/rust/registry/src/index.crates.io-1949cf8c6b5b557f/kurbo-0.12.0/src/common.rs
Line | Count | Source |
1 | | // Copyright 2018 the Kurbo Authors |
2 | | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | | |
4 | | //! Common mathematical operations |
5 | | |
6 | | #![allow(missing_docs)] |
7 | | |
8 | | #[cfg(not(feature = "std"))] |
9 | | mod sealed { |
10 | | /// A [sealed trait](https://predr.ag/blog/definitive-guide-to-sealed-traits-in-rust/) |
11 | | /// which stops [`super::FloatFuncs`] from being implemented outside kurbo. This could |
12 | | /// be relaxed in the future if there is are good reasons to allow external impls. |
13 | | /// The benefit from being sealed is that we can add methods without breaking downstream |
14 | | /// implementations. |
15 | | pub trait FloatFuncsSealed {} |
16 | | } |
17 | | |
18 | | use arrayvec::ArrayVec; |
19 | | |
20 | | /// Defines a trait that chooses between libstd or libm implementations of float methods. |
21 | | /// |
22 | | /// Some methods will eventually became available in core by |
23 | | /// [`core_float_math`](https://github.com/rust-lang/rust/issues/137578) |
24 | | macro_rules! define_float_funcs { |
25 | | ($( |
26 | | fn $name:ident(self $(,$arg:ident: $arg_ty:ty)*) -> $ret:ty |
27 | | => $lname:ident/$lfname:ident; |
28 | | )+) => { |
29 | | |
30 | | /// Since core doesn't depend upon libm, this provides libm implementations |
31 | | /// of float functions which are typically provided by the std library, when |
32 | | /// the `std` feature is not enabled. |
33 | | /// |
34 | | /// For documentation see the respective functions in the std library. |
35 | | #[cfg(not(feature = "std"))] |
36 | | pub trait FloatFuncs : Sized + sealed::FloatFuncsSealed { |
37 | | /// For documentation see <https://doc.rust-lang.org/std/primitive.f64.html#method.signum> |
38 | | /// |
39 | | /// Special implementation, because libm doesn't have it. |
40 | | fn signum(self) -> Self; |
41 | | |
42 | | /// For documentation see <https://doc.rust-lang.org/std/primitive.f64.html#method.rem_euclid> |
43 | | /// |
44 | | /// Special implementation, because libm doesn't have it. |
45 | | fn rem_euclid(self, rhs: Self) -> Self; |
46 | | |
47 | | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret;)+ |
48 | | } |
49 | | |
50 | | #[cfg(not(feature = "std"))] |
51 | | impl sealed::FloatFuncsSealed for f32 {} |
52 | | |
53 | | #[cfg(not(feature = "std"))] |
54 | | impl FloatFuncs for f32 { |
55 | | #[inline] |
56 | | fn signum(self) -> f32 { |
57 | | if self.is_nan() { |
58 | | f32::NAN |
59 | | } else { |
60 | | 1.0_f32.copysign(self) |
61 | | } |
62 | | } |
63 | | |
64 | | #[inline] |
65 | | fn rem_euclid(self, rhs: Self) -> Self { |
66 | | let r = self % rhs; |
67 | | if r < 0.0 { |
68 | | r + rhs.abs() |
69 | | } else { |
70 | | r |
71 | | } |
72 | | } |
73 | | |
74 | | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret { |
75 | | #[cfg(feature = "libm")] |
76 | | return libm::$lfname(self $(,$arg as _)*); |
77 | | |
78 | | #[cfg(not(feature = "libm"))] |
79 | | compile_error!("kurbo requires either the `std` or `libm` feature") |
80 | | })+ |
81 | | } |
82 | | |
83 | | #[cfg(not(feature = "std"))] |
84 | | impl sealed::FloatFuncsSealed for f64 {} |
85 | | #[cfg(not(feature = "std"))] |
86 | | impl FloatFuncs for f64 { |
87 | | #[inline] |
88 | | fn signum(self) -> f64 { |
89 | | if self.is_nan() { |
90 | | f64::NAN |
91 | | } else { |
92 | | 1.0_f64.copysign(self) |
93 | | } |
94 | | } |
95 | | |
96 | | #[inline] |
97 | | fn rem_euclid(self, rhs: Self) -> Self { |
98 | | let r = self % rhs; |
99 | | if r < 0.0 { |
100 | | r + rhs.abs() |
101 | | } else { |
102 | | r |
103 | | } |
104 | | } |
105 | | |
106 | | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret { |
107 | | #[cfg(feature = "libm")] |
108 | | return libm::$lname(self $(,$arg as _)*); |
109 | | |
110 | | #[cfg(not(feature = "libm"))] |
111 | | compile_error!("kurbo requires either the `std` or `libm` feature") |
112 | | })+ |
113 | | } |
114 | | } |
115 | | } |
116 | | |
117 | | define_float_funcs! { |
118 | | fn abs(self) -> Self => fabs/fabsf; |
119 | | fn acos(self) -> Self => acos/acosf; |
120 | | fn atan2(self, other: Self) -> Self => atan2/atan2f; |
121 | | fn cbrt(self) -> Self => cbrt/cbrtf; |
122 | | fn ceil(self) -> Self => ceil/ceilf; |
123 | | fn cos(self) -> Self => cos/cosf; |
124 | | fn copysign(self, sign: Self) -> Self => copysign/copysignf; |
125 | | fn floor(self) -> Self => floor/floorf; |
126 | | fn hypot(self, other: Self) -> Self => hypot/hypotf; |
127 | | fn ln(self) -> Self => log/logf; |
128 | | fn log2(self) -> Self => log2/log2f; |
129 | | fn mul_add(self, a: Self, b: Self) -> Self => fma/fmaf; |
130 | | fn powi(self, n: i32) -> Self => pow/powf; |
131 | | fn powf(self, n: Self) -> Self => pow/powf; |
132 | | fn round(self) -> Self => round/roundf; |
133 | | fn sin(self) -> Self => sin/sinf; |
134 | | fn sin_cos(self) -> (Self, Self) => sincos/sincosf; |
135 | | fn sqrt(self) -> Self => sqrt/sqrtf; |
136 | | fn tan(self) -> Self => tan/tanf; |
137 | | fn trunc(self) -> Self => trunc/truncf; |
138 | | } |
139 | | |
140 | | /// Adds convenience methods to `f32` and `f64`. |
141 | | pub trait FloatExt<T> { |
142 | | /// Rounds to the nearest integer away from zero, |
143 | | /// unless the provided value is already an integer. |
144 | | /// |
145 | | /// It is to `ceil` what `trunc` is to `floor`. |
146 | | /// |
147 | | /// # Examples |
148 | | /// |
149 | | /// ``` |
150 | | /// use kurbo::common::FloatExt; |
151 | | /// |
152 | | /// let f = 3.7_f64; |
153 | | /// let g = 3.0_f64; |
154 | | /// let h = -3.7_f64; |
155 | | /// let i = -5.1_f32; |
156 | | /// |
157 | | /// assert_eq!(f.expand(), 4.0); |
158 | | /// assert_eq!(g.expand(), 3.0); |
159 | | /// assert_eq!(h.expand(), -4.0); |
160 | | /// assert_eq!(i.expand(), -6.0); |
161 | | /// ``` |
162 | | fn expand(&self) -> T; |
163 | | } |
164 | | |
165 | | impl FloatExt<f64> for f64 { |
166 | | #[inline] |
167 | 0 | fn expand(&self) -> f64 { |
168 | 0 | self.abs().ceil().copysign(*self) |
169 | 0 | } |
170 | | } |
171 | | |
172 | | impl FloatExt<f32> for f32 { |
173 | | #[inline] |
174 | 0 | fn expand(&self) -> f32 { |
175 | 0 | self.abs().ceil().copysign(*self) |
176 | 0 | } |
177 | | } |
178 | | |
179 | | /// Find real roots of cubic equation. |
180 | | /// |
181 | | /// The implementation is not (yet) fully robust, but it does handle the case |
182 | | /// where `c3` is zero (in that case, solving the quadratic equation). |
183 | | /// |
184 | | /// See: <https://momentsingraphics.de/CubicRoots.html> |
185 | | /// |
186 | | /// That implementation is in turn based on Jim Blinn's "How to Solve a Cubic |
187 | | /// Equation", which is masterful. |
188 | | /// |
189 | | /// Return values of x for which c0 + c1 x + c2 x² + c3 x³ = 0. |
190 | 0 | pub fn solve_cubic(c0: f64, c1: f64, c2: f64, c3: f64) -> ArrayVec<f64, 3> { |
191 | 0 | let mut result = ArrayVec::new(); |
192 | 0 | let c3_recip = c3.recip(); |
193 | | const ONETHIRD: f64 = 1. / 3.; |
194 | 0 | let scaled_c2 = c2 * (ONETHIRD * c3_recip); |
195 | 0 | let scaled_c1 = c1 * (ONETHIRD * c3_recip); |
196 | 0 | let scaled_c0 = c0 * c3_recip; |
197 | 0 | if !(scaled_c0.is_finite() && scaled_c1.is_finite() && scaled_c2.is_finite()) { |
198 | | // cubic coefficient is zero or nearly so. |
199 | 0 | return solve_quadratic(c0, c1, c2).iter().copied().collect(); |
200 | 0 | } |
201 | 0 | let (c0, c1, c2) = (scaled_c0, scaled_c1, scaled_c2); |
202 | | // (d0, d1, d2) is called "Delta" in article |
203 | 0 | let d0 = (-c2).mul_add(c2, c1); |
204 | 0 | let d1 = (-c1).mul_add(c2, c0); |
205 | 0 | let d2 = c2 * c0 - c1 * c1; |
206 | | // d is called "Discriminant" |
207 | 0 | let d = 4.0 * d0 * d2 - d1 * d1; |
208 | | // de is called "Depressed.x", Depressed.y = d0 |
209 | 0 | let de = (-2.0 * c2).mul_add(d0, d1); |
210 | | // TODO: handle the cases where these intermediate results overflow. |
211 | 0 | if d < 0.0 { |
212 | 0 | let sq = (-0.25 * d).sqrt(); |
213 | 0 | let r = -0.5 * de; |
214 | 0 | let t1 = (r + sq).cbrt() + (r - sq).cbrt(); |
215 | 0 | result.push(t1 - c2); |
216 | 0 | } else if d == 0.0 { |
217 | 0 | let t1 = (-d0).sqrt().copysign(de); |
218 | 0 | result.push(t1 - c2); |
219 | 0 | result.push(-2.0 * t1 - c2); |
220 | 0 | } else { |
221 | 0 | let th = d.sqrt().atan2(-de) * ONETHIRD; |
222 | 0 | // (th_cos, th_sin) is called "CubicRoot" |
223 | 0 | let (th_sin, th_cos) = th.sin_cos(); |
224 | 0 | // (r0, r1, r2) is called "Root" |
225 | 0 | let r0 = th_cos; |
226 | 0 | let ss3 = th_sin * 3.0f64.sqrt(); |
227 | 0 | let r1 = 0.5 * (-th_cos + ss3); |
228 | 0 | let r2 = 0.5 * (-th_cos - ss3); |
229 | 0 | let t = 2.0 * (-d0).sqrt(); |
230 | 0 | result.push(t.mul_add(r0, -c2)); |
231 | 0 | result.push(t.mul_add(r1, -c2)); |
232 | 0 | result.push(t.mul_add(r2, -c2)); |
233 | 0 | } |
234 | 0 | result |
235 | 0 | } |
236 | | |
237 | | /// Find real roots of quadratic equation. |
238 | | /// |
239 | | /// Return values of x for which c0 + c1 x + c2 x² = 0. |
240 | | /// |
241 | | /// This function tries to be quite numerically robust. If the equation |
242 | | /// is nearly linear, it will return the root ignoring the quadratic term; |
243 | | /// the other root might be out of representable range. In the degenerate |
244 | | /// case where all coefficients are zero, so that all values of x satisfy |
245 | | /// the equation, a single `0.0` is returned. |
246 | 0 | pub fn solve_quadratic(c0: f64, c1: f64, c2: f64) -> ArrayVec<f64, 2> { |
247 | 0 | let mut result = ArrayVec::new(); |
248 | 0 | let sc0 = c0 * c2.recip(); |
249 | 0 | let sc1 = c1 * c2.recip(); |
250 | 0 | if !sc0.is_finite() || !sc1.is_finite() { |
251 | | // c2 is zero or very small, treat as linear eqn |
252 | 0 | let root = -c0 / c1; |
253 | 0 | if root.is_finite() { |
254 | 0 | result.push(root); |
255 | 0 | } else if c0 == 0.0 && c1 == 0.0 { |
256 | 0 | // Degenerate case |
257 | 0 | result.push(0.0); |
258 | 0 | } |
259 | 0 | return result; |
260 | 0 | } |
261 | 0 | let arg = sc1 * sc1 - 4. * sc0; |
262 | 0 | let root1 = if !arg.is_finite() { |
263 | | // Likely, calculation of sc1 * sc1 overflowed. Find one root |
264 | | // using sc1 x + x² = 0, other root as sc0 / root1. |
265 | 0 | -sc1 |
266 | | } else { |
267 | 0 | if arg < 0.0 { |
268 | 0 | return result; |
269 | 0 | } else if arg == 0.0 { |
270 | 0 | result.push(-0.5 * sc1); |
271 | 0 | return result; |
272 | 0 | } |
273 | | // See https://math.stackexchange.com/questions/866331 |
274 | 0 | -0.5 * (sc1 + arg.sqrt().copysign(sc1)) |
275 | | }; |
276 | 0 | let root2 = sc0 / root1; |
277 | 0 | if root2.is_finite() { |
278 | | // Sort just to be friendly and make results deterministic. |
279 | 0 | if root2 > root1 { |
280 | 0 | result.push(root1); |
281 | 0 | result.push(root2); |
282 | 0 | } else { |
283 | 0 | result.push(root2); |
284 | 0 | result.push(root1); |
285 | 0 | } |
286 | 0 | } else { |
287 | 0 | result.push(root1); |
288 | 0 | } |
289 | 0 | result |
290 | 0 | } |
291 | | |
292 | | /// Compute epsilon relative to coefficient. |
293 | | /// |
294 | | /// A helper function from the Orellana and De Michele paper. |
295 | 0 | fn eps_rel(raw: f64, a: f64) -> f64 { |
296 | 0 | if a == 0.0 { |
297 | 0 | raw.abs() |
298 | | } else { |
299 | 0 | ((raw - a) / a).abs() |
300 | | } |
301 | 0 | } |
302 | | |
303 | | /// Find real roots of a quartic equation. |
304 | | /// |
305 | | /// This is a fairly literal implementation of the method described in: |
306 | | /// Algorithm 1010: Boosting Efficiency in Solving Quartic Equations with |
307 | | /// No Compromise in Accuracy, Orellana and De Michele, ACM |
308 | | /// Transactions on Mathematical Software, Vol. 46, No. 2, May 2020. |
309 | 0 | pub fn solve_quartic(c0: f64, c1: f64, c2: f64, c3: f64, c4: f64) -> ArrayVec<f64, 4> { |
310 | 0 | if c4 == 0.0 { |
311 | 0 | return solve_cubic(c0, c1, c2, c3).iter().copied().collect(); |
312 | 0 | } |
313 | 0 | if c0 == 0.0 { |
314 | | // Note: appends 0 root at end, doesn't sort. We might want to do that. |
315 | 0 | return solve_cubic(c1, c2, c3, c4) |
316 | 0 | .iter() |
317 | 0 | .copied() |
318 | 0 | .chain(Some(0.0)) |
319 | 0 | .collect(); |
320 | 0 | } |
321 | 0 | let a = c3 / c4; |
322 | 0 | let b = c2 / c4; |
323 | 0 | let c = c1 / c4; |
324 | 0 | let d = c0 / c4; |
325 | 0 | if let Some(result) = solve_quartic_inner(a, b, c, d, false) { |
326 | 0 | return result; |
327 | 0 | } |
328 | | // Do polynomial rescaling |
329 | | const K_Q: f64 = 7.16e76; |
330 | 0 | for rescale in [false, true] { |
331 | 0 | if let Some(result) = solve_quartic_inner( |
332 | 0 | a / K_Q, |
333 | 0 | b / K_Q.powi(2), |
334 | 0 | c / K_Q.powi(3), |
335 | 0 | d / K_Q.powi(4), |
336 | 0 | rescale, |
337 | 0 | ) { |
338 | 0 | return result.iter().map(|x| x * K_Q).collect(); |
339 | 0 | } |
340 | | } |
341 | | // Overflow happened, just return no roots. |
342 | | //println!("overflow, no roots returned"); |
343 | 0 | ArrayVec::default() |
344 | 0 | } |
345 | | |
346 | 0 | fn solve_quartic_inner(a: f64, b: f64, c: f64, d: f64, rescale: bool) -> Option<ArrayVec<f64, 4>> { |
347 | 0 | factor_quartic_inner(a, b, c, d, rescale).map(|quadratics| { |
348 | 0 | quadratics |
349 | 0 | .iter() |
350 | 0 | .flat_map(|(a, b)| solve_quadratic(*b, *a, 1.0)) |
351 | 0 | .collect() |
352 | 0 | }) |
353 | 0 | } |
354 | | |
355 | | /// Factor a quartic into two quadratics. |
356 | | /// |
357 | | /// Attempt to factor a quartic equation into two quadratic equations. Returns `None` either if there |
358 | | /// is overflow (in which case rescaling might succeed) or the factorization would result in |
359 | | /// complex coefficients. |
360 | | /// |
361 | | /// Discussion question: distinguish the two cases in return value? |
362 | 0 | pub fn factor_quartic_inner( |
363 | 0 | a: f64, |
364 | 0 | b: f64, |
365 | 0 | c: f64, |
366 | 0 | d: f64, |
367 | 0 | rescale: bool, |
368 | 0 | ) -> Option<ArrayVec<(f64, f64), 2>> { |
369 | 0 | let calc_eps_q = |a1, b1, a2, b2| { |
370 | 0 | let eps_a = eps_rel(a1 + a2, a); |
371 | 0 | let eps_b = eps_rel(b1 + a1 * a2 + b2, b); |
372 | 0 | let eps_c = eps_rel(b1 * a2 + a1 * b2, c); |
373 | 0 | eps_a + eps_b + eps_c |
374 | 0 | }; |
375 | 0 | let calc_eps_t = |a1, b1, a2, b2| calc_eps_q(a1, b1, a2, b2) + eps_rel(b1 * b2, d); |
376 | 0 | let disc = 9. * a * a - 24. * b; |
377 | 0 | let s = if disc >= 0.0 { |
378 | 0 | -2. * b / (3. * a + disc.sqrt().copysign(a)) |
379 | | } else { |
380 | 0 | -0.25 * a |
381 | | }; |
382 | 0 | let a_prime = a + 4. * s; |
383 | 0 | let b_prime = b + 3. * s * (a + 2. * s); |
384 | 0 | let c_prime = c + s * (2. * b + s * (3. * a + 4. * s)); |
385 | 0 | let d_prime = d + s * (c + s * (b + s * (a + s))); |
386 | | let g_prime; |
387 | | let h_prime; |
388 | | const K_C: f64 = 3.49e102; |
389 | 0 | if rescale { |
390 | 0 | let a_prime_s = a_prime / K_C; |
391 | 0 | let b_prime_s = b_prime / K_C; |
392 | 0 | let c_prime_s = c_prime / K_C; |
393 | 0 | let d_prime_s = d_prime / K_C; |
394 | 0 | g_prime = a_prime_s * c_prime_s - (4. / K_C) * d_prime_s - (1. / 3.) * b_prime_s.powi(2); |
395 | 0 | h_prime = (a_prime_s * c_prime_s + (8. / K_C) * d_prime_s - (2. / 9.) * b_prime_s.powi(2)) |
396 | 0 | * (1. / 3.) |
397 | 0 | * b_prime_s |
398 | 0 | - c_prime_s * (c_prime_s / K_C) |
399 | 0 | - a_prime_s.powi(2) * d_prime_s; |
400 | 0 | } else { |
401 | 0 | g_prime = a_prime * c_prime - 4. * d_prime - (1. / 3.) * b_prime.powi(2); |
402 | 0 | h_prime = |
403 | 0 | (a_prime * c_prime + 8. * d_prime - (2. / 9.) * b_prime.powi(2)) * (1. / 3.) * b_prime |
404 | 0 | - c_prime.powi(2) |
405 | 0 | - a_prime.powi(2) * d_prime; |
406 | 0 | } |
407 | 0 | if !(g_prime.is_finite() && h_prime.is_finite()) { |
408 | 0 | return None; |
409 | 0 | } |
410 | 0 | let phi = depressed_cubic_dominant(g_prime, h_prime); |
411 | 0 | let phi = if rescale { phi * K_C } else { phi }; |
412 | 0 | let l_1 = a * 0.5; |
413 | 0 | let l_3 = (1. / 6.) * b + 0.5 * phi; |
414 | 0 | let delt_2 = c - a * l_3; |
415 | 0 | let d_2_cand_1 = (2. / 3.) * b - phi - l_1 * l_1; |
416 | 0 | let l_2_cand_1 = 0.5 * delt_2 / d_2_cand_1; |
417 | 0 | let l_2_cand_2 = 2. * (d - l_3 * l_3) / delt_2; |
418 | 0 | let d_2_cand_2 = 0.5 * delt_2 / l_2_cand_2; |
419 | 0 | let d_2_cand_3 = d_2_cand_1; |
420 | 0 | let l_2_cand_3 = l_2_cand_2; |
421 | 0 | let mut d_2_best = 0.0; |
422 | 0 | let mut l_2_best = 0.0; |
423 | 0 | let mut eps_l_best = 0.0; |
424 | 0 | for (i, (d_2, l_2)) in [ |
425 | 0 | (d_2_cand_1, l_2_cand_1), |
426 | 0 | (d_2_cand_2, l_2_cand_2), |
427 | 0 | (d_2_cand_3, l_2_cand_3), |
428 | 0 | ] |
429 | 0 | .iter() |
430 | 0 | .enumerate() |
431 | | { |
432 | 0 | let eps_0 = eps_rel(d_2 + l_1 * l_1 + 2. * l_3, b); |
433 | 0 | let eps_1 = eps_rel(2. * (d_2 * l_2 + l_1 * l_3), c); |
434 | 0 | let eps_2 = eps_rel(d_2 * l_2 * l_2 + l_3 * l_3, d); |
435 | 0 | let eps_l = eps_0 + eps_1 + eps_2; |
436 | 0 | if i == 0 || eps_l < eps_l_best { |
437 | 0 | d_2_best = *d_2; |
438 | 0 | l_2_best = *l_2; |
439 | 0 | eps_l_best = eps_l; |
440 | 0 | } |
441 | | } |
442 | 0 | let d_2 = d_2_best; |
443 | 0 | let l_2 = l_2_best; |
444 | | let mut alpha_1; |
445 | | let mut beta_1; |
446 | | let mut alpha_2; |
447 | | let mut beta_2; |
448 | | //println!("phi = {}, d_2 = {}", phi, d_2); |
449 | 0 | if d_2 < 0.0 { |
450 | 0 | let sq = (-d_2).sqrt(); |
451 | 0 | alpha_1 = l_1 + sq; |
452 | 0 | beta_1 = l_3 + sq * l_2; |
453 | 0 | alpha_2 = l_1 - sq; |
454 | 0 | beta_2 = l_3 - sq * l_2; |
455 | 0 | if beta_2.abs() < beta_1.abs() { |
456 | 0 | beta_2 = d / beta_1; |
457 | 0 | } else if beta_2.abs() > beta_1.abs() { |
458 | 0 | beta_1 = d / beta_2; |
459 | 0 | } |
460 | | let cands; |
461 | 0 | if alpha_1.abs() != alpha_2.abs() { |
462 | 0 | if alpha_1.abs() < alpha_2.abs() { |
463 | 0 | let a1_cand_1 = (c - beta_1 * alpha_2) / beta_2; |
464 | 0 | let a1_cand_2 = (b - beta_2 - beta_1) / alpha_2; |
465 | 0 | let a1_cand_3 = a - alpha_2; |
466 | 0 | // Note: cand 3 is first because it is infallible, simplifying logic |
467 | 0 | cands = [ |
468 | 0 | (a1_cand_3, alpha_2), |
469 | 0 | (a1_cand_1, alpha_2), |
470 | 0 | (a1_cand_2, alpha_2), |
471 | 0 | ]; |
472 | 0 | } else { |
473 | 0 | let a2_cand_1 = (c - alpha_1 * beta_2) / beta_1; |
474 | 0 | let a2_cand_2 = (b - beta_2 - beta_1) / alpha_1; |
475 | 0 | let a2_cand_3 = a - alpha_1; |
476 | 0 | cands = [ |
477 | 0 | (alpha_1, a2_cand_3), |
478 | 0 | (alpha_1, a2_cand_1), |
479 | 0 | (alpha_1, a2_cand_2), |
480 | 0 | ]; |
481 | 0 | } |
482 | 0 | let mut eps_q_best = 0.0; |
483 | 0 | for (i, (a1, a2)) in cands.iter().enumerate() { |
484 | 0 | if a1.is_finite() && a2.is_finite() { |
485 | 0 | let eps_q = calc_eps_q(*a1, beta_1, *a2, beta_2); |
486 | 0 | if i == 0 || eps_q < eps_q_best { |
487 | 0 | alpha_1 = *a1; |
488 | 0 | alpha_2 = *a2; |
489 | 0 | eps_q_best = eps_q; |
490 | 0 | } |
491 | 0 | } |
492 | | } |
493 | 0 | } |
494 | 0 | } else if d_2 == 0.0 { |
495 | 0 | let d_3 = d - l_3 * l_3; |
496 | 0 | alpha_1 = l_1; |
497 | 0 | beta_1 = l_3 + (-d_3).sqrt(); |
498 | 0 | alpha_2 = l_1; |
499 | 0 | beta_2 = l_3 - (-d_3).sqrt(); |
500 | 0 | if beta_1.abs() > beta_2.abs() { |
501 | 0 | beta_2 = d / beta_1; |
502 | 0 | } else if beta_2.abs() > beta_1.abs() { |
503 | 0 | beta_1 = d / beta_2; |
504 | 0 | } |
505 | | // TODO: handle case d_2 is very small? |
506 | | } else { |
507 | | // This case means no real roots; in the most general case we might want |
508 | | // to factor into quadratic equations with complex coefficients. |
509 | 0 | return None; |
510 | | } |
511 | | // Newton-Raphson iteration on alpha/beta coeff's. |
512 | 0 | let mut eps_t = calc_eps_t(alpha_1, beta_1, alpha_2, beta_2); |
513 | 0 | for _ in 0..8 { |
514 | | //println!("a1 {} b1 {} a2 {} b2 {}", alpha_1, beta_1, alpha_2, beta_2); |
515 | | //println!("eps_t = {:e}", eps_t); |
516 | 0 | if eps_t == 0.0 { |
517 | 0 | break; |
518 | 0 | } |
519 | 0 | let f_0 = beta_1 * beta_2 - d; |
520 | 0 | let f_1 = beta_1 * alpha_2 + alpha_1 * beta_2 - c; |
521 | 0 | let f_2 = beta_1 + alpha_1 * alpha_2 + beta_2 - b; |
522 | 0 | let f_3 = alpha_1 + alpha_2 - a; |
523 | 0 | let c_1 = alpha_1 - alpha_2; |
524 | 0 | let det_j = beta_1 * beta_1 - beta_1 * (alpha_2 * c_1 + 2. * beta_2) |
525 | 0 | + beta_2 * (alpha_1 * c_1 + beta_2); |
526 | 0 | if det_j == 0.0 { |
527 | 0 | break; |
528 | 0 | } |
529 | 0 | let inv = det_j.recip(); |
530 | 0 | let c_2 = beta_2 - beta_1; |
531 | 0 | let c_3 = beta_1 * alpha_2 - alpha_1 * beta_2; |
532 | 0 | let dz_0 = c_1 * f_0 + c_2 * f_1 + c_3 * f_2 - (beta_1 * c_2 + alpha_1 * c_3) * f_3; |
533 | 0 | let dz_1 = (alpha_1 * c_1 + c_2) * f_0 |
534 | 0 | - beta_1 * c_1 * f_1 |
535 | 0 | - beta_1 * c_2 * f_2 |
536 | 0 | - beta_1 * c_3 * f_3; |
537 | 0 | let dz_2 = -c_1 * f_0 - c_2 * f_1 - c_3 * f_2 + (alpha_2 * c_3 + beta_2 * c_2) * f_3; |
538 | 0 | let dz_3 = -(alpha_2 * c_1 + c_2) * f_0 |
539 | 0 | + beta_2 * c_1 * f_1 |
540 | 0 | + beta_2 * c_2 * f_2 |
541 | 0 | + beta_2 * c_3 * f_3; |
542 | 0 | let a1 = alpha_1 - inv * dz_0; |
543 | 0 | let b1 = beta_1 - inv * dz_1; |
544 | 0 | let a2 = alpha_2 - inv * dz_2; |
545 | 0 | let b2 = beta_2 - inv * dz_3; |
546 | 0 | let new_eps_t = calc_eps_t(a1, b1, a2, b2); |
547 | | // We break if the new eps is equal, paper keeps going |
548 | 0 | if new_eps_t < eps_t { |
549 | 0 | alpha_1 = a1; |
550 | 0 | beta_1 = b1; |
551 | 0 | alpha_2 = a2; |
552 | 0 | beta_2 = b2; |
553 | 0 | eps_t = new_eps_t; |
554 | 0 | } else { |
555 | | //println!("new_eps_t got worse: {:e}", new_eps_t); |
556 | 0 | break; |
557 | | } |
558 | | } |
559 | 0 | Some([(alpha_1, beta_1), (alpha_2, beta_2)].into()) |
560 | 0 | } |
561 | | |
562 | | /// Dominant root of depressed cubic x^3 + gx + h = 0. |
563 | | /// |
564 | | /// Section 2.2 of Orellana and De Michele. |
565 | | // Note: some of the techniques in here might be useful to improve the |
566 | | // cubic solver, and vice versa. |
567 | 0 | fn depressed_cubic_dominant(g: f64, h: f64) -> f64 { |
568 | 0 | let q = (-1. / 3.) * g; |
569 | 0 | let r = 0.5 * h; |
570 | | let phi_0; |
571 | 0 | let k = if q.abs() < 1e102 && r.abs() < 1e154 { |
572 | 0 | None |
573 | 0 | } else if q.abs() < r.abs() { |
574 | 0 | Some(1. - q * (q / r).powi(2)) |
575 | | } else { |
576 | 0 | Some(q.signum() * ((r / q).powi(2) / q - 1.0)) |
577 | | }; |
578 | 0 | if k.is_some() && r == 0.0 { |
579 | 0 | if g > 0.0 { |
580 | 0 | phi_0 = 0.0; |
581 | 0 | } else { |
582 | 0 | phi_0 = (-g).sqrt(); |
583 | 0 | } |
584 | 0 | } else if k.map(|k| k < 0.0).unwrap_or_else(|| r * r < q.powi(3)) { |
585 | 0 | let t = if k.is_some() { |
586 | 0 | r / q / q.sqrt() |
587 | | } else { |
588 | 0 | r / q.powi(3).sqrt() |
589 | | }; |
590 | 0 | phi_0 = -2. * q.sqrt() * (t.abs().acos() * (1. / 3.)).cos().copysign(t); |
591 | | } else { |
592 | 0 | let a = if let Some(k) = k { |
593 | 0 | if q.abs() < r.abs() { |
594 | 0 | -r * (1. + k.sqrt()) |
595 | | } else { |
596 | 0 | -r - (q.abs().sqrt() * q * k.sqrt()).copysign(r) |
597 | | } |
598 | | } else { |
599 | 0 | -r - (r * r - q.powi(3)).sqrt().copysign(r) |
600 | | } |
601 | 0 | .cbrt(); |
602 | 0 | let b = if a == 0.0 { 0.0 } else { q / a }; |
603 | 0 | phi_0 = a + b; |
604 | | } |
605 | | // Refine with Newton-Raphson iteration |
606 | 0 | let mut x = phi_0; |
607 | 0 | let mut f = (x * x + g) * x + h; |
608 | | //println!("g = {:e}, h = {:e}, x = {:e}, f = {:e}", g, h, x, f); |
609 | | const EPS_M: f64 = 2.22045e-16; |
610 | 0 | if f.abs() < EPS_M * x.powi(3).max(g * x).max(h) { |
611 | 0 | return x; |
612 | 0 | } |
613 | 0 | for _ in 0..8 { |
614 | 0 | let delt_f = 3. * x * x + g; |
615 | 0 | if delt_f == 0.0 { |
616 | 0 | break; |
617 | 0 | } |
618 | 0 | let new_x = x - f / delt_f; |
619 | 0 | let new_f = (new_x * new_x + g) * new_x + h; |
620 | | //println!("delt_f = {:e}, new_f = {:e}", delt_f, new_f); |
621 | 0 | if new_f == 0.0 { |
622 | 0 | return new_x; |
623 | 0 | } |
624 | 0 | if new_f.abs() >= f.abs() { |
625 | 0 | break; |
626 | 0 | } |
627 | 0 | x = new_x; |
628 | 0 | f = new_f; |
629 | | } |
630 | 0 | x |
631 | 0 | } |
632 | | |
633 | | /// Solve an arbitrary function for a zero-crossing. |
634 | | /// |
635 | | /// This uses the [ITP method], as described in the paper |
636 | | /// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]. |
637 | | /// |
638 | | /// The values of `ya` and `yb` are given as arguments rather than |
639 | | /// computed from `f`, as the values may already be known, or they may |
640 | | /// be less expensive to compute as special cases. |
641 | | /// |
642 | | /// It is assumed that `ya < 0.0` and `yb > 0.0`, otherwise unexpected |
643 | | /// results may occur. |
644 | | /// |
645 | | /// The value of `epsilon` must be larger than 2^-63 times `b - a`, |
646 | | /// otherwise integer overflow may occur. The `a` and `b` parameters |
647 | | /// represent the lower and upper bounds of the bracket searched for a |
648 | | /// solution. |
649 | | /// |
650 | | /// The ITP method has tuning parameters. This implementation hardwires |
651 | | /// k2 to 2, both because it avoids an expensive floating point |
652 | | /// exponentiation, and because this value has been tested to work well |
653 | | /// with curve fitting problems. |
654 | | /// |
655 | | /// The `n0` parameter controls the relative impact of the bisection and |
656 | | /// secant components. When it is 0, the number of iterations is |
657 | | /// guaranteed to be no more than the number required by bisection (thus, |
658 | | /// this method is strictly superior to bisection). However, when the |
659 | | /// function is smooth, a value of 1 gives the secant method more of a |
660 | | /// chance to engage, so the average number of iterations is likely |
661 | | /// lower, though there can be one more iteration than bisection in the |
662 | | /// worst case. |
663 | | /// |
664 | | /// The `k1` parameter is harder to characterize, and interested users |
665 | | /// are referred to the paper, as well as encouraged to do empirical |
666 | | /// testing. To match the paper, a value of `0.2 / (b - a)` is |
667 | | /// suggested, and this is confirmed to give good results. |
668 | | /// |
669 | | /// When the function is monotonic, the returned result is guaranteed to |
670 | | /// be within `epsilon` of the zero crossing. For more detailed analysis, |
671 | | /// again see the paper. |
672 | | /// |
673 | | /// [ITP method]: https://en.wikipedia.org/wiki/ITP_Method |
674 | | /// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]: https://dl.acm.org/doi/10.1145/3423597 |
675 | | #[allow(clippy::too_many_arguments)] |
676 | 0 | pub fn solve_itp( |
677 | 0 | mut f: impl FnMut(f64) -> f64, |
678 | 0 | mut a: f64, |
679 | 0 | mut b: f64, |
680 | 0 | epsilon: f64, |
681 | 0 | n0: usize, |
682 | 0 | k1: f64, |
683 | 0 | mut ya: f64, |
684 | 0 | mut yb: f64, |
685 | 0 | ) -> f64 { |
686 | 0 | let n1_2 = (((b - a) / epsilon).log2().ceil() - 1.0).max(0.0) as usize; |
687 | 0 | let nmax = n0 + n1_2; |
688 | 0 | let mut scaled_epsilon = epsilon * (1u64 << nmax) as f64; |
689 | 0 | while b - a > 2.0 * epsilon { |
690 | 0 | let x1_2 = 0.5 * (a + b); |
691 | 0 | let r = scaled_epsilon - 0.5 * (b - a); |
692 | 0 | let xf = (yb * a - ya * b) / (yb - ya); |
693 | 0 | let sigma = x1_2 - xf; |
694 | | // This has k2 = 2 hardwired for efficiency. |
695 | 0 | let delta = k1 * (b - a).powi(2); |
696 | 0 | let xt = if delta <= (x1_2 - xf).abs() { |
697 | 0 | xf + delta.copysign(sigma) |
698 | | } else { |
699 | 0 | x1_2 |
700 | | }; |
701 | 0 | let xitp = if (xt - x1_2).abs() <= r { |
702 | 0 | xt |
703 | | } else { |
704 | 0 | x1_2 - r.copysign(sigma) |
705 | | }; |
706 | 0 | let yitp = f(xitp); |
707 | 0 | if yitp > 0.0 { |
708 | 0 | b = xitp; |
709 | 0 | yb = yitp; |
710 | 0 | } else if yitp < 0.0 { |
711 | 0 | a = xitp; |
712 | 0 | ya = yitp; |
713 | 0 | } else { |
714 | 0 | return xitp; |
715 | | } |
716 | 0 | scaled_epsilon *= 0.5; |
717 | | } |
718 | 0 | 0.5 * (a + b) |
719 | 0 | } Unexecuted instantiation: kurbo::common::solve_itp::<<kurbo::offset::CubicOffset>::offset_rec::{closure#0}> Unexecuted instantiation: kurbo::common::solve_itp::<<kurbo::quadbez::QuadBez as kurbo::param_curve::ParamCurveArclen>::inv_arclen::{closure#0}> Unexecuted instantiation: kurbo::common::solve_itp::<<kurbo::cubicbez::CubicBez as kurbo::param_curve::ParamCurveArclen>::inv_arclen::{closure#0}> |
720 | | |
721 | | /// A variant ITP solver that allows fallible functions. |
722 | | /// |
723 | | /// Another difference: it returns the bracket that contains the root, |
724 | | /// which may be important if the function has a discontinuity. |
725 | | #[allow(clippy::too_many_arguments)] |
726 | 0 | pub(crate) fn solve_itp_fallible<E>( |
727 | 0 | mut f: impl FnMut(f64) -> Result<f64, E>, |
728 | 0 | mut a: f64, |
729 | 0 | mut b: f64, |
730 | 0 | epsilon: f64, |
731 | 0 | n0: usize, |
732 | 0 | k1: f64, |
733 | 0 | mut ya: f64, |
734 | 0 | mut yb: f64, |
735 | 0 | ) -> Result<(f64, f64), E> { |
736 | 0 | let n1_2 = (((b - a) / epsilon).log2().ceil() - 1.0).max(0.0) as usize; |
737 | 0 | let nmax = n0 + n1_2; |
738 | 0 | let mut scaled_epsilon = epsilon * (1u64 << nmax) as f64; |
739 | 0 | while b - a > 2.0 * epsilon { |
740 | 0 | let x1_2 = 0.5 * (a + b); |
741 | 0 | let r = scaled_epsilon - 0.5 * (b - a); |
742 | 0 | let xf = (yb * a - ya * b) / (yb - ya); |
743 | 0 | let sigma = x1_2 - xf; |
744 | | // This has k2 = 2 hardwired for efficiency. |
745 | 0 | let delta = k1 * (b - a).powi(2); |
746 | 0 | let xt = if delta <= (x1_2 - xf).abs() { |
747 | 0 | xf + delta.copysign(sigma) |
748 | | } else { |
749 | 0 | x1_2 |
750 | | }; |
751 | 0 | let xitp = if (xt - x1_2).abs() <= r { |
752 | 0 | xt |
753 | | } else { |
754 | 0 | x1_2 - r.copysign(sigma) |
755 | | }; |
756 | 0 | let yitp = f(xitp)?; |
757 | 0 | if yitp > 0.0 { |
758 | 0 | b = xitp; |
759 | 0 | yb = yitp; |
760 | 0 | } else if yitp < 0.0 { |
761 | 0 | a = xitp; |
762 | 0 | ya = yitp; |
763 | 0 | } else { |
764 | 0 | return Ok((xitp, xitp)); |
765 | | } |
766 | 0 | scaled_epsilon *= 0.5; |
767 | | } |
768 | 0 | Ok((a, b)) |
769 | 0 | } Unexecuted instantiation: kurbo::common::solve_itp_fallible::<f64, kurbo::fit::fit_opt_segment<kurbo::simplify::SimplifyBezPath>::{closure#0}> Unexecuted instantiation: kurbo::common::solve_itp_fallible::<f64, kurbo::fit::fit_to_bezpath_opt_inner<kurbo::simplify::SimplifyBezPath>::{closure#0}> |
770 | | |
771 | | // Tables of Legendre-Gauss quadrature coefficients, adapted from: |
772 | | // <https://pomax.github.io/bezierinfo/legendre-gauss.html> |
773 | | |
774 | | pub const GAUSS_LEGENDRE_COEFFS_3: &[(f64, f64)] = &[ |
775 | | (0.8888888888888888, 0.0000000000000000), |
776 | | (0.5555555555555556, -0.7745966692414834), |
777 | | (0.5555555555555556, 0.7745966692414834), |
778 | | ]; |
779 | | |
780 | | pub const GAUSS_LEGENDRE_COEFFS_4: &[(f64, f64)] = &[ |
781 | | (0.6521451548625461, -0.3399810435848563), |
782 | | (0.6521451548625461, 0.3399810435848563), |
783 | | (0.3478548451374538, -0.8611363115940526), |
784 | | (0.3478548451374538, 0.8611363115940526), |
785 | | ]; |
786 | | |
787 | | pub const GAUSS_LEGENDRE_COEFFS_5: &[(f64, f64)] = &[ |
788 | | (0.5688888888888889, 0.0000000000000000), |
789 | | (0.4786286704993665, -0.5384693101056831), |
790 | | (0.4786286704993665, 0.5384693101056831), |
791 | | (0.2369268850561891, -0.9061798459386640), |
792 | | (0.2369268850561891, 0.9061798459386640), |
793 | | ]; |
794 | | |
795 | | pub const GAUSS_LEGENDRE_COEFFS_6: &[(f64, f64)] = &[ |
796 | | (0.3607615730481386, 0.6612093864662645), |
797 | | (0.3607615730481386, -0.6612093864662645), |
798 | | (0.4679139345726910, -0.2386191860831969), |
799 | | (0.4679139345726910, 0.2386191860831969), |
800 | | (0.1713244923791704, -0.9324695142031521), |
801 | | (0.1713244923791704, 0.9324695142031521), |
802 | | ]; |
803 | | |
804 | | pub const GAUSS_LEGENDRE_COEFFS_7: &[(f64, f64)] = &[ |
805 | | (0.4179591836734694, 0.0000000000000000), |
806 | | (0.3818300505051189, 0.4058451513773972), |
807 | | (0.3818300505051189, -0.4058451513773972), |
808 | | (0.2797053914892766, -0.7415311855993945), |
809 | | (0.2797053914892766, 0.7415311855993945), |
810 | | (0.1294849661688697, -0.9491079123427585), |
811 | | (0.1294849661688697, 0.9491079123427585), |
812 | | ]; |
813 | | |
814 | | pub const GAUSS_LEGENDRE_COEFFS_8: &[(f64, f64)] = &[ |
815 | | (0.3626837833783620, -0.1834346424956498), |
816 | | (0.3626837833783620, 0.1834346424956498), |
817 | | (0.3137066458778873, -0.5255324099163290), |
818 | | (0.3137066458778873, 0.5255324099163290), |
819 | | (0.2223810344533745, -0.7966664774136267), |
820 | | (0.2223810344533745, 0.7966664774136267), |
821 | | (0.1012285362903763, -0.9602898564975363), |
822 | | (0.1012285362903763, 0.9602898564975363), |
823 | | ]; |
824 | | |
825 | | pub const GAUSS_LEGENDRE_COEFFS_8_HALF: &[(f64, f64)] = &[ |
826 | | (0.3626837833783620, 0.1834346424956498), |
827 | | (0.3137066458778873, 0.5255324099163290), |
828 | | (0.2223810344533745, 0.7966664774136267), |
829 | | (0.1012285362903763, 0.9602898564975363), |
830 | | ]; |
831 | | |
832 | | pub const GAUSS_LEGENDRE_COEFFS_9: &[(f64, f64)] = &[ |
833 | | (0.3302393550012598, 0.0000000000000000), |
834 | | (0.1806481606948574, -0.8360311073266358), |
835 | | (0.1806481606948574, 0.8360311073266358), |
836 | | (0.0812743883615744, -0.9681602395076261), |
837 | | (0.0812743883615744, 0.9681602395076261), |
838 | | (0.3123470770400029, -0.3242534234038089), |
839 | | (0.3123470770400029, 0.3242534234038089), |
840 | | (0.2606106964029354, -0.6133714327005904), |
841 | | (0.2606106964029354, 0.6133714327005904), |
842 | | ]; |
843 | | |
844 | | pub const GAUSS_LEGENDRE_COEFFS_11: &[(f64, f64)] = &[ |
845 | | (0.2729250867779006, 0.0000000000000000), |
846 | | (0.2628045445102467, -0.2695431559523450), |
847 | | (0.2628045445102467, 0.2695431559523450), |
848 | | (0.2331937645919905, -0.5190961292068118), |
849 | | (0.2331937645919905, 0.5190961292068118), |
850 | | (0.1862902109277343, -0.7301520055740494), |
851 | | (0.1862902109277343, 0.7301520055740494), |
852 | | (0.1255803694649046, -0.8870625997680953), |
853 | | (0.1255803694649046, 0.8870625997680953), |
854 | | (0.0556685671161737, -0.9782286581460570), |
855 | | (0.0556685671161737, 0.9782286581460570), |
856 | | ]; |
857 | | |
858 | | pub const GAUSS_LEGENDRE_COEFFS_16: &[(f64, f64)] = &[ |
859 | | (0.1894506104550685, -0.0950125098376374), |
860 | | (0.1894506104550685, 0.0950125098376374), |
861 | | (0.1826034150449236, -0.2816035507792589), |
862 | | (0.1826034150449236, 0.2816035507792589), |
863 | | (0.1691565193950025, -0.4580167776572274), |
864 | | (0.1691565193950025, 0.4580167776572274), |
865 | | (0.1495959888165767, -0.6178762444026438), |
866 | | (0.1495959888165767, 0.6178762444026438), |
867 | | (0.1246289712555339, -0.7554044083550030), |
868 | | (0.1246289712555339, 0.7554044083550030), |
869 | | (0.0951585116824928, -0.8656312023878318), |
870 | | (0.0951585116824928, 0.8656312023878318), |
871 | | (0.0622535239386479, -0.9445750230732326), |
872 | | (0.0622535239386479, 0.9445750230732326), |
873 | | (0.0271524594117541, -0.9894009349916499), |
874 | | (0.0271524594117541, 0.9894009349916499), |
875 | | ]; |
876 | | |
877 | | // Just the positive x_i values. |
878 | | pub const GAUSS_LEGENDRE_COEFFS_16_HALF: &[(f64, f64)] = &[ |
879 | | (0.1894506104550685, 0.0950125098376374), |
880 | | (0.1826034150449236, 0.2816035507792589), |
881 | | (0.1691565193950025, 0.4580167776572274), |
882 | | (0.1495959888165767, 0.6178762444026438), |
883 | | (0.1246289712555339, 0.7554044083550030), |
884 | | (0.0951585116824928, 0.8656312023878318), |
885 | | (0.0622535239386479, 0.9445750230732326), |
886 | | (0.0271524594117541, 0.9894009349916499), |
887 | | ]; |
888 | | |
889 | | pub const GAUSS_LEGENDRE_COEFFS_24: &[(f64, f64)] = &[ |
890 | | (0.1279381953467522, -0.0640568928626056), |
891 | | (0.1279381953467522, 0.0640568928626056), |
892 | | (0.1258374563468283, -0.1911188674736163), |
893 | | (0.1258374563468283, 0.1911188674736163), |
894 | | (0.1216704729278034, -0.3150426796961634), |
895 | | (0.1216704729278034, 0.3150426796961634), |
896 | | (0.1155056680537256, -0.4337935076260451), |
897 | | (0.1155056680537256, 0.4337935076260451), |
898 | | (0.1074442701159656, -0.5454214713888396), |
899 | | (0.1074442701159656, 0.5454214713888396), |
900 | | (0.0976186521041139, -0.6480936519369755), |
901 | | (0.0976186521041139, 0.6480936519369755), |
902 | | (0.0861901615319533, -0.7401241915785544), |
903 | | (0.0861901615319533, 0.7401241915785544), |
904 | | (0.0733464814110803, -0.8200019859739029), |
905 | | (0.0733464814110803, 0.8200019859739029), |
906 | | (0.0592985849154368, -0.8864155270044011), |
907 | | (0.0592985849154368, 0.8864155270044011), |
908 | | (0.0442774388174198, -0.9382745520027328), |
909 | | (0.0442774388174198, 0.9382745520027328), |
910 | | (0.0285313886289337, -0.9747285559713095), |
911 | | (0.0285313886289337, 0.9747285559713095), |
912 | | (0.0123412297999872, -0.9951872199970213), |
913 | | (0.0123412297999872, 0.9951872199970213), |
914 | | ]; |
915 | | |
916 | | pub const GAUSS_LEGENDRE_COEFFS_24_HALF: &[(f64, f64)] = &[ |
917 | | (0.1279381953467522, 0.0640568928626056), |
918 | | (0.1258374563468283, 0.1911188674736163), |
919 | | (0.1216704729278034, 0.3150426796961634), |
920 | | (0.1155056680537256, 0.4337935076260451), |
921 | | (0.1074442701159656, 0.5454214713888396), |
922 | | (0.0976186521041139, 0.6480936519369755), |
923 | | (0.0861901615319533, 0.7401241915785544), |
924 | | (0.0733464814110803, 0.8200019859739029), |
925 | | (0.0592985849154368, 0.8864155270044011), |
926 | | (0.0442774388174198, 0.9382745520027328), |
927 | | (0.0285313886289337, 0.9747285559713095), |
928 | | (0.0123412297999872, 0.9951872199970213), |
929 | | ]; |
930 | | |
931 | | pub const GAUSS_LEGENDRE_COEFFS_32: &[(f64, f64)] = &[ |
932 | | (0.0965400885147278, -0.0483076656877383), |
933 | | (0.0965400885147278, 0.0483076656877383), |
934 | | (0.0956387200792749, -0.1444719615827965), |
935 | | (0.0956387200792749, 0.1444719615827965), |
936 | | (0.0938443990808046, -0.2392873622521371), |
937 | | (0.0938443990808046, 0.2392873622521371), |
938 | | (0.0911738786957639, -0.3318686022821277), |
939 | | (0.0911738786957639, 0.3318686022821277), |
940 | | (0.0876520930044038, -0.4213512761306353), |
941 | | (0.0876520930044038, 0.4213512761306353), |
942 | | (0.0833119242269467, -0.5068999089322294), |
943 | | (0.0833119242269467, 0.5068999089322294), |
944 | | (0.0781938957870703, -0.5877157572407623), |
945 | | (0.0781938957870703, 0.5877157572407623), |
946 | | (0.0723457941088485, -0.6630442669302152), |
947 | | (0.0723457941088485, 0.6630442669302152), |
948 | | (0.0658222227763618, -0.7321821187402897), |
949 | | (0.0658222227763618, 0.7321821187402897), |
950 | | (0.0586840934785355, -0.7944837959679424), |
951 | | (0.0586840934785355, 0.7944837959679424), |
952 | | (0.0509980592623762, -0.8493676137325700), |
953 | | (0.0509980592623762, 0.8493676137325700), |
954 | | (0.0428358980222267, -0.8963211557660521), |
955 | | (0.0428358980222267, 0.8963211557660521), |
956 | | (0.0342738629130214, -0.9349060759377397), |
957 | | (0.0342738629130214, 0.9349060759377397), |
958 | | (0.0253920653092621, -0.9647622555875064), |
959 | | (0.0253920653092621, 0.9647622555875064), |
960 | | (0.0162743947309057, -0.9856115115452684), |
961 | | (0.0162743947309057, 0.9856115115452684), |
962 | | (0.0070186100094701, -0.9972638618494816), |
963 | | (0.0070186100094701, 0.9972638618494816), |
964 | | ]; |
965 | | |
966 | | pub const GAUSS_LEGENDRE_COEFFS_32_HALF: &[(f64, f64)] = &[ |
967 | | (0.0965400885147278, 0.0483076656877383), |
968 | | (0.0956387200792749, 0.1444719615827965), |
969 | | (0.0938443990808046, 0.2392873622521371), |
970 | | (0.0911738786957639, 0.3318686022821277), |
971 | | (0.0876520930044038, 0.4213512761306353), |
972 | | (0.0833119242269467, 0.5068999089322294), |
973 | | (0.0781938957870703, 0.5877157572407623), |
974 | | (0.0723457941088485, 0.6630442669302152), |
975 | | (0.0658222227763618, 0.7321821187402897), |
976 | | (0.0586840934785355, 0.7944837959679424), |
977 | | (0.0509980592623762, 0.8493676137325700), |
978 | | (0.0428358980222267, 0.8963211557660521), |
979 | | (0.0342738629130214, 0.9349060759377397), |
980 | | (0.0253920653092621, 0.9647622555875064), |
981 | | (0.0162743947309057, 0.9856115115452684), |
982 | | (0.0070186100094701, 0.9972638618494816), |
983 | | ]; |
984 | | |
985 | | #[cfg(test)] |
986 | | mod tests { |
987 | | use crate::common::*; |
988 | | use arrayvec::ArrayVec; |
989 | | |
990 | | fn verify<const N: usize>(mut roots: ArrayVec<f64, N>, expected: &[f64]) { |
991 | | assert_eq!(expected.len(), roots.len()); |
992 | | let epsilon = 1e-12; |
993 | | roots.sort_by(|a, b| a.partial_cmp(b).unwrap()); |
994 | | for i in 0..expected.len() { |
995 | | assert!((roots[i] - expected[i]).abs() < epsilon); |
996 | | } |
997 | | } |
998 | | |
999 | | #[test] |
1000 | | fn test_solve_cubic() { |
1001 | | verify(solve_cubic(-5.0, 0.0, 0.0, 1.0), &[5.0f64.cbrt()]); |
1002 | | verify(solve_cubic(-5.0, -1.0, 0.0, 1.0), &[1.90416085913492]); |
1003 | | verify(solve_cubic(0.0, -1.0, 0.0, 1.0), &[-1.0, 0.0, 1.0]); |
1004 | | verify(solve_cubic(-2.0, -3.0, 0.0, 1.0), &[-1.0, 2.0]); |
1005 | | verify(solve_cubic(2.0, -3.0, 0.0, 1.0), &[-2.0, 1.0]); |
1006 | | verify( |
1007 | | solve_cubic(2.0 - 1e-12, 5.0, 4.0, 1.0), |
1008 | | &[ |
1009 | | -1.9999999999989995, |
1010 | | -1.0000010000848456, |
1011 | | -0.9999989999161546, |
1012 | | ], |
1013 | | ); |
1014 | | verify(solve_cubic(2.0 + 1e-12, 5.0, 4.0, 1.0), &[-2.0]); |
1015 | | } |
1016 | | |
1017 | | #[test] |
1018 | | fn test_solve_quadratic() { |
1019 | | verify( |
1020 | | solve_quadratic(-5.0, 0.0, 1.0), |
1021 | | &[-(5.0f64.sqrt()), 5.0f64.sqrt()], |
1022 | | ); |
1023 | | verify(solve_quadratic(5.0, 0.0, 1.0), &[]); |
1024 | | verify(solve_quadratic(5.0, 1.0, 0.0), &[-5.0]); |
1025 | | verify(solve_quadratic(1.0, 2.0, 1.0), &[-1.0]); |
1026 | | } |
1027 | | |
1028 | | #[test] |
1029 | | fn test_solve_quartic() { |
1030 | | // These test cases are taken from Orellana and De Michele paper (Table 1). |
1031 | | fn test_with_roots(coeffs: [f64; 4], roots: &[f64], rel_err: f64) { |
1032 | | // Note: in paper, coefficients are in decreasing order. |
1033 | | let mut actual = solve_quartic(coeffs[3], coeffs[2], coeffs[1], coeffs[0], 1.0); |
1034 | | actual.sort_by(f64::total_cmp); |
1035 | | assert_eq!(actual.len(), roots.len()); |
1036 | | for (actual, expected) in actual.iter().zip(roots) { |
1037 | | assert!( |
1038 | | (actual - expected).abs() < rel_err * expected.abs(), |
1039 | | "actual {:e}, expected {:e}, err {:e}", |
1040 | | actual, |
1041 | | expected, |
1042 | | actual - expected |
1043 | | ); |
1044 | | } |
1045 | | } |
1046 | | |
1047 | | fn test_vieta_roots(x1: f64, x2: f64, x3: f64, x4: f64, roots: &[f64], rel_err: f64) { |
1048 | | let a = -(x1 + x2 + x3 + x4); |
1049 | | let b = x1 * (x2 + x3) + x2 * (x3 + x4) + x4 * (x1 + x3); |
1050 | | let c = -x1 * x2 * (x3 + x4) - x3 * x4 * (x1 + x2); |
1051 | | let d = x1 * x2 * x3 * x4; |
1052 | | test_with_roots([a, b, c, d], roots, rel_err); |
1053 | | } |
1054 | | |
1055 | | fn test_vieta(x1: f64, x2: f64, x3: f64, x4: f64, rel_err: f64) { |
1056 | | test_vieta_roots(x1, x2, x3, x4, &[x1, x2, x3, x4], rel_err); |
1057 | | } |
1058 | | |
1059 | | // case 1 |
1060 | | test_vieta(1., 1e3, 1e6, 1e9, 1e-16); |
1061 | | // case 2 |
1062 | | test_vieta(2., 2.001, 2.002, 2.003, 1e-6); |
1063 | | // case 3 |
1064 | | test_vieta(1e47, 1e49, 1e50, 1e53, 2e-16); |
1065 | | // case 4 |
1066 | | test_vieta(-1., 1., 2., 1e14, 1e-16); |
1067 | | // case 5 |
1068 | | test_vieta(-2e7, -1., 1., 1e7, 1e-16); |
1069 | | // case 6 |
1070 | | test_with_roots( |
1071 | | [-9000002.0, -9999981999998.0, 19999982e6, -2e13], |
1072 | | &[-1e6, 1e7], |
1073 | | 1e-16, |
1074 | | ); |
1075 | | // case 7 |
1076 | | test_with_roots( |
1077 | | [2000011.0, 1010022000028.0, 11110056e6, 2828e10], |
1078 | | &[-7., -4.], |
1079 | | 1e-16, |
1080 | | ); |
1081 | | // case 8 |
1082 | | test_with_roots( |
1083 | | [-100002011.0, 201101022001.0, -102200111000011.0, 11000011e8], |
1084 | | &[11., 1e8], |
1085 | | 1e-16, |
1086 | | ); |
1087 | | // cases 9-13 have no real roots |
1088 | | // case 14 |
1089 | | test_vieta_roots(1000., 1000., 1000., 1000., &[1000., 1000.], 1e-16); |
1090 | | // case 15 |
1091 | | test_vieta_roots(1e-15, 1000., 1000., 1000., &[1e-15, 1000., 1000.], 1e-15); |
1092 | | // case 16 no real roots |
1093 | | // case 17 |
1094 | | test_vieta(10000., 10001., 10010., 10100., 1e-6); |
1095 | | // case 19 |
1096 | | test_vieta_roots(1., 1e30, 1e30, 1e44, &[1., 1e30, 1e44], 1e-16); |
1097 | | // case 20 |
1098 | | // FAILS, error too big |
1099 | | test_vieta(1., 1e7, 1e7, 1e14, 1e-7); |
1100 | | // case 21 doesn't pick up double root |
1101 | | // case 22 |
1102 | | test_vieta(1., 10., 1e152, 1e154, 3e-16); |
1103 | | // case 23 |
1104 | | test_with_roots( |
1105 | | [1., 1., 3. / 8., 1e-3], |
1106 | | &[-0.497314148060048, -0.00268585193995149], |
1107 | | 2e-15, |
1108 | | ); |
1109 | | // case 24 |
1110 | | const S: f64 = 1e30; |
1111 | | test_with_roots( |
1112 | | [-(1. + 1. / S), 1. / S - S * S, S * S + S, -S], |
1113 | | &[-S, 1e-30, 1., S], |
1114 | | 2e-16, |
1115 | | ); |
1116 | | } |
1117 | | |
1118 | | #[test] |
1119 | | fn test_solve_itp() { |
1120 | | let f = |x: f64| x.powi(3) - x - 2.0; |
1121 | | let x = solve_itp(f, 1., 2., 1e-12, 0, 0.2, f(1.), f(2.)); |
1122 | | assert!(f(x).abs() < 6e-12); |
1123 | | } |
1124 | | |
1125 | | #[test] |
1126 | | fn test_inv_arclen() { |
1127 | | use crate::{ParamCurve, ParamCurveArclen}; |
1128 | | let c = crate::CubicBez::new( |
1129 | | (0.0, 0.0), |
1130 | | (100.0 / 3.0, 0.0), |
1131 | | (200.0 / 3.0, 100.0 / 3.0), |
1132 | | (100.0, 100.0), |
1133 | | ); |
1134 | | let target = 100.0; |
1135 | | let _ = solve_itp( |
1136 | | |t| c.subsegment(0.0..t).arclen(1e-9) - target, |
1137 | | 0., |
1138 | | 1., |
1139 | | 1e-6, |
1140 | | 1, |
1141 | | 0.2, |
1142 | | -target, |
1143 | | c.arclen(1e-9) - target, |
1144 | | ); |
1145 | | } |
1146 | | } |