Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcarith.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcarith.c
3
 *
4
 * Developed 1997-2019 by Guido Vollbeding.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains portable arithmetic entropy encoding routines for JPEG
9
 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10
 *
11
 * Both sequential and progressive modes are supported in this single module.
12
 *
13
 * Suspension is not currently supported in this module.
14
 */
15
16
#define JPEG_INTERNALS
17
#include "jinclude.h"
18
#include "jpeglib.h"
19
20
21
/* Expanded entropy encoder object for arithmetic encoding. */
22
23
typedef struct {
24
  struct jpeg_entropy_encoder pub; /* public fields */
25
26
  INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27
  INT32 a;               /* A register, normalized size of coding interval */
28
  INT32 sc;        /* counter for stacked 0xFF values which might overflow */
29
  INT32 zc;          /* counter for pending 0x00 output values which might *
30
                          * be discarded at the end ("Pacman" termination) */
31
  int ct;  /* bit shift counter, determines when next byte will be written */
32
  int buffer;                /* buffer for most recent output byte != 0xFF */
33
34
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35
  int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36
37
  unsigned int restarts_to_go;  /* MCUs left in this restart interval */
38
  int next_restart_num;   /* next restart number to write (0-7) */
39
40
  /* Pointers to statistics areas (these workspaces have image lifespan) */
41
  unsigned char * dc_stats[NUM_ARITH_TBLS];
42
  unsigned char * ac_stats[NUM_ARITH_TBLS];
43
44
  /* Statistics bin for coding with fixed probability 0.5 */
45
  unsigned char fixed_bin[4];
46
} arith_entropy_encoder;
47
48
typedef arith_entropy_encoder * arith_entropy_ptr;
49
50
/* The following two definitions specify the allocation chunk size
51
 * for the statistics area.
52
 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
53
 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
54
 *
55
 * We use a compact representation with 1 byte per statistics bin,
56
 * thus the numbers directly represent byte sizes.
57
 * This 1 byte per statistics bin contains the meaning of the MPS
58
 * (more probable symbol) in the highest bit (mask 0x80), and the
59
 * index into the probability estimation state machine table
60
 * in the lower bits (mask 0x7F).
61
 */
62
63
0
#define DC_STAT_BINS 64
64
0
#define AC_STAT_BINS 256
65
66
/* NOTE: Uncomment the following #define if you want to use the
67
 * given formula for calculating the AC conditioning parameter Kx
68
 * for spectral selection progressive coding in section G.1.3.2
69
 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
70
 * Although the spec and P&M authors claim that this "has proven
71
 * to give good results for 8 bit precision samples", I'm not
72
 * convinced yet that this is really beneficial.
73
 * Early tests gave only very marginal compression enhancements
74
 * (a few - around 5 or so - bytes even for very large files),
75
 * which would turn out rather negative if we'd suppress the
76
 * DAC (Define Arithmetic Conditioning) marker segments for
77
 * the default parameters in the future.
78
 * Note that currently the marker writing module emits 12-byte
79
 * DAC segments for a full-component scan in a color image.
80
 * This is not worth worrying about IMHO. However, since the
81
 * spec defines the default values to be used if the tables
82
 * are omitted (unlike Huffman tables, which are required
83
 * anyway), one might optimize this behaviour in the future,
84
 * and then it would be disadvantageous to use custom tables if
85
 * they don't provide sufficient gain to exceed the DAC size.
86
 *
87
 * On the other hand, I'd consider it as a reasonable result
88
 * that the conditioning has no significant influence on the
89
 * compression performance. This means that the basic
90
 * statistical model is already rather stable.
91
 *
92
 * Thus, at the moment, we use the default conditioning values
93
 * anyway, and do not use the custom formula.
94
 *
95
#define CALCULATE_SPECTRAL_CONDITIONING
96
 */
97
98
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
99
 * We assume that int right shift is unsigned if INT32 right shift is,
100
 * which should be safe.
101
 */
102
103
#ifdef RIGHT_SHIFT_IS_UNSIGNED
104
#define ISHIFT_TEMPS  int ishift_temp;
105
#define IRIGHT_SHIFT(x,shft)  \
106
  ((ishift_temp = (x)) < 0 ? \
107
   (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
108
   (ishift_temp >> (shft)))
109
#else
110
#define ISHIFT_TEMPS
111
0
#define IRIGHT_SHIFT(x,shft)  ((x) >> (shft))
112
#endif
113
114
115
LOCAL(void)
116
emit_byte (int val, j_compress_ptr cinfo)
117
/* Write next output byte; we do not support suspension in this module. */
118
0
{
119
0
  struct jpeg_destination_mgr * dest = cinfo->dest;
120
121
0
  *dest->next_output_byte++ = (JOCTET) val;
122
0
  if (--dest->free_in_buffer == 0)
123
0
    if (! (*dest->empty_output_buffer) (cinfo))
124
0
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
125
0
}
126
127
128
/*
129
 * Finish up at the end of an arithmetic-compressed scan.
130
 */
131
132
METHODDEF(void)
133
finish_pass (j_compress_ptr cinfo)
134
0
{
135
0
  arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
136
0
  INT32 temp;
137
138
  /* Section D.1.8: Termination of encoding */
139
140
  /* Find the e->c in the coding interval with the largest
141
   * number of trailing zero bits */
142
0
  if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
143
0
    e->c = temp + 0x8000L;
144
0
  else
145
0
    e->c = temp;
146
  /* Send remaining bytes to output */
147
0
  e->c <<= e->ct;
148
0
  if (e->c & 0xF8000000L) {
149
    /* One final overflow has to be handled */
150
0
    if (e->buffer >= 0) {
151
0
      if (e->zc)
152
0
  do emit_byte(0x00, cinfo);
153
0
  while (--e->zc);
154
0
      emit_byte(e->buffer + 1, cinfo);
155
0
      if (e->buffer + 1 == 0xFF)
156
0
  emit_byte(0x00, cinfo);
157
0
    }
158
0
    e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
159
0
    e->sc = 0;
160
0
  } else {
161
0
    if (e->buffer == 0)
162
0
      ++e->zc;
163
0
    else if (e->buffer >= 0) {
164
0
      if (e->zc)
165
0
  do emit_byte(0x00, cinfo);
166
0
  while (--e->zc);
167
0
      emit_byte(e->buffer, cinfo);
168
0
    }
169
0
    if (e->sc) {
170
0
      if (e->zc)
171
0
  do emit_byte(0x00, cinfo);
172
0
  while (--e->zc);
173
0
      do {
174
0
  emit_byte(0xFF, cinfo);
175
0
  emit_byte(0x00, cinfo);
176
0
      } while (--e->sc);
177
0
    }
178
0
  }
179
  /* Output final bytes only if they are not 0x00 */
180
0
  if (e->c & 0x7FFF800L) {
181
0
    if (e->zc)  /* output final pending zero bytes */
182
0
      do emit_byte(0x00, cinfo);
183
0
      while (--e->zc);
184
0
    emit_byte((int) ((e->c >> 19) & 0xFF), cinfo);
185
0
    if (((e->c >> 19) & 0xFF) == 0xFF)
186
0
      emit_byte(0x00, cinfo);
187
0
    if (e->c & 0x7F800L) {
188
0
      emit_byte((int) ((e->c >> 11) & 0xFF), cinfo);
189
0
      if (((e->c >> 11) & 0xFF) == 0xFF)
190
0
  emit_byte(0x00, cinfo);
191
0
    }
192
0
  }
193
0
}
194
195
196
/*
197
 * The core arithmetic encoding routine (common in JPEG and JBIG).
198
 * This needs to go as fast as possible.
199
 * Machine-dependent optimization facilities
200
 * are not utilized in this portable implementation.
201
 * However, this code should be fairly efficient and
202
 * may be a good base for further optimizations anyway.
203
 *
204
 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
205
 *
206
 * Note: I've added full "Pacman" termination support to the
207
 * byte output routines, which is equivalent to the optional
208
 * Discard_final_zeros procedure (Figure D.15) in the spec.
209
 * Thus, we always produce the shortest possible output
210
 * stream compliant to the spec (no trailing zero bytes,
211
 * except for FF stuffing).
212
 *
213
 * I've also introduced a new scheme for accessing
214
 * the probability estimation state machine table,
215
 * derived from Markus Kuhn's JBIG implementation.
216
 */
217
218
LOCAL(void)
219
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) 
220
0
{
221
0
  register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222
0
  register unsigned char nl, nm;
223
0
  register INT32 qe, temp;
224
0
  register int sv;
225
226
  /* Fetch values from our compact representation of Table D.3(D.2):
227
   * Qe values and probability estimation state machine
228
   */
229
0
  sv = *st;
230
0
  qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
231
0
  nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
232
0
  nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
233
234
  /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235
0
  e->a -= qe;
236
0
  if (val != (sv >> 7)) {
237
    /* Encode the less probable symbol */
238
0
    if (e->a >= qe) {
239
      /* If the interval size (qe) for the less probable symbol (LPS)
240
       * is larger than the interval size for the MPS, then exchange
241
       * the two symbols for coding efficiency, otherwise code the LPS
242
       * as usual: */
243
0
      e->c += e->a;
244
0
      e->a = qe;
245
0
    }
246
0
    *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
247
0
  } else {
248
    /* Encode the more probable symbol */
249
0
    if (e->a >= 0x8000L)
250
0
      return;  /* A >= 0x8000 -> ready, no renormalization required */
251
0
    if (e->a < qe) {
252
      /* If the interval size (qe) for the less probable symbol (LPS)
253
       * is larger than the interval size for the MPS, then exchange
254
       * the two symbols for coding efficiency: */
255
0
      e->c += e->a;
256
0
      e->a = qe;
257
0
    }
258
0
    *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
259
0
  }
260
261
  /* Renormalization & data output per section D.1.6 */
262
0
  do {
263
0
    e->a <<= 1;
264
0
    e->c <<= 1;
265
0
    if (--e->ct == 0) {
266
      /* Another byte is ready for output */
267
0
      temp = e->c >> 19;
268
0
      if (temp > 0xFF) {
269
  /* Handle overflow over all stacked 0xFF bytes */
270
0
  if (e->buffer >= 0) {
271
0
    if (e->zc)
272
0
      do emit_byte(0x00, cinfo);
273
0
      while (--e->zc);
274
0
    emit_byte(e->buffer + 1, cinfo);
275
0
    if (e->buffer + 1 == 0xFF)
276
0
      emit_byte(0x00, cinfo);
277
0
  }
278
0
  e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
279
0
  e->sc = 0;
280
  /* Note: The 3 spacer bits in the C register guarantee
281
   * that the new buffer byte can't be 0xFF here
282
   * (see page 160 in the P&M JPEG book). */
283
  /* New output byte, might overflow later */
284
0
  e->buffer = (int) (temp & 0xFF);
285
0
      } else if (temp == 0xFF) {
286
0
  ++e->sc;  /* stack 0xFF byte (which might overflow later) */
287
0
      } else {
288
  /* Output all stacked 0xFF bytes, they will not overflow any more */
289
0
  if (e->buffer == 0)
290
0
    ++e->zc;
291
0
  else if (e->buffer >= 0) {
292
0
    if (e->zc)
293
0
      do emit_byte(0x00, cinfo);
294
0
      while (--e->zc);
295
0
    emit_byte(e->buffer, cinfo);
296
0
  }
297
0
  if (e->sc) {
298
0
    if (e->zc)
299
0
      do emit_byte(0x00, cinfo);
300
0
      while (--e->zc);
301
0
    do {
302
0
      emit_byte(0xFF, cinfo);
303
0
      emit_byte(0x00, cinfo);
304
0
    } while (--e->sc);
305
0
  }
306
  /* New output byte (can still overflow) */
307
0
  e->buffer = (int) (temp & 0xFF);
308
0
      }
309
0
      e->c &= 0x7FFFFL;
310
0
      e->ct += 8;
311
0
    }
312
0
  } while (e->a < 0x8000L);
313
0
}
314
315
316
/*
317
 * Emit a restart marker & resynchronize predictions.
318
 */
319
320
LOCAL(void)
321
emit_restart (j_compress_ptr cinfo, int restart_num)
322
0
{
323
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324
0
  int ci;
325
0
  jpeg_component_info * compptr;
326
327
0
  finish_pass(cinfo);
328
329
0
  emit_byte(0xFF, cinfo);
330
0
  emit_byte(JPEG_RST0 + restart_num, cinfo);
331
332
  /* Re-initialize statistics areas */
333
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
334
0
    compptr = cinfo->cur_comp_info[ci];
335
    /* DC needs no table for refinement scan */
336
0
    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
337
0
      MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
338
      /* Reset DC predictions to 0 */
339
0
      entropy->last_dc_val[ci] = 0;
340
0
      entropy->dc_context[ci] = 0;
341
0
    }
342
    /* AC needs no table when not present */
343
0
    if (cinfo->Se) {
344
0
      MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
345
0
    }
346
0
  }
347
348
  /* Reset arithmetic encoding variables */
349
0
  entropy->c = 0;
350
0
  entropy->a = 0x10000L;
351
0
  entropy->sc = 0;
352
0
  entropy->zc = 0;
353
0
  entropy->ct = 11;
354
0
  entropy->buffer = -1;  /* empty */
355
0
}
356
357
358
/*
359
 * MCU encoding for DC initial scan (either spectral selection,
360
 * or first pass of successive approximation).
361
 */
362
363
METHODDEF(boolean)
364
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
365
0
{
366
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
367
0
  unsigned char *st;
368
0
  int blkn, ci, tbl;
369
0
  int v, v2, m;
370
0
  ISHIFT_TEMPS
371
372
  /* Emit restart marker if needed */
373
0
  if (cinfo->restart_interval) {
374
0
    if (entropy->restarts_to_go == 0) {
375
0
      emit_restart(cinfo, entropy->next_restart_num);
376
0
      entropy->restarts_to_go = cinfo->restart_interval;
377
0
      entropy->next_restart_num++;
378
0
      entropy->next_restart_num &= 7;
379
0
    }
380
0
    entropy->restarts_to_go--;
381
0
  }
382
383
  /* Encode the MCU data blocks */
384
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
385
0
    ci = cinfo->MCU_membership[blkn];
386
0
    tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
387
388
    /* Compute the DC value after the required point transform by Al.
389
     * This is simply an arithmetic right shift.
390
     */
391
0
    m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
392
393
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
394
395
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
396
0
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
397
398
    /* Figure F.4: Encode_DC_DIFF */
399
0
    if ((v = m - entropy->last_dc_val[ci]) == 0) {
400
0
      arith_encode(cinfo, st, 0);
401
0
      entropy->dc_context[ci] = 0;  /* zero diff category */
402
0
    } else {
403
0
      entropy->last_dc_val[ci] = m;
404
0
      arith_encode(cinfo, st, 1);
405
      /* Figure F.6: Encoding nonzero value v */
406
      /* Figure F.7: Encoding the sign of v */
407
0
      if (v > 0) {
408
0
  arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
409
0
  st += 2;      /* Table F.4: SP = S0 + 2 */
410
0
  entropy->dc_context[ci] = 4;  /* small positive diff category */
411
0
      } else {
412
0
  v = -v;
413
0
  arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
414
0
  st += 3;      /* Table F.4: SN = S0 + 3 */
415
0
  entropy->dc_context[ci] = 8;  /* small negative diff category */
416
0
      }
417
      /* Figure F.8: Encoding the magnitude category of v */
418
0
      m = 0;
419
0
      if (v -= 1) {
420
0
  arith_encode(cinfo, st, 1);
421
0
  m = 1;
422
0
  v2 = v;
423
0
  st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
424
0
  while (v2 >>= 1) {
425
0
    arith_encode(cinfo, st, 1);
426
0
    m <<= 1;
427
0
    st += 1;
428
0
  }
429
0
      }
430
0
      arith_encode(cinfo, st, 0);
431
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
432
0
      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
433
0
  entropy->dc_context[ci] = 0; /* zero diff category */
434
0
      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
435
0
  entropy->dc_context[ci] += 8; /* large diff category */
436
      /* Figure F.9: Encoding the magnitude bit pattern of v */
437
0
      st += 14;
438
0
      while (m >>= 1)
439
0
  arith_encode(cinfo, st, (m & v) ? 1 : 0);
440
0
    }
441
0
  }
442
443
0
  return TRUE;
444
0
}
445
446
447
/*
448
 * MCU encoding for AC initial scan (either spectral selection,
449
 * or first pass of successive approximation).
450
 */
451
452
METHODDEF(boolean)
453
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
454
0
{
455
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
456
0
  const int * natural_order;
457
0
  JBLOCKROW block;
458
0
  unsigned char *st;
459
0
  int tbl, k, ke;
460
0
  int v, v2, m;
461
462
  /* Emit restart marker if needed */
463
0
  if (cinfo->restart_interval) {
464
0
    if (entropy->restarts_to_go == 0) {
465
0
      emit_restart(cinfo, entropy->next_restart_num);
466
0
      entropy->restarts_to_go = cinfo->restart_interval;
467
0
      entropy->next_restart_num++;
468
0
      entropy->next_restart_num &= 7;
469
0
    }
470
0
    entropy->restarts_to_go--;
471
0
  }
472
473
0
  natural_order = cinfo->natural_order;
474
475
  /* Encode the MCU data block */
476
0
  block = MCU_data[0];
477
0
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
478
479
  /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
480
481
  /* Establish EOB (end-of-block) index */
482
0
  ke = cinfo->Se;
483
0
  do {
484
    /* We must apply the point transform by Al.  For AC coefficients this
485
     * is an integer division with rounding towards 0.  To do this portably
486
     * in C, we shift after obtaining the absolute value.
487
     */
488
0
    if ((v = (*block)[natural_order[ke]]) >= 0) {
489
0
      if (v >>= cinfo->Al) break;
490
0
    } else {
491
0
      v = -v;
492
0
      if (v >>= cinfo->Al) break;
493
0
    }
494
0
  } while (--ke);
495
496
  /* Figure F.5: Encode_AC_Coefficients */
497
0
  for (k = cinfo->Ss - 1; k < ke;) {
498
0
    st = entropy->ac_stats[tbl] + 3 * k;
499
0
    arith_encode(cinfo, st, 0);   /* EOB decision */
500
0
    for (;;) {
501
0
      if ((v = (*block)[natural_order[++k]]) >= 0) {
502
0
  if (v >>= cinfo->Al) {
503
0
    arith_encode(cinfo, st + 1, 1);
504
0
    arith_encode(cinfo, entropy->fixed_bin, 0);
505
0
    break;
506
0
  }
507
0
      } else {
508
0
  v = -v;
509
0
  if (v >>= cinfo->Al) {
510
0
    arith_encode(cinfo, st + 1, 1);
511
0
    arith_encode(cinfo, entropy->fixed_bin, 1);
512
0
    break;
513
0
  }
514
0
      }
515
0
      arith_encode(cinfo, st + 1, 0);
516
0
      st += 3;
517
0
    }
518
0
    st += 2;
519
    /* Figure F.8: Encoding the magnitude category of v */
520
0
    m = 0;
521
0
    if (v -= 1) {
522
0
      arith_encode(cinfo, st, 1);
523
0
      m = 1;
524
0
      v2 = v;
525
0
      if (v2 >>= 1) {
526
0
  arith_encode(cinfo, st, 1);
527
0
  m <<= 1;
528
0
  st = entropy->ac_stats[tbl] +
529
0
       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
530
0
  while (v2 >>= 1) {
531
0
    arith_encode(cinfo, st, 1);
532
0
    m <<= 1;
533
0
    st += 1;
534
0
  }
535
0
      }
536
0
    }
537
0
    arith_encode(cinfo, st, 0);
538
    /* Figure F.9: Encoding the magnitude bit pattern of v */
539
0
    st += 14;
540
0
    while (m >>= 1)
541
0
      arith_encode(cinfo, st, (m & v) ? 1 : 0);
542
0
  }
543
  /* Encode EOB decision only if k < cinfo->Se */
544
0
  if (k < cinfo->Se) {
545
0
    st = entropy->ac_stats[tbl] + 3 * k;
546
0
    arith_encode(cinfo, st, 1);
547
0
  }
548
549
0
  return TRUE;
550
0
}
551
552
553
/*
554
 * MCU encoding for DC successive approximation refinement scan.
555
 * Note: we assume such scans can be multi-component,
556
 * although the spec is not very clear on the point.
557
 */
558
559
METHODDEF(boolean)
560
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
561
0
{
562
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
563
0
  unsigned char *st;
564
0
  int Al, blkn;
565
566
  /* Emit restart marker if needed */
567
0
  if (cinfo->restart_interval) {
568
0
    if (entropy->restarts_to_go == 0) {
569
0
      emit_restart(cinfo, entropy->next_restart_num);
570
0
      entropy->restarts_to_go = cinfo->restart_interval;
571
0
      entropy->next_restart_num++;
572
0
      entropy->next_restart_num &= 7;
573
0
    }
574
0
    entropy->restarts_to_go--;
575
0
  }
576
577
0
  st = entropy->fixed_bin;  /* use fixed probability estimation */
578
0
  Al = cinfo->Al;
579
580
  /* Encode the MCU data blocks */
581
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
582
    /* We simply emit the Al'th bit of the DC coefficient value. */
583
0
    arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
584
0
  }
585
586
0
  return TRUE;
587
0
}
588
589
590
/*
591
 * MCU encoding for AC successive approximation refinement scan.
592
 */
593
594
METHODDEF(boolean)
595
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
596
0
{
597
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
598
0
  const int * natural_order;
599
0
  JBLOCKROW block;
600
0
  unsigned char *st;
601
0
  int tbl, k, ke, kex;
602
0
  int v;
603
604
  /* Emit restart marker if needed */
605
0
  if (cinfo->restart_interval) {
606
0
    if (entropy->restarts_to_go == 0) {
607
0
      emit_restart(cinfo, entropy->next_restart_num);
608
0
      entropy->restarts_to_go = cinfo->restart_interval;
609
0
      entropy->next_restart_num++;
610
0
      entropy->next_restart_num &= 7;
611
0
    }
612
0
    entropy->restarts_to_go--;
613
0
  }
614
615
0
  natural_order = cinfo->natural_order;
616
617
  /* Encode the MCU data block */
618
0
  block = MCU_data[0];
619
0
  tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
620
621
  /* Section G.1.3.3: Encoding of AC coefficients */
622
623
  /* Establish EOB (end-of-block) index */
624
0
  ke = cinfo->Se;
625
0
  do {
626
    /* We must apply the point transform by Al.  For AC coefficients this
627
     * is an integer division with rounding towards 0.  To do this portably
628
     * in C, we shift after obtaining the absolute value.
629
     */
630
0
    if ((v = (*block)[natural_order[ke]]) >= 0) {
631
0
      if (v >>= cinfo->Al) break;
632
0
    } else {
633
0
      v = -v;
634
0
      if (v >>= cinfo->Al) break;
635
0
    }
636
0
  } while (--ke);
637
638
  /* Establish EOBx (previous stage end-of-block) index */
639
0
  for (kex = ke; kex > 0; kex--)
640
0
    if ((v = (*block)[natural_order[kex]]) >= 0) {
641
0
      if (v >>= cinfo->Ah) break;
642
0
    } else {
643
0
      v = -v;
644
0
      if (v >>= cinfo->Ah) break;
645
0
    }
646
647
  /* Figure G.10: Encode_AC_Coefficients_SA */
648
0
  for (k = cinfo->Ss - 1; k < ke;) {
649
0
    st = entropy->ac_stats[tbl] + 3 * k;
650
0
    if (k >= kex)
651
0
      arith_encode(cinfo, st, 0); /* EOB decision */
652
0
    for (;;) {
653
0
      if ((v = (*block)[natural_order[++k]]) >= 0) {
654
0
  if (v >>= cinfo->Al) {
655
0
    if (v >> 1)     /* previously nonzero coef */
656
0
      arith_encode(cinfo, st + 2, (v & 1));
657
0
    else {     /* newly nonzero coef */
658
0
      arith_encode(cinfo, st + 1, 1);
659
0
      arith_encode(cinfo, entropy->fixed_bin, 0);
660
0
    }
661
0
    break;
662
0
  }
663
0
      } else {
664
0
  v = -v;
665
0
  if (v >>= cinfo->Al) {
666
0
    if (v >> 1)     /* previously nonzero coef */
667
0
      arith_encode(cinfo, st + 2, (v & 1));
668
0
    else {     /* newly nonzero coef */
669
0
      arith_encode(cinfo, st + 1, 1);
670
0
      arith_encode(cinfo, entropy->fixed_bin, 1);
671
0
    }
672
0
    break;
673
0
  }
674
0
      }
675
0
      arith_encode(cinfo, st + 1, 0);
676
0
      st += 3;
677
0
    }
678
0
  }
679
  /* Encode EOB decision only if k < cinfo->Se */
680
0
  if (k < cinfo->Se) {
681
0
    st = entropy->ac_stats[tbl] + 3 * k;
682
0
    arith_encode(cinfo, st, 1);
683
0
  }
684
685
0
  return TRUE;
686
0
}
687
688
689
/*
690
 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
691
 */
692
693
METHODDEF(boolean)
694
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
695
0
{
696
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
697
0
  const int * natural_order;
698
0
  JBLOCKROW block;
699
0
  unsigned char *st;
700
0
  int tbl, k, ke;
701
0
  int v, v2, m;
702
0
  int blkn, ci;
703
0
  jpeg_component_info * compptr;
704
705
  /* Emit restart marker if needed */
706
0
  if (cinfo->restart_interval) {
707
0
    if (entropy->restarts_to_go == 0) {
708
0
      emit_restart(cinfo, entropy->next_restart_num);
709
0
      entropy->restarts_to_go = cinfo->restart_interval;
710
0
      entropy->next_restart_num++;
711
0
      entropy->next_restart_num &= 7;
712
0
    }
713
0
    entropy->restarts_to_go--;
714
0
  }
715
716
0
  natural_order = cinfo->natural_order;
717
718
  /* Encode the MCU data blocks */
719
0
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
720
0
    block = MCU_data[blkn];
721
0
    ci = cinfo->MCU_membership[blkn];
722
0
    compptr = cinfo->cur_comp_info[ci];
723
724
    /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
725
726
0
    tbl = compptr->dc_tbl_no;
727
728
    /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
729
0
    st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
730
731
    /* Figure F.4: Encode_DC_DIFF */
732
0
    if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
733
0
      arith_encode(cinfo, st, 0);
734
0
      entropy->dc_context[ci] = 0;  /* zero diff category */
735
0
    } else {
736
0
      entropy->last_dc_val[ci] = (*block)[0];
737
0
      arith_encode(cinfo, st, 1);
738
      /* Figure F.6: Encoding nonzero value v */
739
      /* Figure F.7: Encoding the sign of v */
740
0
      if (v > 0) {
741
0
  arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
742
0
  st += 2;      /* Table F.4: SP = S0 + 2 */
743
0
  entropy->dc_context[ci] = 4;  /* small positive diff category */
744
0
      } else {
745
0
  v = -v;
746
0
  arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
747
0
  st += 3;      /* Table F.4: SN = S0 + 3 */
748
0
  entropy->dc_context[ci] = 8;  /* small negative diff category */
749
0
      }
750
      /* Figure F.8: Encoding the magnitude category of v */
751
0
      m = 0;
752
0
      if (v -= 1) {
753
0
  arith_encode(cinfo, st, 1);
754
0
  m = 1;
755
0
  v2 = v;
756
0
  st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
757
0
  while (v2 >>= 1) {
758
0
    arith_encode(cinfo, st, 1);
759
0
    m <<= 1;
760
0
    st += 1;
761
0
  }
762
0
      }
763
0
      arith_encode(cinfo, st, 0);
764
      /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
765
0
      if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
766
0
  entropy->dc_context[ci] = 0; /* zero diff category */
767
0
      else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
768
0
  entropy->dc_context[ci] += 8; /* large diff category */
769
      /* Figure F.9: Encoding the magnitude bit pattern of v */
770
0
      st += 14;
771
0
      while (m >>= 1)
772
0
  arith_encode(cinfo, st, (m & v) ? 1 : 0);
773
0
    }
774
775
    /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
776
777
0
    if ((ke = cinfo->lim_Se) == 0) continue;
778
0
    tbl = compptr->ac_tbl_no;
779
780
    /* Establish EOB (end-of-block) index */
781
0
    do {
782
0
      if ((*block)[natural_order[ke]]) break;
783
0
    } while (--ke);
784
785
    /* Figure F.5: Encode_AC_Coefficients */
786
0
    for (k = 0; k < ke;) {
787
0
      st = entropy->ac_stats[tbl] + 3 * k;
788
0
      arith_encode(cinfo, st, 0); /* EOB decision */
789
0
      while ((v = (*block)[natural_order[++k]]) == 0) {
790
0
  arith_encode(cinfo, st + 1, 0);
791
0
  st += 3;
792
0
      }
793
0
      arith_encode(cinfo, st + 1, 1);
794
      /* Figure F.6: Encoding nonzero value v */
795
      /* Figure F.7: Encoding the sign of v */
796
0
      if (v > 0) {
797
0
  arith_encode(cinfo, entropy->fixed_bin, 0);
798
0
      } else {
799
0
  v = -v;
800
0
  arith_encode(cinfo, entropy->fixed_bin, 1);
801
0
      }
802
0
      st += 2;
803
      /* Figure F.8: Encoding the magnitude category of v */
804
0
      m = 0;
805
0
      if (v -= 1) {
806
0
  arith_encode(cinfo, st, 1);
807
0
  m = 1;
808
0
  v2 = v;
809
0
  if (v2 >>= 1) {
810
0
    arith_encode(cinfo, st, 1);
811
0
    m <<= 1;
812
0
    st = entropy->ac_stats[tbl] +
813
0
         (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
814
0
    while (v2 >>= 1) {
815
0
      arith_encode(cinfo, st, 1);
816
0
      m <<= 1;
817
0
      st += 1;
818
0
    }
819
0
  }
820
0
      }
821
0
      arith_encode(cinfo, st, 0);
822
      /* Figure F.9: Encoding the magnitude bit pattern of v */
823
0
      st += 14;
824
0
      while (m >>= 1)
825
0
  arith_encode(cinfo, st, (m & v) ? 1 : 0);
826
0
    }
827
    /* Encode EOB decision only if k < cinfo->lim_Se */
828
0
    if (k < cinfo->lim_Se) {
829
0
      st = entropy->ac_stats[tbl] + 3 * k;
830
0
      arith_encode(cinfo, st, 1);
831
0
    }
832
0
  }
833
834
0
  return TRUE;
835
0
}
836
837
838
/*
839
 * Initialize for an arithmetic-compressed scan.
840
 */
841
842
METHODDEF(void)
843
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
844
0
{
845
0
  arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
846
0
  int ci, tbl;
847
0
  jpeg_component_info * compptr;
848
849
0
  if (gather_statistics)
850
    /* Make sure to avoid that in the master control logic!
851
     * We are fully adaptive here and need no extra
852
     * statistics gathering pass!
853
     */
854
0
    ERREXIT(cinfo, JERR_NOT_COMPILED);
855
856
  /* We assume jcmaster.c already validated the progressive scan parameters. */
857
858
  /* Select execution routines */
859
0
  if (cinfo->progressive_mode) {
860
0
    if (cinfo->Ah == 0) {
861
0
      if (cinfo->Ss == 0)
862
0
  entropy->pub.encode_mcu = encode_mcu_DC_first;
863
0
      else
864
0
  entropy->pub.encode_mcu = encode_mcu_AC_first;
865
0
    } else {
866
0
      if (cinfo->Ss == 0)
867
0
  entropy->pub.encode_mcu = encode_mcu_DC_refine;
868
0
      else
869
0
  entropy->pub.encode_mcu = encode_mcu_AC_refine;
870
0
    }
871
0
  } else
872
0
    entropy->pub.encode_mcu = encode_mcu;
873
874
  /* Allocate & initialize requested statistics areas */
875
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
876
0
    compptr = cinfo->cur_comp_info[ci];
877
    /* DC needs no table for refinement scan */
878
0
    if (cinfo->Ss == 0 && cinfo->Ah == 0) {
879
0
      tbl = compptr->dc_tbl_no;
880
0
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
881
0
  ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
882
0
      if (entropy->dc_stats[tbl] == NULL)
883
0
  entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
884
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
885
0
      MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
886
      /* Initialize DC predictions to 0 */
887
0
      entropy->last_dc_val[ci] = 0;
888
0
      entropy->dc_context[ci] = 0;
889
0
    }
890
    /* AC needs no table when not present */
891
0
    if (cinfo->Se) {
892
0
      tbl = compptr->ac_tbl_no;
893
0
      if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
894
0
  ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
895
0
      if (entropy->ac_stats[tbl] == NULL)
896
0
  entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
897
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
898
0
      MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
899
#ifdef CALCULATE_SPECTRAL_CONDITIONING
900
      if (cinfo->progressive_mode)
901
  /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
902
  cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
903
#endif
904
0
    }
905
0
  }
906
907
  /* Initialize arithmetic encoding variables */
908
0
  entropy->c = 0;
909
0
  entropy->a = 0x10000L;
910
0
  entropy->sc = 0;
911
0
  entropy->zc = 0;
912
0
  entropy->ct = 11;
913
0
  entropy->buffer = -1;  /* empty */
914
915
  /* Initialize restart stuff */
916
0
  entropy->restarts_to_go = cinfo->restart_interval;
917
0
  entropy->next_restart_num = 0;
918
0
}
919
920
921
/*
922
 * Module initialization routine for arithmetic entropy encoding.
923
 */
924
925
GLOBAL(void)
926
jinit_arith_encoder (j_compress_ptr cinfo)
927
0
{
928
0
  arith_entropy_ptr entropy;
929
0
  int i;
930
931
0
  entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
932
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder));
933
0
  cinfo->entropy = &entropy->pub;
934
0
  entropy->pub.start_pass = start_pass;
935
0
  entropy->pub.finish_pass = finish_pass;
936
937
  /* Mark tables unallocated */
938
0
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
939
0
    entropy->dc_stats[i] = NULL;
940
0
    entropy->ac_stats[i] = NULL;
941
0
  }
942
943
  /* Initialize index for fixed probability estimation */
944
0
  entropy->fixed_bin[0] = 113;
945
0
}