/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcarith.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcarith.c |
3 | | * |
4 | | * Developed 1997-2019 by Guido Vollbeding. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains portable arithmetic entropy encoding routines for JPEG |
9 | | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
10 | | * |
11 | | * Both sequential and progressive modes are supported in this single module. |
12 | | * |
13 | | * Suspension is not currently supported in this module. |
14 | | */ |
15 | | |
16 | | #define JPEG_INTERNALS |
17 | | #include "jinclude.h" |
18 | | #include "jpeglib.h" |
19 | | |
20 | | |
21 | | /* Expanded entropy encoder object for arithmetic encoding. */ |
22 | | |
23 | | typedef struct { |
24 | | struct jpeg_entropy_encoder pub; /* public fields */ |
25 | | |
26 | | INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ |
27 | | INT32 a; /* A register, normalized size of coding interval */ |
28 | | INT32 sc; /* counter for stacked 0xFF values which might overflow */ |
29 | | INT32 zc; /* counter for pending 0x00 output values which might * |
30 | | * be discarded at the end ("Pacman" termination) */ |
31 | | int ct; /* bit shift counter, determines when next byte will be written */ |
32 | | int buffer; /* buffer for most recent output byte != 0xFF */ |
33 | | |
34 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
35 | | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
36 | | |
37 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
38 | | int next_restart_num; /* next restart number to write (0-7) */ |
39 | | |
40 | | /* Pointers to statistics areas (these workspaces have image lifespan) */ |
41 | | unsigned char * dc_stats[NUM_ARITH_TBLS]; |
42 | | unsigned char * ac_stats[NUM_ARITH_TBLS]; |
43 | | |
44 | | /* Statistics bin for coding with fixed probability 0.5 */ |
45 | | unsigned char fixed_bin[4]; |
46 | | } arith_entropy_encoder; |
47 | | |
48 | | typedef arith_entropy_encoder * arith_entropy_ptr; |
49 | | |
50 | | /* The following two definitions specify the allocation chunk size |
51 | | * for the statistics area. |
52 | | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
53 | | * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
54 | | * |
55 | | * We use a compact representation with 1 byte per statistics bin, |
56 | | * thus the numbers directly represent byte sizes. |
57 | | * This 1 byte per statistics bin contains the meaning of the MPS |
58 | | * (more probable symbol) in the highest bit (mask 0x80), and the |
59 | | * index into the probability estimation state machine table |
60 | | * in the lower bits (mask 0x7F). |
61 | | */ |
62 | | |
63 | 0 | #define DC_STAT_BINS 64 |
64 | 0 | #define AC_STAT_BINS 256 |
65 | | |
66 | | /* NOTE: Uncomment the following #define if you want to use the |
67 | | * given formula for calculating the AC conditioning parameter Kx |
68 | | * for spectral selection progressive coding in section G.1.3.2 |
69 | | * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). |
70 | | * Although the spec and P&M authors claim that this "has proven |
71 | | * to give good results for 8 bit precision samples", I'm not |
72 | | * convinced yet that this is really beneficial. |
73 | | * Early tests gave only very marginal compression enhancements |
74 | | * (a few - around 5 or so - bytes even for very large files), |
75 | | * which would turn out rather negative if we'd suppress the |
76 | | * DAC (Define Arithmetic Conditioning) marker segments for |
77 | | * the default parameters in the future. |
78 | | * Note that currently the marker writing module emits 12-byte |
79 | | * DAC segments for a full-component scan in a color image. |
80 | | * This is not worth worrying about IMHO. However, since the |
81 | | * spec defines the default values to be used if the tables |
82 | | * are omitted (unlike Huffman tables, which are required |
83 | | * anyway), one might optimize this behaviour in the future, |
84 | | * and then it would be disadvantageous to use custom tables if |
85 | | * they don't provide sufficient gain to exceed the DAC size. |
86 | | * |
87 | | * On the other hand, I'd consider it as a reasonable result |
88 | | * that the conditioning has no significant influence on the |
89 | | * compression performance. This means that the basic |
90 | | * statistical model is already rather stable. |
91 | | * |
92 | | * Thus, at the moment, we use the default conditioning values |
93 | | * anyway, and do not use the custom formula. |
94 | | * |
95 | | #define CALCULATE_SPECTRAL_CONDITIONING |
96 | | */ |
97 | | |
98 | | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
99 | | * We assume that int right shift is unsigned if INT32 right shift is, |
100 | | * which should be safe. |
101 | | */ |
102 | | |
103 | | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
104 | | #define ISHIFT_TEMPS int ishift_temp; |
105 | | #define IRIGHT_SHIFT(x,shft) \ |
106 | | ((ishift_temp = (x)) < 0 ? \ |
107 | | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
108 | | (ishift_temp >> (shft))) |
109 | | #else |
110 | | #define ISHIFT_TEMPS |
111 | 0 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
112 | | #endif |
113 | | |
114 | | |
115 | | LOCAL(void) |
116 | | emit_byte (int val, j_compress_ptr cinfo) |
117 | | /* Write next output byte; we do not support suspension in this module. */ |
118 | 0 | { |
119 | 0 | struct jpeg_destination_mgr * dest = cinfo->dest; |
120 | |
|
121 | 0 | *dest->next_output_byte++ = (JOCTET) val; |
122 | 0 | if (--dest->free_in_buffer == 0) |
123 | 0 | if (! (*dest->empty_output_buffer) (cinfo)) |
124 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
125 | 0 | } |
126 | | |
127 | | |
128 | | /* |
129 | | * Finish up at the end of an arithmetic-compressed scan. |
130 | | */ |
131 | | |
132 | | METHODDEF(void) |
133 | | finish_pass (j_compress_ptr cinfo) |
134 | 0 | { |
135 | 0 | arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
136 | 0 | INT32 temp; |
137 | | |
138 | | /* Section D.1.8: Termination of encoding */ |
139 | | |
140 | | /* Find the e->c in the coding interval with the largest |
141 | | * number of trailing zero bits */ |
142 | 0 | if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) |
143 | 0 | e->c = temp + 0x8000L; |
144 | 0 | else |
145 | 0 | e->c = temp; |
146 | | /* Send remaining bytes to output */ |
147 | 0 | e->c <<= e->ct; |
148 | 0 | if (e->c & 0xF8000000L) { |
149 | | /* One final overflow has to be handled */ |
150 | 0 | if (e->buffer >= 0) { |
151 | 0 | if (e->zc) |
152 | 0 | do emit_byte(0x00, cinfo); |
153 | 0 | while (--e->zc); |
154 | 0 | emit_byte(e->buffer + 1, cinfo); |
155 | 0 | if (e->buffer + 1 == 0xFF) |
156 | 0 | emit_byte(0x00, cinfo); |
157 | 0 | } |
158 | 0 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
159 | 0 | e->sc = 0; |
160 | 0 | } else { |
161 | 0 | if (e->buffer == 0) |
162 | 0 | ++e->zc; |
163 | 0 | else if (e->buffer >= 0) { |
164 | 0 | if (e->zc) |
165 | 0 | do emit_byte(0x00, cinfo); |
166 | 0 | while (--e->zc); |
167 | 0 | emit_byte(e->buffer, cinfo); |
168 | 0 | } |
169 | 0 | if (e->sc) { |
170 | 0 | if (e->zc) |
171 | 0 | do emit_byte(0x00, cinfo); |
172 | 0 | while (--e->zc); |
173 | 0 | do { |
174 | 0 | emit_byte(0xFF, cinfo); |
175 | 0 | emit_byte(0x00, cinfo); |
176 | 0 | } while (--e->sc); |
177 | 0 | } |
178 | 0 | } |
179 | | /* Output final bytes only if they are not 0x00 */ |
180 | 0 | if (e->c & 0x7FFF800L) { |
181 | 0 | if (e->zc) /* output final pending zero bytes */ |
182 | 0 | do emit_byte(0x00, cinfo); |
183 | 0 | while (--e->zc); |
184 | 0 | emit_byte((int) ((e->c >> 19) & 0xFF), cinfo); |
185 | 0 | if (((e->c >> 19) & 0xFF) == 0xFF) |
186 | 0 | emit_byte(0x00, cinfo); |
187 | 0 | if (e->c & 0x7F800L) { |
188 | 0 | emit_byte((int) ((e->c >> 11) & 0xFF), cinfo); |
189 | 0 | if (((e->c >> 11) & 0xFF) == 0xFF) |
190 | 0 | emit_byte(0x00, cinfo); |
191 | 0 | } |
192 | 0 | } |
193 | 0 | } |
194 | | |
195 | | |
196 | | /* |
197 | | * The core arithmetic encoding routine (common in JPEG and JBIG). |
198 | | * This needs to go as fast as possible. |
199 | | * Machine-dependent optimization facilities |
200 | | * are not utilized in this portable implementation. |
201 | | * However, this code should be fairly efficient and |
202 | | * may be a good base for further optimizations anyway. |
203 | | * |
204 | | * Parameter 'val' to be encoded may be 0 or 1 (binary decision). |
205 | | * |
206 | | * Note: I've added full "Pacman" termination support to the |
207 | | * byte output routines, which is equivalent to the optional |
208 | | * Discard_final_zeros procedure (Figure D.15) in the spec. |
209 | | * Thus, we always produce the shortest possible output |
210 | | * stream compliant to the spec (no trailing zero bytes, |
211 | | * except for FF stuffing). |
212 | | * |
213 | | * I've also introduced a new scheme for accessing |
214 | | * the probability estimation state machine table, |
215 | | * derived from Markus Kuhn's JBIG implementation. |
216 | | */ |
217 | | |
218 | | LOCAL(void) |
219 | | arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) |
220 | 0 | { |
221 | 0 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
222 | 0 | register unsigned char nl, nm; |
223 | 0 | register INT32 qe, temp; |
224 | 0 | register int sv; |
225 | | |
226 | | /* Fetch values from our compact representation of Table D.3(D.2): |
227 | | * Qe values and probability estimation state machine |
228 | | */ |
229 | 0 | sv = *st; |
230 | 0 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
231 | 0 | nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
232 | 0 | nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
233 | | |
234 | | /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ |
235 | 0 | e->a -= qe; |
236 | 0 | if (val != (sv >> 7)) { |
237 | | /* Encode the less probable symbol */ |
238 | 0 | if (e->a >= qe) { |
239 | | /* If the interval size (qe) for the less probable symbol (LPS) |
240 | | * is larger than the interval size for the MPS, then exchange |
241 | | * the two symbols for coding efficiency, otherwise code the LPS |
242 | | * as usual: */ |
243 | 0 | e->c += e->a; |
244 | 0 | e->a = qe; |
245 | 0 | } |
246 | 0 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
247 | 0 | } else { |
248 | | /* Encode the more probable symbol */ |
249 | 0 | if (e->a >= 0x8000L) |
250 | 0 | return; /* A >= 0x8000 -> ready, no renormalization required */ |
251 | 0 | if (e->a < qe) { |
252 | | /* If the interval size (qe) for the less probable symbol (LPS) |
253 | | * is larger than the interval size for the MPS, then exchange |
254 | | * the two symbols for coding efficiency: */ |
255 | 0 | e->c += e->a; |
256 | 0 | e->a = qe; |
257 | 0 | } |
258 | 0 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
259 | 0 | } |
260 | | |
261 | | /* Renormalization & data output per section D.1.6 */ |
262 | 0 | do { |
263 | 0 | e->a <<= 1; |
264 | 0 | e->c <<= 1; |
265 | 0 | if (--e->ct == 0) { |
266 | | /* Another byte is ready for output */ |
267 | 0 | temp = e->c >> 19; |
268 | 0 | if (temp > 0xFF) { |
269 | | /* Handle overflow over all stacked 0xFF bytes */ |
270 | 0 | if (e->buffer >= 0) { |
271 | 0 | if (e->zc) |
272 | 0 | do emit_byte(0x00, cinfo); |
273 | 0 | while (--e->zc); |
274 | 0 | emit_byte(e->buffer + 1, cinfo); |
275 | 0 | if (e->buffer + 1 == 0xFF) |
276 | 0 | emit_byte(0x00, cinfo); |
277 | 0 | } |
278 | 0 | e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ |
279 | 0 | e->sc = 0; |
280 | | /* Note: The 3 spacer bits in the C register guarantee |
281 | | * that the new buffer byte can't be 0xFF here |
282 | | * (see page 160 in the P&M JPEG book). */ |
283 | | /* New output byte, might overflow later */ |
284 | 0 | e->buffer = (int) (temp & 0xFF); |
285 | 0 | } else if (temp == 0xFF) { |
286 | 0 | ++e->sc; /* stack 0xFF byte (which might overflow later) */ |
287 | 0 | } else { |
288 | | /* Output all stacked 0xFF bytes, they will not overflow any more */ |
289 | 0 | if (e->buffer == 0) |
290 | 0 | ++e->zc; |
291 | 0 | else if (e->buffer >= 0) { |
292 | 0 | if (e->zc) |
293 | 0 | do emit_byte(0x00, cinfo); |
294 | 0 | while (--e->zc); |
295 | 0 | emit_byte(e->buffer, cinfo); |
296 | 0 | } |
297 | 0 | if (e->sc) { |
298 | 0 | if (e->zc) |
299 | 0 | do emit_byte(0x00, cinfo); |
300 | 0 | while (--e->zc); |
301 | 0 | do { |
302 | 0 | emit_byte(0xFF, cinfo); |
303 | 0 | emit_byte(0x00, cinfo); |
304 | 0 | } while (--e->sc); |
305 | 0 | } |
306 | | /* New output byte (can still overflow) */ |
307 | 0 | e->buffer = (int) (temp & 0xFF); |
308 | 0 | } |
309 | 0 | e->c &= 0x7FFFFL; |
310 | 0 | e->ct += 8; |
311 | 0 | } |
312 | 0 | } while (e->a < 0x8000L); |
313 | 0 | } |
314 | | |
315 | | |
316 | | /* |
317 | | * Emit a restart marker & resynchronize predictions. |
318 | | */ |
319 | | |
320 | | LOCAL(void) |
321 | | emit_restart (j_compress_ptr cinfo, int restart_num) |
322 | 0 | { |
323 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
324 | 0 | int ci; |
325 | 0 | jpeg_component_info * compptr; |
326 | |
|
327 | 0 | finish_pass(cinfo); |
328 | |
|
329 | 0 | emit_byte(0xFF, cinfo); |
330 | 0 | emit_byte(JPEG_RST0 + restart_num, cinfo); |
331 | | |
332 | | /* Re-initialize statistics areas */ |
333 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
334 | 0 | compptr = cinfo->cur_comp_info[ci]; |
335 | | /* DC needs no table for refinement scan */ |
336 | 0 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
337 | 0 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
338 | | /* Reset DC predictions to 0 */ |
339 | 0 | entropy->last_dc_val[ci] = 0; |
340 | 0 | entropy->dc_context[ci] = 0; |
341 | 0 | } |
342 | | /* AC needs no table when not present */ |
343 | 0 | if (cinfo->Se) { |
344 | 0 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
345 | 0 | } |
346 | 0 | } |
347 | | |
348 | | /* Reset arithmetic encoding variables */ |
349 | 0 | entropy->c = 0; |
350 | 0 | entropy->a = 0x10000L; |
351 | 0 | entropy->sc = 0; |
352 | 0 | entropy->zc = 0; |
353 | 0 | entropy->ct = 11; |
354 | 0 | entropy->buffer = -1; /* empty */ |
355 | 0 | } |
356 | | |
357 | | |
358 | | /* |
359 | | * MCU encoding for DC initial scan (either spectral selection, |
360 | | * or first pass of successive approximation). |
361 | | */ |
362 | | |
363 | | METHODDEF(boolean) |
364 | | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
365 | 0 | { |
366 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
367 | 0 | unsigned char *st; |
368 | 0 | int blkn, ci, tbl; |
369 | 0 | int v, v2, m; |
370 | 0 | ISHIFT_TEMPS |
371 | | |
372 | | /* Emit restart marker if needed */ |
373 | 0 | if (cinfo->restart_interval) { |
374 | 0 | if (entropy->restarts_to_go == 0) { |
375 | 0 | emit_restart(cinfo, entropy->next_restart_num); |
376 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
377 | 0 | entropy->next_restart_num++; |
378 | 0 | entropy->next_restart_num &= 7; |
379 | 0 | } |
380 | 0 | entropy->restarts_to_go--; |
381 | 0 | } |
382 | | |
383 | | /* Encode the MCU data blocks */ |
384 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
385 | 0 | ci = cinfo->MCU_membership[blkn]; |
386 | 0 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
387 | | |
388 | | /* Compute the DC value after the required point transform by Al. |
389 | | * This is simply an arithmetic right shift. |
390 | | */ |
391 | 0 | m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); |
392 | | |
393 | | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
394 | | |
395 | | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
396 | 0 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
397 | | |
398 | | /* Figure F.4: Encode_DC_DIFF */ |
399 | 0 | if ((v = m - entropy->last_dc_val[ci]) == 0) { |
400 | 0 | arith_encode(cinfo, st, 0); |
401 | 0 | entropy->dc_context[ci] = 0; /* zero diff category */ |
402 | 0 | } else { |
403 | 0 | entropy->last_dc_val[ci] = m; |
404 | 0 | arith_encode(cinfo, st, 1); |
405 | | /* Figure F.6: Encoding nonzero value v */ |
406 | | /* Figure F.7: Encoding the sign of v */ |
407 | 0 | if (v > 0) { |
408 | 0 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
409 | 0 | st += 2; /* Table F.4: SP = S0 + 2 */ |
410 | 0 | entropy->dc_context[ci] = 4; /* small positive diff category */ |
411 | 0 | } else { |
412 | 0 | v = -v; |
413 | 0 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
414 | 0 | st += 3; /* Table F.4: SN = S0 + 3 */ |
415 | 0 | entropy->dc_context[ci] = 8; /* small negative diff category */ |
416 | 0 | } |
417 | | /* Figure F.8: Encoding the magnitude category of v */ |
418 | 0 | m = 0; |
419 | 0 | if (v -= 1) { |
420 | 0 | arith_encode(cinfo, st, 1); |
421 | 0 | m = 1; |
422 | 0 | v2 = v; |
423 | 0 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
424 | 0 | while (v2 >>= 1) { |
425 | 0 | arith_encode(cinfo, st, 1); |
426 | 0 | m <<= 1; |
427 | 0 | st += 1; |
428 | 0 | } |
429 | 0 | } |
430 | 0 | arith_encode(cinfo, st, 0); |
431 | | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
432 | 0 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
433 | 0 | entropy->dc_context[ci] = 0; /* zero diff category */ |
434 | 0 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
435 | 0 | entropy->dc_context[ci] += 8; /* large diff category */ |
436 | | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
437 | 0 | st += 14; |
438 | 0 | while (m >>= 1) |
439 | 0 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
440 | 0 | } |
441 | 0 | } |
442 | |
|
443 | 0 | return TRUE; |
444 | 0 | } |
445 | | |
446 | | |
447 | | /* |
448 | | * MCU encoding for AC initial scan (either spectral selection, |
449 | | * or first pass of successive approximation). |
450 | | */ |
451 | | |
452 | | METHODDEF(boolean) |
453 | | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
454 | 0 | { |
455 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
456 | 0 | const int * natural_order; |
457 | 0 | JBLOCKROW block; |
458 | 0 | unsigned char *st; |
459 | 0 | int tbl, k, ke; |
460 | 0 | int v, v2, m; |
461 | | |
462 | | /* Emit restart marker if needed */ |
463 | 0 | if (cinfo->restart_interval) { |
464 | 0 | if (entropy->restarts_to_go == 0) { |
465 | 0 | emit_restart(cinfo, entropy->next_restart_num); |
466 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
467 | 0 | entropy->next_restart_num++; |
468 | 0 | entropy->next_restart_num &= 7; |
469 | 0 | } |
470 | 0 | entropy->restarts_to_go--; |
471 | 0 | } |
472 | |
|
473 | 0 | natural_order = cinfo->natural_order; |
474 | | |
475 | | /* Encode the MCU data block */ |
476 | 0 | block = MCU_data[0]; |
477 | 0 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
478 | | |
479 | | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
480 | | |
481 | | /* Establish EOB (end-of-block) index */ |
482 | 0 | ke = cinfo->Se; |
483 | 0 | do { |
484 | | /* We must apply the point transform by Al. For AC coefficients this |
485 | | * is an integer division with rounding towards 0. To do this portably |
486 | | * in C, we shift after obtaining the absolute value. |
487 | | */ |
488 | 0 | if ((v = (*block)[natural_order[ke]]) >= 0) { |
489 | 0 | if (v >>= cinfo->Al) break; |
490 | 0 | } else { |
491 | 0 | v = -v; |
492 | 0 | if (v >>= cinfo->Al) break; |
493 | 0 | } |
494 | 0 | } while (--ke); |
495 | | |
496 | | /* Figure F.5: Encode_AC_Coefficients */ |
497 | 0 | for (k = cinfo->Ss - 1; k < ke;) { |
498 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
499 | 0 | arith_encode(cinfo, st, 0); /* EOB decision */ |
500 | 0 | for (;;) { |
501 | 0 | if ((v = (*block)[natural_order[++k]]) >= 0) { |
502 | 0 | if (v >>= cinfo->Al) { |
503 | 0 | arith_encode(cinfo, st + 1, 1); |
504 | 0 | arith_encode(cinfo, entropy->fixed_bin, 0); |
505 | 0 | break; |
506 | 0 | } |
507 | 0 | } else { |
508 | 0 | v = -v; |
509 | 0 | if (v >>= cinfo->Al) { |
510 | 0 | arith_encode(cinfo, st + 1, 1); |
511 | 0 | arith_encode(cinfo, entropy->fixed_bin, 1); |
512 | 0 | break; |
513 | 0 | } |
514 | 0 | } |
515 | 0 | arith_encode(cinfo, st + 1, 0); |
516 | 0 | st += 3; |
517 | 0 | } |
518 | 0 | st += 2; |
519 | | /* Figure F.8: Encoding the magnitude category of v */ |
520 | 0 | m = 0; |
521 | 0 | if (v -= 1) { |
522 | 0 | arith_encode(cinfo, st, 1); |
523 | 0 | m = 1; |
524 | 0 | v2 = v; |
525 | 0 | if (v2 >>= 1) { |
526 | 0 | arith_encode(cinfo, st, 1); |
527 | 0 | m <<= 1; |
528 | 0 | st = entropy->ac_stats[tbl] + |
529 | 0 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
530 | 0 | while (v2 >>= 1) { |
531 | 0 | arith_encode(cinfo, st, 1); |
532 | 0 | m <<= 1; |
533 | 0 | st += 1; |
534 | 0 | } |
535 | 0 | } |
536 | 0 | } |
537 | 0 | arith_encode(cinfo, st, 0); |
538 | | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
539 | 0 | st += 14; |
540 | 0 | while (m >>= 1) |
541 | 0 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
542 | 0 | } |
543 | | /* Encode EOB decision only if k < cinfo->Se */ |
544 | 0 | if (k < cinfo->Se) { |
545 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
546 | 0 | arith_encode(cinfo, st, 1); |
547 | 0 | } |
548 | |
|
549 | 0 | return TRUE; |
550 | 0 | } |
551 | | |
552 | | |
553 | | /* |
554 | | * MCU encoding for DC successive approximation refinement scan. |
555 | | * Note: we assume such scans can be multi-component, |
556 | | * although the spec is not very clear on the point. |
557 | | */ |
558 | | |
559 | | METHODDEF(boolean) |
560 | | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
561 | 0 | { |
562 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
563 | 0 | unsigned char *st; |
564 | 0 | int Al, blkn; |
565 | | |
566 | | /* Emit restart marker if needed */ |
567 | 0 | if (cinfo->restart_interval) { |
568 | 0 | if (entropy->restarts_to_go == 0) { |
569 | 0 | emit_restart(cinfo, entropy->next_restart_num); |
570 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
571 | 0 | entropy->next_restart_num++; |
572 | 0 | entropy->next_restart_num &= 7; |
573 | 0 | } |
574 | 0 | entropy->restarts_to_go--; |
575 | 0 | } |
576 | |
|
577 | 0 | st = entropy->fixed_bin; /* use fixed probability estimation */ |
578 | 0 | Al = cinfo->Al; |
579 | | |
580 | | /* Encode the MCU data blocks */ |
581 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
582 | | /* We simply emit the Al'th bit of the DC coefficient value. */ |
583 | 0 | arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); |
584 | 0 | } |
585 | |
|
586 | 0 | return TRUE; |
587 | 0 | } |
588 | | |
589 | | |
590 | | /* |
591 | | * MCU encoding for AC successive approximation refinement scan. |
592 | | */ |
593 | | |
594 | | METHODDEF(boolean) |
595 | | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
596 | 0 | { |
597 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
598 | 0 | const int * natural_order; |
599 | 0 | JBLOCKROW block; |
600 | 0 | unsigned char *st; |
601 | 0 | int tbl, k, ke, kex; |
602 | 0 | int v; |
603 | | |
604 | | /* Emit restart marker if needed */ |
605 | 0 | if (cinfo->restart_interval) { |
606 | 0 | if (entropy->restarts_to_go == 0) { |
607 | 0 | emit_restart(cinfo, entropy->next_restart_num); |
608 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
609 | 0 | entropy->next_restart_num++; |
610 | 0 | entropy->next_restart_num &= 7; |
611 | 0 | } |
612 | 0 | entropy->restarts_to_go--; |
613 | 0 | } |
614 | |
|
615 | 0 | natural_order = cinfo->natural_order; |
616 | | |
617 | | /* Encode the MCU data block */ |
618 | 0 | block = MCU_data[0]; |
619 | 0 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
620 | | |
621 | | /* Section G.1.3.3: Encoding of AC coefficients */ |
622 | | |
623 | | /* Establish EOB (end-of-block) index */ |
624 | 0 | ke = cinfo->Se; |
625 | 0 | do { |
626 | | /* We must apply the point transform by Al. For AC coefficients this |
627 | | * is an integer division with rounding towards 0. To do this portably |
628 | | * in C, we shift after obtaining the absolute value. |
629 | | */ |
630 | 0 | if ((v = (*block)[natural_order[ke]]) >= 0) { |
631 | 0 | if (v >>= cinfo->Al) break; |
632 | 0 | } else { |
633 | 0 | v = -v; |
634 | 0 | if (v >>= cinfo->Al) break; |
635 | 0 | } |
636 | 0 | } while (--ke); |
637 | | |
638 | | /* Establish EOBx (previous stage end-of-block) index */ |
639 | 0 | for (kex = ke; kex > 0; kex--) |
640 | 0 | if ((v = (*block)[natural_order[kex]]) >= 0) { |
641 | 0 | if (v >>= cinfo->Ah) break; |
642 | 0 | } else { |
643 | 0 | v = -v; |
644 | 0 | if (v >>= cinfo->Ah) break; |
645 | 0 | } |
646 | | |
647 | | /* Figure G.10: Encode_AC_Coefficients_SA */ |
648 | 0 | for (k = cinfo->Ss - 1; k < ke;) { |
649 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
650 | 0 | if (k >= kex) |
651 | 0 | arith_encode(cinfo, st, 0); /* EOB decision */ |
652 | 0 | for (;;) { |
653 | 0 | if ((v = (*block)[natural_order[++k]]) >= 0) { |
654 | 0 | if (v >>= cinfo->Al) { |
655 | 0 | if (v >> 1) /* previously nonzero coef */ |
656 | 0 | arith_encode(cinfo, st + 2, (v & 1)); |
657 | 0 | else { /* newly nonzero coef */ |
658 | 0 | arith_encode(cinfo, st + 1, 1); |
659 | 0 | arith_encode(cinfo, entropy->fixed_bin, 0); |
660 | 0 | } |
661 | 0 | break; |
662 | 0 | } |
663 | 0 | } else { |
664 | 0 | v = -v; |
665 | 0 | if (v >>= cinfo->Al) { |
666 | 0 | if (v >> 1) /* previously nonzero coef */ |
667 | 0 | arith_encode(cinfo, st + 2, (v & 1)); |
668 | 0 | else { /* newly nonzero coef */ |
669 | 0 | arith_encode(cinfo, st + 1, 1); |
670 | 0 | arith_encode(cinfo, entropy->fixed_bin, 1); |
671 | 0 | } |
672 | 0 | break; |
673 | 0 | } |
674 | 0 | } |
675 | 0 | arith_encode(cinfo, st + 1, 0); |
676 | 0 | st += 3; |
677 | 0 | } |
678 | 0 | } |
679 | | /* Encode EOB decision only if k < cinfo->Se */ |
680 | 0 | if (k < cinfo->Se) { |
681 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
682 | 0 | arith_encode(cinfo, st, 1); |
683 | 0 | } |
684 | |
|
685 | 0 | return TRUE; |
686 | 0 | } |
687 | | |
688 | | |
689 | | /* |
690 | | * Encode and output one MCU's worth of arithmetic-compressed coefficients. |
691 | | */ |
692 | | |
693 | | METHODDEF(boolean) |
694 | | encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
695 | 0 | { |
696 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
697 | 0 | const int * natural_order; |
698 | 0 | JBLOCKROW block; |
699 | 0 | unsigned char *st; |
700 | 0 | int tbl, k, ke; |
701 | 0 | int v, v2, m; |
702 | 0 | int blkn, ci; |
703 | 0 | jpeg_component_info * compptr; |
704 | | |
705 | | /* Emit restart marker if needed */ |
706 | 0 | if (cinfo->restart_interval) { |
707 | 0 | if (entropy->restarts_to_go == 0) { |
708 | 0 | emit_restart(cinfo, entropy->next_restart_num); |
709 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
710 | 0 | entropy->next_restart_num++; |
711 | 0 | entropy->next_restart_num &= 7; |
712 | 0 | } |
713 | 0 | entropy->restarts_to_go--; |
714 | 0 | } |
715 | |
|
716 | 0 | natural_order = cinfo->natural_order; |
717 | | |
718 | | /* Encode the MCU data blocks */ |
719 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
720 | 0 | block = MCU_data[blkn]; |
721 | 0 | ci = cinfo->MCU_membership[blkn]; |
722 | 0 | compptr = cinfo->cur_comp_info[ci]; |
723 | | |
724 | | /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ |
725 | |
|
726 | 0 | tbl = compptr->dc_tbl_no; |
727 | | |
728 | | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
729 | 0 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
730 | | |
731 | | /* Figure F.4: Encode_DC_DIFF */ |
732 | 0 | if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { |
733 | 0 | arith_encode(cinfo, st, 0); |
734 | 0 | entropy->dc_context[ci] = 0; /* zero diff category */ |
735 | 0 | } else { |
736 | 0 | entropy->last_dc_val[ci] = (*block)[0]; |
737 | 0 | arith_encode(cinfo, st, 1); |
738 | | /* Figure F.6: Encoding nonzero value v */ |
739 | | /* Figure F.7: Encoding the sign of v */ |
740 | 0 | if (v > 0) { |
741 | 0 | arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ |
742 | 0 | st += 2; /* Table F.4: SP = S0 + 2 */ |
743 | 0 | entropy->dc_context[ci] = 4; /* small positive diff category */ |
744 | 0 | } else { |
745 | 0 | v = -v; |
746 | 0 | arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ |
747 | 0 | st += 3; /* Table F.4: SN = S0 + 3 */ |
748 | 0 | entropy->dc_context[ci] = 8; /* small negative diff category */ |
749 | 0 | } |
750 | | /* Figure F.8: Encoding the magnitude category of v */ |
751 | 0 | m = 0; |
752 | 0 | if (v -= 1) { |
753 | 0 | arith_encode(cinfo, st, 1); |
754 | 0 | m = 1; |
755 | 0 | v2 = v; |
756 | 0 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
757 | 0 | while (v2 >>= 1) { |
758 | 0 | arith_encode(cinfo, st, 1); |
759 | 0 | m <<= 1; |
760 | 0 | st += 1; |
761 | 0 | } |
762 | 0 | } |
763 | 0 | arith_encode(cinfo, st, 0); |
764 | | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
765 | 0 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
766 | 0 | entropy->dc_context[ci] = 0; /* zero diff category */ |
767 | 0 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
768 | 0 | entropy->dc_context[ci] += 8; /* large diff category */ |
769 | | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
770 | 0 | st += 14; |
771 | 0 | while (m >>= 1) |
772 | 0 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
773 | 0 | } |
774 | | |
775 | | /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ |
776 | |
|
777 | 0 | if ((ke = cinfo->lim_Se) == 0) continue; |
778 | 0 | tbl = compptr->ac_tbl_no; |
779 | | |
780 | | /* Establish EOB (end-of-block) index */ |
781 | 0 | do { |
782 | 0 | if ((*block)[natural_order[ke]]) break; |
783 | 0 | } while (--ke); |
784 | | |
785 | | /* Figure F.5: Encode_AC_Coefficients */ |
786 | 0 | for (k = 0; k < ke;) { |
787 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
788 | 0 | arith_encode(cinfo, st, 0); /* EOB decision */ |
789 | 0 | while ((v = (*block)[natural_order[++k]]) == 0) { |
790 | 0 | arith_encode(cinfo, st + 1, 0); |
791 | 0 | st += 3; |
792 | 0 | } |
793 | 0 | arith_encode(cinfo, st + 1, 1); |
794 | | /* Figure F.6: Encoding nonzero value v */ |
795 | | /* Figure F.7: Encoding the sign of v */ |
796 | 0 | if (v > 0) { |
797 | 0 | arith_encode(cinfo, entropy->fixed_bin, 0); |
798 | 0 | } else { |
799 | 0 | v = -v; |
800 | 0 | arith_encode(cinfo, entropy->fixed_bin, 1); |
801 | 0 | } |
802 | 0 | st += 2; |
803 | | /* Figure F.8: Encoding the magnitude category of v */ |
804 | 0 | m = 0; |
805 | 0 | if (v -= 1) { |
806 | 0 | arith_encode(cinfo, st, 1); |
807 | 0 | m = 1; |
808 | 0 | v2 = v; |
809 | 0 | if (v2 >>= 1) { |
810 | 0 | arith_encode(cinfo, st, 1); |
811 | 0 | m <<= 1; |
812 | 0 | st = entropy->ac_stats[tbl] + |
813 | 0 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
814 | 0 | while (v2 >>= 1) { |
815 | 0 | arith_encode(cinfo, st, 1); |
816 | 0 | m <<= 1; |
817 | 0 | st += 1; |
818 | 0 | } |
819 | 0 | } |
820 | 0 | } |
821 | 0 | arith_encode(cinfo, st, 0); |
822 | | /* Figure F.9: Encoding the magnitude bit pattern of v */ |
823 | 0 | st += 14; |
824 | 0 | while (m >>= 1) |
825 | 0 | arith_encode(cinfo, st, (m & v) ? 1 : 0); |
826 | 0 | } |
827 | | /* Encode EOB decision only if k < cinfo->lim_Se */ |
828 | 0 | if (k < cinfo->lim_Se) { |
829 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
830 | 0 | arith_encode(cinfo, st, 1); |
831 | 0 | } |
832 | 0 | } |
833 | |
|
834 | 0 | return TRUE; |
835 | 0 | } |
836 | | |
837 | | |
838 | | /* |
839 | | * Initialize for an arithmetic-compressed scan. |
840 | | */ |
841 | | |
842 | | METHODDEF(void) |
843 | | start_pass (j_compress_ptr cinfo, boolean gather_statistics) |
844 | 0 | { |
845 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
846 | 0 | int ci, tbl; |
847 | 0 | jpeg_component_info * compptr; |
848 | |
|
849 | 0 | if (gather_statistics) |
850 | | /* Make sure to avoid that in the master control logic! |
851 | | * We are fully adaptive here and need no extra |
852 | | * statistics gathering pass! |
853 | | */ |
854 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
855 | | |
856 | | /* We assume jcmaster.c already validated the progressive scan parameters. */ |
857 | | |
858 | | /* Select execution routines */ |
859 | 0 | if (cinfo->progressive_mode) { |
860 | 0 | if (cinfo->Ah == 0) { |
861 | 0 | if (cinfo->Ss == 0) |
862 | 0 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
863 | 0 | else |
864 | 0 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
865 | 0 | } else { |
866 | 0 | if (cinfo->Ss == 0) |
867 | 0 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
868 | 0 | else |
869 | 0 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
870 | 0 | } |
871 | 0 | } else |
872 | 0 | entropy->pub.encode_mcu = encode_mcu; |
873 | | |
874 | | /* Allocate & initialize requested statistics areas */ |
875 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
876 | 0 | compptr = cinfo->cur_comp_info[ci]; |
877 | | /* DC needs no table for refinement scan */ |
878 | 0 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
879 | 0 | tbl = compptr->dc_tbl_no; |
880 | 0 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
881 | 0 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
882 | 0 | if (entropy->dc_stats[tbl] == NULL) |
883 | 0 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
884 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
885 | 0 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
886 | | /* Initialize DC predictions to 0 */ |
887 | 0 | entropy->last_dc_val[ci] = 0; |
888 | 0 | entropy->dc_context[ci] = 0; |
889 | 0 | } |
890 | | /* AC needs no table when not present */ |
891 | 0 | if (cinfo->Se) { |
892 | 0 | tbl = compptr->ac_tbl_no; |
893 | 0 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
894 | 0 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
895 | 0 | if (entropy->ac_stats[tbl] == NULL) |
896 | 0 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
897 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
898 | 0 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
899 | | #ifdef CALCULATE_SPECTRAL_CONDITIONING |
900 | | if (cinfo->progressive_mode) |
901 | | /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ |
902 | | cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); |
903 | | #endif |
904 | 0 | } |
905 | 0 | } |
906 | | |
907 | | /* Initialize arithmetic encoding variables */ |
908 | 0 | entropy->c = 0; |
909 | 0 | entropy->a = 0x10000L; |
910 | 0 | entropy->sc = 0; |
911 | 0 | entropy->zc = 0; |
912 | 0 | entropy->ct = 11; |
913 | 0 | entropy->buffer = -1; /* empty */ |
914 | | |
915 | | /* Initialize restart stuff */ |
916 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
917 | 0 | entropy->next_restart_num = 0; |
918 | 0 | } |
919 | | |
920 | | |
921 | | /* |
922 | | * Module initialization routine for arithmetic entropy encoding. |
923 | | */ |
924 | | |
925 | | GLOBAL(void) |
926 | | jinit_arith_encoder (j_compress_ptr cinfo) |
927 | 0 | { |
928 | 0 | arith_entropy_ptr entropy; |
929 | 0 | int i; |
930 | |
|
931 | 0 | entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) |
932 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder)); |
933 | 0 | cinfo->entropy = &entropy->pub; |
934 | 0 | entropy->pub.start_pass = start_pass; |
935 | 0 | entropy->pub.finish_pass = finish_pass; |
936 | | |
937 | | /* Mark tables unallocated */ |
938 | 0 | for (i = 0; i < NUM_ARITH_TBLS; i++) { |
939 | 0 | entropy->dc_stats[i] = NULL; |
940 | 0 | entropy->ac_stats[i] = NULL; |
941 | 0 | } |
942 | | |
943 | | /* Initialize index for fixed probability estimation */ |
944 | 0 | entropy->fixed_bin[0] = 113; |
945 | 0 | } |