                /* fallthrough */
352
0
        case 9:
353
0
                PROCESS4;
354
                /* fallthrough */
355
0
        case 5:
356
0
                PROCESS4;
357
0
                PROCESS1;
358
0
                return XXH32_avalanche(h32);
359
360
0
        case 14:
361
0
                PROCESS4;
362
                /* fallthrough */
363
0
        case 10:
364
0
                PROCESS4;
365
                /* fallthrough */
366
0
        case 6:
367
0
                PROCESS4;
368
0
                PROCESS1;
369
0
                PROCESS1;
370
0
                return XXH32_avalanche(h32);
371
372
0
        case 15:
373
0
                PROCESS4;
374
                /* fallthrough */
375
0
        case 11:
376
0
                PROCESS4;
377
                /* fallthrough */
378
0
        case 7:
379
0
                PROCESS4;
380
                /* fallthrough */
381
0
        case 3:
382
0
                PROCESS1;
383
                /* fallthrough */
384
0
        case 2:
385
0
                PROCESS1;
386
                /* fallthrough */
387
0
        case 1:
388
0
                PROCESS1;
389
                /* fallthrough */
390
0
        case 0:
391
0
                return XXH32_avalanche(h32);
392
0
        }
393
0
        assert(0);
394
0
        return h32; /* reaching this point is deemed impossible */
395
0
}
396
397
398
FORCE_INLINE U32 XXH32_endian_align(const void *input,
399
                                    size_t len,
400
                                    U32 seed,
401
                                    XXH_endianess endian,
402
0
                                    XXH_alignment align) {
403
0
        const BYTE *p    = (const BYTE *)input;
404
0
        const BYTE *bEnd = p + len;
405
0
        U32 h32;
406
407
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) &&                                  \
408
    (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
409
        if (p == NULL) {
410
                len  = 0;
411
                bEnd = p = (const BYTE *)(size_t)16;
412
        }
413
#endif
414
415
0
        if (len >= 16) {
416
0
                const BYTE *const limit = bEnd - 15;
417
0
                U32 v1                  = seed + PRIME32_1 + PRIME32_2;
418
0
                U32 v2                  = seed + PRIME32_2;
419
0
                U32 v3                  = seed + 0;
420
0
                U32 v4                  = seed - PRIME32_1;
421
422
0
                do {
423
0
                        v1 = XXH32_round(v1, XXH_get32bits(p));
424
0
                        p += 4;
425
0
                        v2 = XXH32_round(v2, XXH_get32bits(p));
426
0
                        p += 4;
427
0
                        v3 = XXH32_round(v3, XXH_get32bits(p));
428
0
                        p += 4;
429
0
                        v4 = XXH32_round(v4, XXH_get32bits(p));
430
0
                        p += 4;
431
0
                } while (p < limit);
432
433
0
                h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) +
434
0
                      XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
435
0
        } else {
436
0
                h32 = seed + PRIME32_5;
437
0
        }
438
439
0
        h32 += (U32)len;
440
441
0
        return XXH32_finalize(h32, p, len & 15, endian, align);
442
0
}
443
444
445
XXH_PUBLIC_API unsigned int
446
0
XXH32(const void *input, size_t len, unsigned int seed) {
447
#if 0
448
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
449
    XXH32_state_t state;
450
    XXH32_reset(&state, seed);
451
    XXH32_update(&state, input, len);
452
    return XXH32_digest(&state);
453
#else
454
0
        XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
455
456
0
        if (XXH_FORCE_ALIGN_CHECK) {
457
0
                if ((((size_t)input) & 3) ==
458
0
                    0) { /* Input is 4-bytes aligned, leverage the speed benefit
459
                          */
460
0
                        if ((endian_detected == XXH_littleEndian) ||
461
0
                            XXH_FORCE_NATIVE_FORMAT)
462
0
                                return XXH32_endian_align(input, len, seed,
463
0
                                                          XXH_littleEndian,
464
0
                                                          XXH_aligned);
465
0
                        else
466
0
                                return XXH32_endian_align(input, len, seed,
467
0
                                                          XXH_bigEndian,
468
0
                                                          XXH_aligned);
469
0
                }
470
0
        }
471
472
0
        if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
473
0
                return XXH32_endian_align(input, len, seed, XXH_littleEndian,
474
0
                                          XXH_unaligned);
475
0
        else
476
0
                return XXH32_endian_align(input, len, seed, XXH_bigEndian,
477
0
                                          XXH_unaligned);
478
0
#endif
479
0
}
480
481
482
483
/*======   Hash streaming   ======*/
484
485
0
XXH_PUBLIC_API XXH32_state_t *XXH32_createState(void) {
486
0
        return (XXH32_state_t *)XXH_malloc(sizeof(XXH32_state_t));
487
0
}
488
0
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t *statePtr) {
489
0
        XXH_free(statePtr);
490
0
        return XXH_OK;
491
0
}
492
493
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t *dstState,
494
0
                                    const XXH32_state_t *srcState) {
495
0
        memcpy(dstState, srcState, sizeof(*dstState));
496
0
}
497
498
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t *statePtr,
499
0
                                         unsigned int seed) {
500
0
        XXH32_state_t state; /* using a local state to memcpy() in order to
501
                                avoid strict-aliasing warnings */
502
0
        memset(&state, 0, sizeof(state));
503
0
        state.v1 = seed + PRIME32_1 + PRIME32_2;
504
0
        state.v2 = seed + PRIME32_2;
505
0
        state.v3 = seed + 0;
506
0
        state.v4 = seed - PRIME32_1;
507
        /* do not write into reserved, planned to be removed in a future version
508
         */
509
0
        memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
510
0
        return XXH_OK;
511
0
}
512
513
514
FORCE_INLINE XXH_errorcode XXH32_update_endian(XXH32_state_t *state,
515
                                               const void *input,
516
                                               size_t len,
517
0
                                               XXH_endianess endian) {
518
0
        if (input == NULL)
519
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) &&                                  \
520
    (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
521
                return XXH_OK;
522
#else
523
0
                return XXH_ERROR;
524
0
#endif
525
526
0
        {
527
0
                const BYTE *p          = (const BYTE *)input;
528
0
                const BYTE *const bEnd = p + len;
529
530
0
                state->total_len_32 += (unsigned)len;
531
0
                state->large_len |= (len >= 16) | (state->total_len_32 >= 16);
532
533
0
                if (state->memsize + len < 16) { /* fill in tmp buffer */
534
0
                        XXH_memcpy((BYTE *)(state->mem32) + state->memsize,
535
0
                                   input, len);
536
0
                        state->memsize += (unsigned)len;
537
0
                        return XXH_OK;
538
0
                }
539
540
0
                if (state->memsize) { /* some data left from previous update */
541
0
                        XXH_memcpy((BYTE *)(state->mem32) + state->memsize,
542
0
                                   input, 16 - state->memsize);
543
0
                        {
544
0
                                const U32 *p32 = state->mem32;
545
0
                                state->v1      = XXH32_round(
546
0
                                    state->v1, XXH_readLE32(p32, endian));
547
0
                                p32++;
548
0
                                state->v2 = XXH32_round(
549
0
                                    state->v2, XXH_readLE32(p32, endian));
550
0
                                p32++;
551
0
                                state->v3 = XXH32_round(
552
0
                                    state->v3, XXH_readLE32(p32, endian));
553
0
                                p32++;
554
0
                                state->v4 = XXH32_round(
555
0
                                    state->v4, XXH_readLE32(p32, endian));
556
0
                        }
557
0
                        p += 16 - state->memsize;
558
0
                        state->memsize = 0;
559
0
                }
560
561
0
                if (p <= bEnd - 16) {
562
0
                        const BYTE *const limit = bEnd - 16;
563
0
                        U32 v1                  = state->v1;
564
0
                        U32 v2                  = state->v2;
565
0
                        U32 v3                  = state->v3;
566
0
                        U32 v4                  = state->v4;
567
568
0
                        do {
569
0
                                v1 = XXH32_round(v1, XXH_readLE32(p, endian));
570
0
                                p += 4;
571
0
                                v2 = XXH32_round(v2, XXH_readLE32(p, endian));
572
0
                                p += 4;
573
0
                                v3 = XXH32_round(v3, XXH_readLE32(p, endian));
574
0
                                p += 4;
575
0
                                v4 = XXH32_round(v4, XXH_readLE32(p, endian));
576
0
                                p += 4;
577
0
                        } while (p <= limit);
578
579
0
                        state->v1 = v1;
580
0
                        state->v2 = v2;
581
0
                        state->v3 = v3;
582
0
                        state->v4 = v4;
583
0
                }
584
585
0
                if (p < bEnd) {
586
0
                        XXH_memcpy(state->mem32, p, (size_t)(bEnd - p));
587
0
                        state->memsize = (unsigned)(bEnd - p);
588
0
                }
589
0
        }
590
591
0
        return XXH_OK;
592
0
}
593
594
595
XXH_PUBLIC_API XXH_errorcode XXH32_update(XXH32_state_t *state_in,
596
                                          const void *input,
597
0
                                          size_t len) {
598
0
        XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
599
600
0
        if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
601
0
                return XXH32_update_endian(state_in, input, len,
602
0
                                           XXH_littleEndian);
603
0
        else
604
0
                return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
605
0
}
606
607
608
FORCE_INLINE U32 XXH32_digest_endian(const XXH32_state_t *state,
609
0
                                     XXH_endianess endian) {
610
0
        U32 h32;
611
612
0
        if (state->large_len) {
613
0
                h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) +
614
0
                      XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
615
0
        } else {
616
0
                h32 = state->v3 /* == seed */ + PRIME32_5;
617
0
        }
618
619
0
        h32 += state->total_len_32;
620
621
0
        return XXH32_finalize(h32, state->mem32, state->memsize, endian,
622
0
                              XXH_aligned);
623
0
}
624
625
626
0
XXH_PUBLIC_API unsigned int XXH32_digest(const XXH32_state_t *state_in) {
627
0
        XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
628
629
0
        if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
630
0
                return XXH32_digest_endian(state_in, XXH_littleEndian);
631
0
        else
632
0
                return XXH32_digest_endian(state_in, XXH_bigEndian);
633
0
}
634
635
636
/*======   Canonical representation   ======*/
637
638
/*! Default XXH result types are basic unsigned 32 and 64 bits.
639
 *   The canonical representation follows human-readable write convention, aka
640
 * big-endian (large digits first). These functions allow transformation of hash
641
 * result into and from its canonical format. This way, hash values can be
642
 * written into a file or buffer, remaining comparable across different systems.
643
 */
644
645
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t *dst,
646
0
                                            XXH32_hash_t hash) {
647
0
        XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
648
0
        if (XXH_CPU_LITTLE_ENDIAN)
649
0
                hash = XXH_swap32(hash);
650
0
        memcpy(dst, &hash, sizeof(*dst));
651
0
}
652
653
XXH_PUBLIC_API XXH32_hash_t
654
0
XXH32_hashFromCanonical(const XXH32_canonical_t *src) {
655
0
        return XXH_readBE32(src);
656
0
}
657
658
659
#ifndef XXH_NO_LONG_LONG
660
661
/* *******************************************************************
662
 *  64-bit hash functions
663
 *********************************************************************/
664
665
/*======   Memory access   ======*/
666
667
#ifndef MEM_MODULE
668
#define MEM_MODULE
669
#if !defined(__VMS) &&                                                         \
670
    (defined(__cplusplus) ||                                                   \
671
     (defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */))
672
#include <stdint.h>
673
typedef uint64_t U64;
674
#else
675
/* if compiler doesn't support unsigned long long, replace by another 64-bit
676
 * type */
677
typedef unsigned long long U64;
678
#endif
679
#endif
680
681
682
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 2))
683
684
/* Force direct memory access. Only works on CPU which support unaligned memory
685
 * access in hardware */
686
static U64 XXH_read64(const void *memPtr) {
687
        return *(const U64 *)memPtr;
688
}
689
690
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS == 1))
691
692
/* __pack instructions are safer, but compiler specific, hence potentially
693
 * problematic for some compilers */
694
/* currently only defined for gcc and icc */
695
typedef union {
696
        U32 u32;
697
        U64 u64;
698
} __attribute__((packed)) unalign64;
699
static U64 XXH_read64(const void *ptr) {
700
        return ((const unalign64 *)ptr)->u64;
701
}
702
703
#else
704
705
/* portable and safe solution. Generally efficient.
706
 * see : http://stackoverflow.com/a/32095106/646947
707
 */
708
709
0
static U64 XXH_read64(const void *memPtr) {
710
0
        U64 val;
711
0
        memcpy(&val, memPtr, sizeof(val));
712
0
        return val;
713
0
}
714
715
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
716
717
#if defined(_MSC_VER) /* Visual Studio */
718
#define XXH_swap64 _byteswap_uint64
719
#elif XXH_GCC_VERSION >= 403
720
#define XXH_swap64 __builtin_bswap64
721
#else
722
0
static U64 XXH_swap64(U64 x) {
723
0
        return ((x << 56) & 0xff00000000000000ULL) |
724
0
               ((x << 40) & 0x00ff000000000000ULL) |
725
0
               ((x << 24) & 0x0000ff0000000000ULL) |
726
0
               ((x << 8) & 0x000000ff00000000ULL) |
727
0
               ((x >> 8) & 0x00000000ff000000ULL) |
728
0
               ((x >> 24) & 0x0000000000ff0000ULL) |
729
0
               ((x >> 40) & 0x000000000000ff00ULL) |
730
0
               ((x >> 56) & 0x00000000000000ffULL);
731
0
}
732
#endif
733
734
FORCE_INLINE U64 XXH_readLE64_align(const void *ptr,
735
                                    XXH_endianess endian,
736
0
                                    XXH_alignment align) {
737
0
        if (align == XXH_unaligned)
738
0
                return endian == XXH_littleEndian ? XXH_read64(ptr)
739
0
                                                  : XXH_swap64(XXH_read64(ptr));
740
0
        else
741
0
                return endian == XXH_littleEndian
742
0
                           ? *(const U64 *)ptr
743
0
                           : XXH_swap64(*(const U64 *)ptr);
744
0
}
745
746
0
FORCE_INLINE U64 XXH_readLE64(const void *ptr, XXH_endianess endian) {
747
0
        return XXH_readLE64_align(ptr, endian, XXH_unaligned);
748
0
}
749
750
0
static U64 XXH_readBE64(const void *ptr) {
751
0
        return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr))
752
0
                                     : XXH_read64(ptr);
753
0
}
754
755
756
/*======   xxh64   ======*/
757
758
static const U64 PRIME64_1 = 11400714785074694791ULL;
759
static const U64 PRIME64_2 = 14029467366897019727ULL;
760
static const U64 PRIME64_3 = 1609587929392839161ULL;
761
static const U64 PRIME64_4 = 9650029242287828579ULL;
762
static const U64 PRIME64_5 = 2870177450012600261ULL;
763
764
0
static U64 XXH64_round(U64 acc, U64 input) {
765
0
        acc += input * PRIME64_2;
766
0
        acc = XXH_rotl64(acc, 31);
767
0
        acc *= PRIME64_1;
768
0
        return acc;
769
0
}
770
771
0
static U64 XXH64_mergeRound(U64 acc, U64 val) {
772
0
        val = XXH64_round(0, val);
773
0
        acc ^= val;
774
0
        acc = acc * PRIME64_1 + PRIME64_4;
775
0
        return acc;
776
0
}
777
778
0
static U64 XXH64_avalanche(U64 h64) {
779
0
        h64 ^= h64 >> 33;
780
0
        h64 *= PRIME64_2;
781
0
        h64 ^= h64 >> 29;
782
0
        h64 *= PRIME64_3;
783
0
        h64 ^= h64 >> 32;
784
0
        return h64;
785
0
}
786
787
788
0
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
789
790
static U64 XXH64_finalize(U64 h64,
791
                          const void *ptr,
792
                          size_t len,
793
                          XXH_endianess endian,
794
0
                          XXH_alignment align) {
795
0
        const BYTE *p = (const BYTE *)ptr;
796
797
0
#define PROCESS1_64                                                            \
798
0
        h64 ^= (*p++) * PRIME64_5;                                             \
799
0
        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
800
801
0
#define PROCESS4_64                                                            \
802
0
        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;                            \
803
0
        p += 4;                                                                \
804
0
        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
805
806
0
#define PROCESS8_64                                                            \
807
0
        {                                                                      \
808
0
                U64 const k1 = XXH64_round(0, XXH_get64bits(p));               \
809
0
                p += 8;                                                        \
810
0
                h64 ^= k1;                                                     \
811
0
                h64 = XXH_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;             \
812
0
        }
813
814
0
        switch (len & 31) {
815
0
        case 24:
816
0
                PROCESS8_64;
817
                /* fallthrough */
818
0
        case 16:
819
0
                PROCESS8_64;
820
                /* fallthrough */
821
0
        case 8:
822
0
                PROCESS8_64;
823
0
                return XXH64_avalanche(h64);
824
825
0
        case 28:
826
0
                PROCESS8_64;
827
                /* fallthrough */
828
0
        case 20:
829
0
                PROCESS8_64;
830
                /* fallthrough */
831
0
        case 12:
832
0
                PROCESS8_64;
833
                /* fallthrough */
834
0
        case 4:
835
0
                PROCESS4_64;
836
0
                return XXH64_avalanche(h64);
837
838
0
        case 25:
839
0
                PROCESS8_64;
840
                /* fallthrough */
841
0
        case 17:
842
0
                PROCESS8_64;
843
                /* fallthrough */
844
0
        case 9:
845
0
                PROCESS8_64;
846
0
                PROCESS1_64;
847
0
                return XXH64_avalanche(h64);
848
849
0
        case 29:
850
0
                PROCESS8_64;
851
                /* fallthrough */
852
0
        case 21:
853
0
                PROCESS8_64;
854
                /* fallthrough */
855
0
        case 13:
856
0
                PROCESS8_64;
857
                /* fallthrough */
858
0
        case 5:
859
0
                PROCESS4_64;
860
0
                PROCESS1_64;
861
0
                return XXH64_avalanche(h64);
862
863
0
        case 26:
864
0
                PROCESS8_64;
865
                /* fallthrough */
866
0
        case 18:
867
0
                PROCESS8_64;
868
                /* fallthrough */
869
0
        case 10:
870
0
                PROCESS8_64;
871
0
                PROCESS1_64;
872
0
                PROCESS1_64;
873
0
                return XXH64_avalanche(h64);
874
875
0
        case 30:
876
0
                PROCESS8_64;
877
                /* fallthrough */
878
0
        case 22:
879
0
                PROCESS8_64;
880
                /* fallthrough */
881
0
        case 14:
882
0
                PROCESS8_64;
883
                /* fallthrough */
884
0
        case 6:
885
0
                PROCESS4_64;
886
0
                PROCESS1_64;
887
0
                PROCESS1_64;
888
0
                return XXH64_avalanche(h64);
889
890
0
        case 27:
891
0
                PROCESS8_64;
892
                /* fallthrough */
893
0
        case 19:
894
0
                PROCESS8_64;
895
                /* fallthrough */
896
0
        case 11:
897
0
                PROCESS8_64;
898
0
                PROCESS1_64;
899
0
                PROCESS1_64;
900
0
                PROCESS1_64;
901
0
                return XXH64_avalanche(h64);
902
903
0
        case 31:
904
0
                PROCESS8_64;
905
                /* fallthrough */
906
0
        case 23:
907
0
                PROCESS8_64;
908
                /* fallthrough */
909
0
        case 15:
910
0
                PROCESS8_64;
911
                /* fallthrough */
912
0
        case 7:
913
0
                PROCESS4_64;
914
                /* fallthrough */
915
0
        case 3:
916
0
                PROCESS1_64;
917
                /* fallthrough */
918
0
        case 2:
919
0
                PROCESS1_64;
920
                /* fallthrough */
921
0
        case 1:
922
0
                PROCESS1_64;
923
                /* fallthrough */
924
0
        case 0:
925
0
                return XXH64_avalanche(h64);
926
0
        }
927
928
        /* impossible to reach */
929
0
        assert(0);
930
0
        return 0; /* unreachable, but some compilers complain without it */
931
0
}
932
933
FORCE_INLINE U64 XXH64_endian_align(const void *input,
934
                                    size_t len,
935
                                    U64 seed,
936
                                    XXH_endianess endian,
937
0
                                    XXH_alignment align) {
938
0
        const BYTE *p    = (const BYTE *)input;
939
0
        const BYTE *bEnd = p + len;
940
0
        U64 h64;
941
942
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) &&                                  \
943
    (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
944
        if (p == NULL) {
945
                len  = 0;
946
                bEnd = p = (const BYTE *)(size_t)32;
947
        }
948
#endif
949
950
0
        if (len >= 32) {
951
0
                const BYTE *const limit = bEnd - 32;
952
0
                U64 v1                  = seed + PRIME64_1 + PRIME64_2;
953
0
                U64 v2                  = seed + PRIME64_2;
954
0
                U64 v3                  = seed + 0;
955
0
                U64 v4                  = seed - PRIME64_1;
956
957
0
                do {
958
0
                        v1 = XXH64_round(v1, XXH_get64bits(p));
959
0
                        p += 8;
960
0
                        v2 = XXH64_round(v2, XXH_get64bits(p));
961
0
                        p += 8;
962
0
                        v3 = XXH64_round(v3, XXH_get64bits(p));
963
0
                        p += 8;
964
0
                        v4 = XXH64_round(v4, XXH_get64bits(p));
965
0
                        p += 8;
966
0
                } while (p <= limit);
967
968
0
                h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) +
969
0
                      XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
970
0
                h64 = XXH64_mergeRound(h64, v1);
971
0
                h64 = XXH64_mergeRound(h64, v2);
972
0
                h64 = XXH64_mergeRound(h64, v3);
973
0
                h64 = XXH64_mergeRound(h64, v4);
974
975
0
        } else {
976
0
                h64 = seed + PRIME64_5;
977
0
        }
978
979
0
        h64 += (U64)len;
980
981
0
        return XXH64_finalize(h64, p, len, endian, align);
982
0
}
983
984
985
XXH_PUBLIC_API unsigned long long
986
0
XXH64(const void *input, size_t len, unsigned long long seed) {
987
#if 0
988
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
989
    XXH64_state_t state;
990
    XXH64_reset(&state, seed);
991
    XXH64_update(&state, input, len);
992
    return XXH64_digest(&state);
993
#else
994
0
        XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
995
996
0
        if (XXH_FORCE_ALIGN_CHECK) {
997
0
                if ((((size_t)input) & 7) ==
998
0
                    0) { /* Input is aligned, let's leverage the speed advantage
999
                          */
1000
0
                        if ((endian_detected == XXH_littleEndian) ||
1001
0
                            XXH_FORCE_NATIVE_FORMAT)
1002
0
                                return XXH64_endian_align(input, len, seed,
1003
0
                                                          XXH_littleEndian,
1004
0
                                                          XXH_aligned);
1005
0
                        else
1006
0
                                return XXH64_endian_align(input, len, seed,
1007
0
                                                          XXH_bigEndian,
1008
0
                                                          XXH_aligned);
1009
0
                }
1010
0
        }
1011
1012
0
        if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
1013
0
                return XXH64_endian_align(input, len, seed, XXH_littleEndian,
1014
0
                                          XXH_unaligned);
1015
0
        else
1016
0
                return XXH64_endian_align(input, len, seed, XXH_bigEndian,
1017
0
                                          XXH_unaligned);
1018
0
#endif
1019
0
}
1020
1021
/*======   Hash Streaming   ======*/
1022
1023
0
XXH_PUBLIC_API XXH64_state_t *XXH64_createState(void) {
1024
0
        return (XXH64_state_t *)XXH_malloc(sizeof(XXH64_state_t));
1025
0
}
1026
0
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t *statePtr) {
1027
0
        XXH_free(statePtr);
1028
0
        return XXH_OK;
1029
0
}
1030
1031
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t *dstState,
1032
0
                                    const XXH64_state_t *srcState) {
1033
0
        memcpy(dstState, srcState, sizeof(*dstState));
1034
0
}
1035
1036
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t *statePtr,
1037
0
                                         unsigned long long seed) {
1038
0
        XXH64_state_t state; /* using a local state to memcpy() in order to
1039
                                avoid strict-aliasing warnings */
1040
0
        memset(&state, 0, sizeof(state));
1041
0
        state.v1 = seed + PRIME64_1 + PRIME64_2;
1042
0
        state.v2 = seed + PRIME64_2;
1043
0
        state.v3 = seed + 0;
1044
0
        state.v4 = seed - PRIME64_1;
1045
        /* do not write into reserved, planned to be removed in a future version
1046
         */
1047
0
        memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
1048
0
        return XXH_OK;
1049
0
}
1050
1051
FORCE_INLINE XXH_errorcode XXH64_update_endian(XXH64_state_t *state,
1052
                                               const void *input,
1053
                                               size_t len,
1054
0
                                               XXH_endianess endian) {
1055
0
        if (input == NULL)
1056
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) &&                                  \
1057
    (XXH_ACCEPT_NULL_INPUT_POINTER >= 1)
1058
                return XXH_OK;
1059
#else
1060
0
                return XXH_ERROR;
1061
0
#endif
1062
1063
0
        {
1064
0
                const BYTE *p          = (const BYTE *)input;
1065
0
                const BYTE *const bEnd = p + len;
1066
1067
0
                state->total_len += len;
1068
1069
0
                if (state->memsize + len < 32) { /* fill in tmp buffer */
1070
0
                        XXH_memcpy(((BYTE *)state->mem64) + state->memsize,
1071
0
                                   input, len);
1072
0
                        state->memsize += (U32)len;
1073
0
                        return XXH_OK;
1074
0
                }
1075
1076
0
                if (state->memsize) { /* tmp buffer is full */
1077
0
                        XXH_memcpy(((BYTE *)state->mem64) + state->memsize,
1078
0
                                   input, 32 - state->memsize);
1079
0
                        state->v1 = XXH64_round(
1080
0
                            state->v1, XXH_readLE64(state->mem64 + 0, endian));
1081
0
                        state->v2 = XXH64_round(
1082
0
                            state->v2, XXH_readLE64(state->mem64 + 1, endian));
1083
0
                        state->v3 = XXH64_round(
1084
0
                            state->v3, XXH_readLE64(state->mem64 + 2, endian));
1085
0
                        state->v4 = XXH64_round(
1086
0
                            state->v4, XXH_readLE64(state->mem64 + 3, endian));
1087
0
                        p += 32 - state->memsize;
1088
0
                        state->memsize = 0;
1089
0
                }
1090
1091
0
                if (p + 32 <= bEnd) {
1092
0
                        const BYTE *const limit = bEnd - 32;
1093
0
                        U64 v1                  = state->v1;
1094
0
                        U64 v2                  = state->v2;
1095
0
                        U64 v3                  = state->v3;
1096
0
                        U64 v4                  = state->v4;
1097
1098
0
                        do {
1099
0
                                v1 = XXH64_round(v1, XXH_readLE64(p, endian));
1100
0
                                p += 8;
1101
0
                                v2 = XXH64_round(v2, XXH_readLE64(p, endian));
1102
0
                                p += 8;
1103
0
                                v3 = XXH64_round(v3, XXH_readLE64(p, endian));
1104
0
                                p += 8;
1105
0
                                v4 = XXH64_round(v4, XXH_readLE64(p, endian));
1106
0
                                p += 8;
1107
0
                        } while (p <= limit);
1108
1109
0
                        state->v1 = v1;
1110
0
                        state->v2 = v2;
1111
0
                        state->v3 = v3;
1112
0
                        state->v4 = v4;
1113
0
                }
1114
1115
0
                if (p < bEnd) {
1116
0
                        XXH_memcpy(state->mem64, p, (size_t)(bEnd - p));
1117
0
                        state->memsize = (unsigned)(bEnd - p);
1118
0
                }
1119
0
        }
1120
1121
0
        return XXH_OK;
1122
0
}
1123
1124
XXH_PUBLIC_API XXH_errorcode XXH64_update(XXH64_state_t *state_in,
1125
                                          const void *input,
1126
0
                                          size_t len) {
1127
0
        XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
1128
1129
0
        if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
1130
0
                return XXH64_update_endian(state_in, input, len,
1131
0
                                           XXH_littleEndian);
1132
0
        else
1133
0
                return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
1134
0
}
1135
1136
FORCE_INLINE U64 XXH64_digest_endian(const XXH64_state_t *state,
1137
0
                                     XXH_endianess endian) {
1138
0
        U64 h64;
1139
1140
0
        if (state->total_len >= 32) {
1141
0
                U64 const v1 = state->v1;
1142
0
                U64 const v2 = state->v2;
1143
0
                U64 const v3 = state->v3;
1144
0
                U64 const v4 = state->v4;
1145
1146
0
                h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) +
1147
0
                      XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
1148
0
                h64 = XXH64_mergeRound(h64, v1);
1149
0
                h64 = XXH64_mergeRound(h64, v2);
1150
0
                h64 = XXH64_mergeRound(h64, v3);
1151
0
                h64 = XXH64_mergeRound(h64, v4);
1152
0
        } else {
1153
0
                h64 = state->v3 /*seed*/ + PRIME64_5;
1154
0
        }
1155
1156
0
        h64 += (U64)state->total_len;
1157
1158
0
        return XXH64_finalize(h64, state->mem64, (size_t)state->total_len,
1159
0
                              endian, XXH_aligned);
1160
0
}
1161
1162
0
XXH_PUBLIC_API unsigned long long XXH64_digest(const XXH64_state_t *state_in) {
1163
0
        XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
1164
1165
0
        if ((endian_detected == XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
1166
0
                return XXH64_digest_endian(state_in, XXH_littleEndian);
1167
0
        else
1168
0
                return XXH64_digest_endian(state_in, XXH_bigEndian);
1169
0
}
1170
1171
1172
/*====== Canonical representation   ======*/
1173
1174
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t *dst,
1175
0
                                            XXH64_hash_t hash) {
1176
0
        XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
1177
0
        if (XXH_CPU_LITTLE_ENDIAN)
1178
0
                hash = XXH_swap64(hash);
1179
0
        memcpy(dst, &hash, sizeof(*dst));
1180
0
}
1181
1182
XXH_PUBLIC_API XXH64_hash_t
1183
0
XXH64_hashFromCanonical(const XXH64_canonical_t *src) {
1184
0
        return XXH_readBE64(src);
1185
0
}
1186
1187
#endif /* XXH_NO_LONG_LONG */