Coverage for /pythoncovmergedfiles/medio/medio/usr/local/lib/python3.8/site-packages/fontTools/misc/transform.py: 38%

Shortcuts on this page

r m x   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

128 statements  

1"""Affine 2D transformation matrix class. 

2 

3The Transform class implements various transformation matrix operations, 

4both on the matrix itself, as well as on 2D coordinates. 

5 

6Transform instances are effectively immutable: all methods that operate on the 

7transformation itself always return a new instance. This has as the 

8interesting side effect that Transform instances are hashable, ie. they can be 

9used as dictionary keys. 

10 

11This module exports the following symbols: 

12 

13Transform 

14 this is the main class 

15Identity 

16 Transform instance set to the identity transformation 

17Offset 

18 Convenience function that returns a translating transformation 

19Scale 

20 Convenience function that returns a scaling transformation 

21 

22The DecomposedTransform class implements a transformation with separate 

23translate, rotation, scale, skew, and transformation-center components. 

24 

25:Example: 

26 

27 >>> t = Transform(2, 0, 0, 3, 0, 0) 

28 >>> t.transformPoint((100, 100)) 

29 (200, 300) 

30 >>> t = Scale(2, 3) 

31 >>> t.transformPoint((100, 100)) 

32 (200, 300) 

33 >>> t.transformPoint((0, 0)) 

34 (0, 0) 

35 >>> t = Offset(2, 3) 

36 >>> t.transformPoint((100, 100)) 

37 (102, 103) 

38 >>> t.transformPoint((0, 0)) 

39 (2, 3) 

40 >>> t2 = t.scale(0.5) 

41 >>> t2.transformPoint((100, 100)) 

42 (52.0, 53.0) 

43 >>> import math 

44 >>> t3 = t2.rotate(math.pi / 2) 

45 >>> t3.transformPoint((0, 0)) 

46 (2.0, 3.0) 

47 >>> t3.transformPoint((100, 100)) 

48 (-48.0, 53.0) 

49 >>> t = Identity.scale(0.5).translate(100, 200).skew(0.1, 0.2) 

50 >>> t.transformPoints([(0, 0), (1, 1), (100, 100)]) 

51 [(50.0, 100.0), (50.550167336042726, 100.60135501775433), (105.01673360427253, 160.13550177543362)] 

52 >>> 

53""" 

54 

55import math 

56from typing import NamedTuple 

57from dataclasses import dataclass 

58 

59 

60__all__ = ["Transform", "Identity", "Offset", "Scale", "DecomposedTransform"] 

61 

62 

63_EPSILON = 1e-15 

64_ONE_EPSILON = 1 - _EPSILON 

65_MINUS_ONE_EPSILON = -1 + _EPSILON 

66 

67 

68def _normSinCos(v): 

69 if abs(v) < _EPSILON: 

70 v = 0 

71 elif v > _ONE_EPSILON: 

72 v = 1 

73 elif v < _MINUS_ONE_EPSILON: 

74 v = -1 

75 return v 

76 

77 

78class Transform(NamedTuple): 

79 """2x2 transformation matrix plus offset, a.k.a. Affine transform. 

80 Transform instances are immutable: all transforming methods, eg. 

81 rotate(), return a new Transform instance. 

82 

83 :Example: 

84 

85 >>> t = Transform() 

86 >>> t 

87 <Transform [1 0 0 1 0 0]> 

88 >>> t.scale(2) 

89 <Transform [2 0 0 2 0 0]> 

90 >>> t.scale(2.5, 5.5) 

91 <Transform [2.5 0 0 5.5 0 0]> 

92 >>> 

93 >>> t.scale(2, 3).transformPoint((100, 100)) 

94 (200, 300) 

95 

96 Transform's constructor takes six arguments, all of which are 

97 optional, and can be used as keyword arguments:: 

98 

99 >>> Transform(12) 

100 <Transform [12 0 0 1 0 0]> 

101 >>> Transform(dx=12) 

102 <Transform [1 0 0 1 12 0]> 

103 >>> Transform(yx=12) 

104 <Transform [1 0 12 1 0 0]> 

105 

106 Transform instances also behave like sequences of length 6:: 

107 

108 >>> len(Identity) 

109 6 

110 >>> list(Identity) 

111 [1, 0, 0, 1, 0, 0] 

112 >>> tuple(Identity) 

113 (1, 0, 0, 1, 0, 0) 

114 

115 Transform instances are comparable:: 

116 

117 >>> t1 = Identity.scale(2, 3).translate(4, 6) 

118 >>> t2 = Identity.translate(8, 18).scale(2, 3) 

119 >>> t1 == t2 

120 1 

121 

122 But beware of floating point rounding errors:: 

123 

124 >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) 

125 >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) 

126 >>> t1 

127 <Transform [0.2 0 0 0.3 0.08 0.18]> 

128 >>> t2 

129 <Transform [0.2 0 0 0.3 0.08 0.18]> 

130 >>> t1 == t2 

131 0 

132 

133 Transform instances are hashable, meaning you can use them as 

134 keys in dictionaries:: 

135 

136 >>> d = {Scale(12, 13): None} 

137 >>> d 

138 {<Transform [12 0 0 13 0 0]>: None} 

139 

140 But again, beware of floating point rounding errors:: 

141 

142 >>> t1 = Identity.scale(0.2, 0.3).translate(0.4, 0.6) 

143 >>> t2 = Identity.translate(0.08, 0.18).scale(0.2, 0.3) 

144 >>> t1 

145 <Transform [0.2 0 0 0.3 0.08 0.18]> 

146 >>> t2 

147 <Transform [0.2 0 0 0.3 0.08 0.18]> 

148 >>> d = {t1: None} 

149 >>> d 

150 {<Transform [0.2 0 0 0.3 0.08 0.18]>: None} 

151 >>> d[t2] 

152 Traceback (most recent call last): 

153 File "<stdin>", line 1, in ? 

154 KeyError: <Transform [0.2 0 0 0.3 0.08 0.18]> 

155 """ 

156 

157 xx: float = 1 

158 xy: float = 0 

159 yx: float = 0 

160 yy: float = 1 

161 dx: float = 0 

162 dy: float = 0 

163 

164 def transformPoint(self, p): 

165 """Transform a point. 

166 

167 :Example: 

168 

169 >>> t = Transform() 

170 >>> t = t.scale(2.5, 5.5) 

171 >>> t.transformPoint((100, 100)) 

172 (250.0, 550.0) 

173 """ 

174 (x, y) = p 

175 xx, xy, yx, yy, dx, dy = self 

176 return (xx * x + yx * y + dx, xy * x + yy * y + dy) 

177 

178 def transformPoints(self, points): 

179 """Transform a list of points. 

180 

181 :Example: 

182 

183 >>> t = Scale(2, 3) 

184 >>> t.transformPoints([(0, 0), (0, 100), (100, 100), (100, 0)]) 

185 [(0, 0), (0, 300), (200, 300), (200, 0)] 

186 >>> 

187 """ 

188 xx, xy, yx, yy, dx, dy = self 

189 return [(xx * x + yx * y + dx, xy * x + yy * y + dy) for x, y in points] 

190 

191 def transformVector(self, v): 

192 """Transform an (dx, dy) vector, treating translation as zero. 

193 

194 :Example: 

195 

196 >>> t = Transform(2, 0, 0, 2, 10, 20) 

197 >>> t.transformVector((3, -4)) 

198 (6, -8) 

199 >>> 

200 """ 

201 (dx, dy) = v 

202 xx, xy, yx, yy = self[:4] 

203 return (xx * dx + yx * dy, xy * dx + yy * dy) 

204 

205 def transformVectors(self, vectors): 

206 """Transform a list of (dx, dy) vector, treating translation as zero. 

207 

208 :Example: 

209 >>> t = Transform(2, 0, 0, 2, 10, 20) 

210 >>> t.transformVectors([(3, -4), (5, -6)]) 

211 [(6, -8), (10, -12)] 

212 >>> 

213 """ 

214 xx, xy, yx, yy = self[:4] 

215 return [(xx * dx + yx * dy, xy * dx + yy * dy) for dx, dy in vectors] 

216 

217 def translate(self, x=0, y=0): 

218 """Return a new transformation, translated (offset) by x, y. 

219 

220 :Example: 

221 >>> t = Transform() 

222 >>> t.translate(20, 30) 

223 <Transform [1 0 0 1 20 30]> 

224 >>> 

225 """ 

226 return self.transform((1, 0, 0, 1, x, y)) 

227 

228 def scale(self, x=1, y=None): 

229 """Return a new transformation, scaled by x, y. The 'y' argument 

230 may be None, which implies to use the x value for y as well. 

231 

232 :Example: 

233 >>> t = Transform() 

234 >>> t.scale(5) 

235 <Transform [5 0 0 5 0 0]> 

236 >>> t.scale(5, 6) 

237 <Transform [5 0 0 6 0 0]> 

238 >>> 

239 """ 

240 if y is None: 

241 y = x 

242 return self.transform((x, 0, 0, y, 0, 0)) 

243 

244 def rotate(self, angle): 

245 """Return a new transformation, rotated by 'angle' (radians). 

246 

247 :Example: 

248 >>> import math 

249 >>> t = Transform() 

250 >>> t.rotate(math.pi / 2) 

251 <Transform [0 1 -1 0 0 0]> 

252 >>> 

253 """ 

254 import math 

255 

256 c = _normSinCos(math.cos(angle)) 

257 s = _normSinCos(math.sin(angle)) 

258 return self.transform((c, s, -s, c, 0, 0)) 

259 

260 def skew(self, x=0, y=0): 

261 """Return a new transformation, skewed by x and y. 

262 

263 :Example: 

264 >>> import math 

265 >>> t = Transform() 

266 >>> t.skew(math.pi / 4) 

267 <Transform [1 0 1 1 0 0]> 

268 >>> 

269 """ 

270 import math 

271 

272 return self.transform((1, math.tan(y), math.tan(x), 1, 0, 0)) 

273 

274 def transform(self, other): 

275 """Return a new transformation, transformed by another 

276 transformation. 

277 

278 :Example: 

279 >>> t = Transform(2, 0, 0, 3, 1, 6) 

280 >>> t.transform((4, 3, 2, 1, 5, 6)) 

281 <Transform [8 9 4 3 11 24]> 

282 >>> 

283 """ 

284 xx1, xy1, yx1, yy1, dx1, dy1 = other 

285 xx2, xy2, yx2, yy2, dx2, dy2 = self 

286 return self.__class__( 

287 xx1 * xx2 + xy1 * yx2, 

288 xx1 * xy2 + xy1 * yy2, 

289 yx1 * xx2 + yy1 * yx2, 

290 yx1 * xy2 + yy1 * yy2, 

291 xx2 * dx1 + yx2 * dy1 + dx2, 

292 xy2 * dx1 + yy2 * dy1 + dy2, 

293 ) 

294 

295 def reverseTransform(self, other): 

296 """Return a new transformation, which is the other transformation 

297 transformed by self. self.reverseTransform(other) is equivalent to 

298 other.transform(self). 

299 

300 :Example: 

301 >>> t = Transform(2, 0, 0, 3, 1, 6) 

302 >>> t.reverseTransform((4, 3, 2, 1, 5, 6)) 

303 <Transform [8 6 6 3 21 15]> 

304 >>> Transform(4, 3, 2, 1, 5, 6).transform((2, 0, 0, 3, 1, 6)) 

305 <Transform [8 6 6 3 21 15]> 

306 >>> 

307 """ 

308 xx1, xy1, yx1, yy1, dx1, dy1 = self 

309 xx2, xy2, yx2, yy2, dx2, dy2 = other 

310 return self.__class__( 

311 xx1 * xx2 + xy1 * yx2, 

312 xx1 * xy2 + xy1 * yy2, 

313 yx1 * xx2 + yy1 * yx2, 

314 yx1 * xy2 + yy1 * yy2, 

315 xx2 * dx1 + yx2 * dy1 + dx2, 

316 xy2 * dx1 + yy2 * dy1 + dy2, 

317 ) 

318 

319 def inverse(self): 

320 """Return the inverse transformation. 

321 

322 :Example: 

323 >>> t = Identity.translate(2, 3).scale(4, 5) 

324 >>> t.transformPoint((10, 20)) 

325 (42, 103) 

326 >>> it = t.inverse() 

327 >>> it.transformPoint((42, 103)) 

328 (10.0, 20.0) 

329 >>> 

330 """ 

331 if self == Identity: 

332 return self 

333 xx, xy, yx, yy, dx, dy = self 

334 det = xx * yy - yx * xy 

335 xx, xy, yx, yy = yy / det, -xy / det, -yx / det, xx / det 

336 dx, dy = -xx * dx - yx * dy, -xy * dx - yy * dy 

337 return self.__class__(xx, xy, yx, yy, dx, dy) 

338 

339 def toPS(self): 

340 """Return a PostScript representation 

341 

342 :Example: 

343 

344 >>> t = Identity.scale(2, 3).translate(4, 5) 

345 >>> t.toPS() 

346 '[2 0 0 3 8 15]' 

347 >>> 

348 """ 

349 return "[%s %s %s %s %s %s]" % self 

350 

351 def toDecomposed(self) -> "DecomposedTransform": 

352 """Decompose into a DecomposedTransform.""" 

353 return DecomposedTransform.fromTransform(self) 

354 

355 def __bool__(self): 

356 """Returns True if transform is not identity, False otherwise. 

357 

358 :Example: 

359 

360 >>> bool(Identity) 

361 False 

362 >>> bool(Transform()) 

363 False 

364 >>> bool(Scale(1.)) 

365 False 

366 >>> bool(Scale(2)) 

367 True 

368 >>> bool(Offset()) 

369 False 

370 >>> bool(Offset(0)) 

371 False 

372 >>> bool(Offset(2)) 

373 True 

374 """ 

375 return self != Identity 

376 

377 def __repr__(self): 

378 return "<%s [%g %g %g %g %g %g]>" % ((self.__class__.__name__,) + self) 

379 

380 

381Identity = Transform() 

382 

383 

384def Offset(x=0, y=0): 

385 """Return the identity transformation offset by x, y. 

386 

387 :Example: 

388 >>> Offset(2, 3) 

389 <Transform [1 0 0 1 2 3]> 

390 >>> 

391 """ 

392 return Transform(1, 0, 0, 1, x, y) 

393 

394 

395def Scale(x, y=None): 

396 """Return the identity transformation scaled by x, y. The 'y' argument 

397 may be None, which implies to use the x value for y as well. 

398 

399 :Example: 

400 >>> Scale(2, 3) 

401 <Transform [2 0 0 3 0 0]> 

402 >>> 

403 """ 

404 if y is None: 

405 y = x 

406 return Transform(x, 0, 0, y, 0, 0) 

407 

408 

409@dataclass 

410class DecomposedTransform: 

411 """The DecomposedTransform class implements a transformation with separate 

412 translate, rotation, scale, skew, and transformation-center components. 

413 """ 

414 

415 translateX: float = 0 

416 translateY: float = 0 

417 rotation: float = 0 # in degrees, counter-clockwise 

418 scaleX: float = 1 

419 scaleY: float = 1 

420 skewX: float = 0 # in degrees, clockwise 

421 skewY: float = 0 # in degrees, counter-clockwise 

422 tCenterX: float = 0 

423 tCenterY: float = 0 

424 

425 def __bool__(self): 

426 return ( 

427 self.translateX != 0 

428 or self.translateY != 0 

429 or self.rotation != 0 

430 or self.scaleX != 1 

431 or self.scaleY != 1 

432 or self.skewX != 0 

433 or self.skewY != 0 

434 or self.tCenterX != 0 

435 or self.tCenterY != 0 

436 ) 

437 

438 @classmethod 

439 def fromTransform(self, transform): 

440 # Adapted from an answer on 

441 # https://math.stackexchange.com/questions/13150/extracting-rotation-scale-values-from-2d-transformation-matrix 

442 a, b, c, d, x, y = transform 

443 

444 sx = math.copysign(1, a) 

445 if sx < 0: 

446 a *= sx 

447 b *= sx 

448 

449 delta = a * d - b * c 

450 

451 rotation = 0 

452 scaleX = scaleY = 0 

453 skewX = skewY = 0 

454 

455 # Apply the QR-like decomposition. 

456 if a != 0 or b != 0: 

457 r = math.sqrt(a * a + b * b) 

458 rotation = math.acos(a / r) if b >= 0 else -math.acos(a / r) 

459 scaleX, scaleY = (r, delta / r) 

460 skewX, skewY = (math.atan((a * c + b * d) / (r * r)), 0) 

461 elif c != 0 or d != 0: 

462 s = math.sqrt(c * c + d * d) 

463 rotation = math.pi / 2 - ( 

464 math.acos(-c / s) if d >= 0 else -math.acos(c / s) 

465 ) 

466 scaleX, scaleY = (delta / s, s) 

467 skewX, skewY = (0, math.atan((a * c + b * d) / (s * s))) 

468 else: 

469 # a = b = c = d = 0 

470 pass 

471 

472 return DecomposedTransform( 

473 x, 

474 y, 

475 math.degrees(rotation), 

476 scaleX * sx, 

477 scaleY, 

478 math.degrees(skewX) * sx, 

479 math.degrees(skewY), 

480 0, 

481 0, 

482 ) 

483 

484 def toTransform(self): 

485 """Return the Transform() equivalent of this transformation. 

486 

487 :Example: 

488 >>> DecomposedTransform(scaleX=2, scaleY=2).toTransform() 

489 <Transform [2 0 0 2 0 0]> 

490 >>> 

491 """ 

492 t = Transform() 

493 t = t.translate( 

494 self.translateX + self.tCenterX, self.translateY + self.tCenterY 

495 ) 

496 t = t.rotate(math.radians(self.rotation)) 

497 t = t.scale(self.scaleX, self.scaleY) 

498 t = t.skew(math.radians(self.skewX), math.radians(self.skewY)) 

499 t = t.translate(-self.tCenterX, -self.tCenterY) 

500 return t 

501 

502 

503if __name__ == "__main__": 

504 import sys 

505 import doctest 

506 

507 sys.exit(doctest.testmod().failed)