Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jccoefct.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jccoefct.c
3
 *
4
 * Copyright (C) 1994-1997, Thomas G. Lane.
5
 * Modified 2003-2011 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains the coefficient buffer controller for compression.
10
 * This controller is the top level of the JPEG compressor proper.
11
 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
12
 */
13
14
#define JPEG_INTERNALS
15
#include "jinclude.h"
16
#include "jpeglib.h"
17
18
19
/* We use a full-image coefficient buffer when doing Huffman optimization,
20
 * and also for writing multiple-scan JPEG files.  In all cases, the DCT
21
 * step is run during the first pass, and subsequent passes need only read
22
 * the buffered coefficients.
23
 */
24
#ifdef ENTROPY_OPT_SUPPORTED
25
#define FULL_COEF_BUFFER_SUPPORTED
26
#else
27
#ifdef C_MULTISCAN_FILES_SUPPORTED
28
#define FULL_COEF_BUFFER_SUPPORTED
29
#endif
30
#endif
31
32
33
/* Private buffer controller object */
34
35
typedef struct {
36
  struct jpeg_c_coef_controller pub; /* public fields */
37
38
  JDIMENSION iMCU_row_num;  /* iMCU row # within image */
39
  JDIMENSION mcu_ctr;   /* counts MCUs processed in current row */
40
  int MCU_vert_offset;    /* counts MCU rows within iMCU row */
41
  int MCU_rows_per_iMCU_row;  /* number of such rows needed */
42
43
  /* For single-pass compression, it's sufficient to buffer just one MCU
44
   * (although this may prove a bit slow in practice).  We allocate a
45
   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
46
   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
47
   * it's not really very big; this is to keep the module interfaces unchanged
48
   * when a large coefficient buffer is necessary.)
49
   * In multi-pass modes, this array points to the current MCU's blocks
50
   * within the virtual arrays.
51
   */
52
  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
53
54
  /* In multi-pass modes, we need a virtual block array for each component. */
55
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
56
} my_coef_controller;
57
58
typedef my_coef_controller * my_coef_ptr;
59
60
61
/* Forward declarations */
62
METHODDEF(boolean) compress_data
63
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
64
#ifdef FULL_COEF_BUFFER_SUPPORTED
65
METHODDEF(boolean) compress_first_pass
66
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
67
METHODDEF(boolean) compress_output
68
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
69
#endif
70
71
72
LOCAL(void)
73
start_iMCU_row (j_compress_ptr cinfo)
74
/* Reset within-iMCU-row counters for a new row */
75
0
{
76
0
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
77
78
  /* In an interleaved scan, an MCU row is the same as an iMCU row.
79
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
80
   * But at the bottom of the image, process only what's left.
81
   */
82
0
  if (cinfo->comps_in_scan > 1) {
83
0
    coef->MCU_rows_per_iMCU_row = 1;
84
0
  } else {
85
0
    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
86
0
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
87
0
    else
88
0
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
89
0
  }
90
91
0
  coef->mcu_ctr = 0;
92
0
  coef->MCU_vert_offset = 0;
93
0
}
94
95
96
/*
97
 * Initialize for a processing pass.
98
 */
99
100
METHODDEF(void)
101
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
102
0
{
103
0
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
104
105
0
  coef->iMCU_row_num = 0;
106
0
  start_iMCU_row(cinfo);
107
108
0
  switch (pass_mode) {
109
0
  case JBUF_PASS_THRU:
110
0
    if (coef->whole_image[0] != NULL)
111
0
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
112
0
    coef->pub.compress_data = compress_data;
113
0
    break;
114
0
#ifdef FULL_COEF_BUFFER_SUPPORTED
115
0
  case JBUF_SAVE_AND_PASS:
116
0
    if (coef->whole_image[0] == NULL)
117
0
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
118
0
    coef->pub.compress_data = compress_first_pass;
119
0
    break;
120
0
  case JBUF_CRANK_DEST:
121
0
    if (coef->whole_image[0] == NULL)
122
0
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
123
0
    coef->pub.compress_data = compress_output;
124
0
    break;
125
0
#endif
126
0
  default:
127
0
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
128
0
    break;
129
0
  }
130
0
}
131
132
133
/*
134
 * Process some data in the single-pass case.
135
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
136
 * per call, ie, v_samp_factor block rows for each component in the image.
137
 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
138
 *
139
 * NB: input_buf contains a plane for each component in image,
140
 * which we index according to the component's SOF position.
141
 */
142
143
METHODDEF(boolean)
144
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
145
0
{
146
0
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
147
0
  JDIMENSION MCU_col_num; /* index of current MCU within row */
148
0
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
149
0
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
150
0
  int blkn, bi, ci, yindex, yoffset, blockcnt;
151
0
  JDIMENSION ypos, xpos;
152
0
  jpeg_component_info *compptr;
153
0
  forward_DCT_ptr forward_DCT;
154
155
  /* Loop to write as much as one whole iMCU row */
156
0
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
157
0
       yoffset++) {
158
0
    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
159
0
   MCU_col_num++) {
160
      /* Determine where data comes from in input_buf and do the DCT thing.
161
       * Each call on forward_DCT processes a horizontal row of DCT blocks
162
       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
163
       * sequentially.  Dummy blocks at the right or bottom edge are filled in
164
       * specially.  The data in them does not matter for image reconstruction,
165
       * so we fill them with values that will encode to the smallest amount of
166
       * data, viz: all zeroes in the AC entries, DC entries equal to previous
167
       * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
168
       */
169
0
      blkn = 0;
170
0
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
171
0
  compptr = cinfo->cur_comp_info[ci];
172
0
  forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
173
0
  blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
174
0
            : compptr->last_col_width;
175
0
  xpos = MCU_col_num * compptr->MCU_sample_width;
176
0
  ypos = yoffset * compptr->DCT_v_scaled_size;
177
  /* ypos == (yoffset+yindex) * DCTSIZE */
178
0
  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
179
0
    if (coef->iMCU_row_num < last_iMCU_row ||
180
0
        yoffset+yindex < compptr->last_row_height) {
181
0
      (*forward_DCT) (cinfo, compptr,
182
0
          input_buf[compptr->component_index],
183
0
          coef->MCU_buffer[blkn],
184
0
          ypos, xpos, (JDIMENSION) blockcnt);
185
0
      if (blockcnt < compptr->MCU_width) {
186
        /* Create some dummy blocks at the right edge of the image. */
187
0
        FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt],
188
0
           (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
189
0
        for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
190
0
    coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
191
0
        }
192
0
      }
193
0
    } else {
194
      /* Create a row of dummy blocks at the bottom of the image. */
195
0
      FMEMZERO((void FAR *) coef->MCU_buffer[blkn],
196
0
         compptr->MCU_width * SIZEOF(JBLOCK));
197
0
      for (bi = 0; bi < compptr->MCU_width; bi++) {
198
0
        coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
199
0
      }
200
0
    }
201
0
    blkn += compptr->MCU_width;
202
0
    ypos += compptr->DCT_v_scaled_size;
203
0
  }
204
0
      }
205
      /* Try to write the MCU.  In event of a suspension failure, we will
206
       * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
207
       */
208
0
      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
209
  /* Suspension forced; update state counters and exit */
210
0
  coef->MCU_vert_offset = yoffset;
211
0
  coef->mcu_ctr = MCU_col_num;
212
0
  return FALSE;
213
0
      }
214
0
    }
215
    /* Completed an MCU row, but perhaps not an iMCU row */
216
0
    coef->mcu_ctr = 0;
217
0
  }
218
  /* Completed the iMCU row, advance counters for next one */
219
0
  coef->iMCU_row_num++;
220
0
  start_iMCU_row(cinfo);
221
0
  return TRUE;
222
0
}
223
224
225
#ifdef FULL_COEF_BUFFER_SUPPORTED
226
227
/*
228
 * Process some data in the first pass of a multi-pass case.
229
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
230
 * per call, ie, v_samp_factor block rows for each component in the image.
231
 * This amount of data is read from the source buffer, DCT'd and quantized,
232
 * and saved into the virtual arrays.  We also generate suitable dummy blocks
233
 * as needed at the right and lower edges.  (The dummy blocks are constructed
234
 * in the virtual arrays, which have been padded appropriately.)  This makes
235
 * it possible for subsequent passes not to worry about real vs. dummy blocks.
236
 *
237
 * We must also emit the data to the entropy encoder.  This is conveniently
238
 * done by calling compress_output() after we've loaded the current strip
239
 * of the virtual arrays.
240
 *
241
 * NB: input_buf contains a plane for each component in image.  All
242
 * components are DCT'd and loaded into the virtual arrays in this pass.
243
 * However, it may be that only a subset of the components are emitted to
244
 * the entropy encoder during this first pass; be careful about looking
245
 * at the scan-dependent variables (MCU dimensions, etc).
246
 */
247
248
METHODDEF(boolean)
249
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
250
0
{
251
0
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
252
0
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
253
0
  JDIMENSION blocks_across, MCUs_across, MCUindex;
254
0
  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
255
0
  JCOEF lastDC;
256
0
  jpeg_component_info *compptr;
257
0
  JBLOCKARRAY buffer;
258
0
  JBLOCKROW thisblockrow, lastblockrow;
259
0
  forward_DCT_ptr forward_DCT;
260
261
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
262
0
       ci++, compptr++) {
263
    /* Align the virtual buffer for this component. */
264
0
    buffer = (*cinfo->mem->access_virt_barray)
265
0
      ((j_common_ptr) cinfo, coef->whole_image[ci],
266
0
       coef->iMCU_row_num * compptr->v_samp_factor,
267
0
       (JDIMENSION) compptr->v_samp_factor, TRUE);
268
    /* Count non-dummy DCT block rows in this iMCU row. */
269
0
    if (coef->iMCU_row_num < last_iMCU_row)
270
0
      block_rows = compptr->v_samp_factor;
271
0
    else {
272
      /* NB: can't use last_row_height here, since may not be set! */
273
0
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
274
0
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
275
0
    }
276
0
    blocks_across = compptr->width_in_blocks;
277
0
    h_samp_factor = compptr->h_samp_factor;
278
    /* Count number of dummy blocks to be added at the right margin. */
279
0
    ndummy = (int) (blocks_across % h_samp_factor);
280
0
    if (ndummy > 0)
281
0
      ndummy = h_samp_factor - ndummy;
282
0
    forward_DCT = cinfo->fdct->forward_DCT[ci];
283
    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
284
     * on forward_DCT processes a complete horizontal row of DCT blocks.
285
     */
286
0
    for (block_row = 0; block_row < block_rows; block_row++) {
287
0
      thisblockrow = buffer[block_row];
288
0
      (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
289
0
          (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
290
0
          (JDIMENSION) 0, blocks_across);
291
0
      if (ndummy > 0) {
292
  /* Create dummy blocks at the right edge of the image. */
293
0
  thisblockrow += blocks_across; /* => first dummy block */
294
0
  FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
295
0
  lastDC = thisblockrow[-1][0];
296
0
  for (bi = 0; bi < ndummy; bi++) {
297
0
    thisblockrow[bi][0] = lastDC;
298
0
  }
299
0
      }
300
0
    }
301
    /* If at end of image, create dummy block rows as needed.
302
     * The tricky part here is that within each MCU, we want the DC values
303
     * of the dummy blocks to match the last real block's DC value.
304
     * This squeezes a few more bytes out of the resulting file...
305
     */
306
0
    if (coef->iMCU_row_num == last_iMCU_row) {
307
0
      blocks_across += ndummy;  /* include lower right corner */
308
0
      MCUs_across = blocks_across / h_samp_factor;
309
0
      for (block_row = block_rows; block_row < compptr->v_samp_factor;
310
0
     block_row++) {
311
0
  thisblockrow = buffer[block_row];
312
0
  lastblockrow = buffer[block_row-1];
313
0
  FMEMZERO((void FAR *) thisblockrow,
314
0
     (size_t) (blocks_across * SIZEOF(JBLOCK)));
315
0
  for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
316
0
    lastDC = lastblockrow[h_samp_factor-1][0];
317
0
    for (bi = 0; bi < h_samp_factor; bi++) {
318
0
      thisblockrow[bi][0] = lastDC;
319
0
    }
320
0
    thisblockrow += h_samp_factor; /* advance to next MCU in row */
321
0
    lastblockrow += h_samp_factor;
322
0
  }
323
0
      }
324
0
    }
325
0
  }
326
  /* NB: compress_output will increment iMCU_row_num if successful.
327
   * A suspension return will result in redoing all the work above next time.
328
   */
329
330
  /* Emit data to the entropy encoder, sharing code with subsequent passes */
331
0
  return compress_output(cinfo, input_buf);
332
0
}
333
334
335
/*
336
 * Process some data in subsequent passes of a multi-pass case.
337
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
338
 * per call, ie, v_samp_factor block rows for each component in the scan.
339
 * The data is obtained from the virtual arrays and fed to the entropy coder.
340
 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
341
 *
342
 * NB: input_buf is ignored; it is likely to be a NULL pointer.
343
 */
344
345
METHODDEF(boolean)
346
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
347
0
{
348
0
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
349
0
  JDIMENSION MCU_col_num; /* index of current MCU within row */
350
0
  int blkn, ci, xindex, yindex, yoffset;
351
0
  JDIMENSION start_col;
352
0
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
353
0
  JBLOCKROW buffer_ptr;
354
0
  jpeg_component_info *compptr;
355
356
  /* Align the virtual buffers for the components used in this scan.
357
   * NB: during first pass, this is safe only because the buffers will
358
   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
359
   */
360
0
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
361
0
    compptr = cinfo->cur_comp_info[ci];
362
0
    buffer[ci] = (*cinfo->mem->access_virt_barray)
363
0
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
364
0
       coef->iMCU_row_num * compptr->v_samp_factor,
365
0
       (JDIMENSION) compptr->v_samp_factor, FALSE);
366
0
  }
367
368
  /* Loop to process one whole iMCU row */
369
0
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
370
0
       yoffset++) {
371
0
    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
372
0
   MCU_col_num++) {
373
      /* Construct list of pointers to DCT blocks belonging to this MCU */
374
0
      blkn = 0;     /* index of current DCT block within MCU */
375
0
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
376
0
  compptr = cinfo->cur_comp_info[ci];
377
0
  start_col = MCU_col_num * compptr->MCU_width;
378
0
  for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
379
0
    buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
380
0
    for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
381
0
      coef->MCU_buffer[blkn++] = buffer_ptr++;
382
0
    }
383
0
  }
384
0
      }
385
      /* Try to write the MCU. */
386
0
      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
387
  /* Suspension forced; update state counters and exit */
388
0
  coef->MCU_vert_offset = yoffset;
389
0
  coef->mcu_ctr = MCU_col_num;
390
0
  return FALSE;
391
0
      }
392
0
    }
393
    /* Completed an MCU row, but perhaps not an iMCU row */
394
0
    coef->mcu_ctr = 0;
395
0
  }
396
  /* Completed the iMCU row, advance counters for next one */
397
0
  coef->iMCU_row_num++;
398
0
  start_iMCU_row(cinfo);
399
0
  return TRUE;
400
0
}
401
402
#endif /* FULL_COEF_BUFFER_SUPPORTED */
403
404
405
/*
406
 * Initialize coefficient buffer controller.
407
 */
408
409
GLOBAL(void)
410
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
411
0
{
412
0
  my_coef_ptr coef;
413
414
0
  coef = (my_coef_ptr)
415
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
416
0
        SIZEOF(my_coef_controller));
417
0
  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
418
0
  coef->pub.start_pass = start_pass_coef;
419
420
  /* Create the coefficient buffer. */
421
0
  if (need_full_buffer) {
422
0
#ifdef FULL_COEF_BUFFER_SUPPORTED
423
    /* Allocate a full-image virtual array for each component, */
424
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
425
0
    int ci;
426
0
    jpeg_component_info *compptr;
427
428
0
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
429
0
   ci++, compptr++) {
430
0
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
431
0
  ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
432
0
   (JDIMENSION) jround_up((long) compptr->width_in_blocks,
433
0
        (long) compptr->h_samp_factor),
434
0
   (JDIMENSION) jround_up((long) compptr->height_in_blocks,
435
0
        (long) compptr->v_samp_factor),
436
0
   (JDIMENSION) compptr->v_samp_factor);
437
0
    }
438
#else
439
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
440
#endif
441
0
  } else {
442
    /* We only need a single-MCU buffer. */
443
0
    JBLOCKROW buffer;
444
0
    int i;
445
446
0
    buffer = (JBLOCKROW)
447
0
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
448
0
          C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
449
0
    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
450
0
      coef->MCU_buffer[i] = buffer + i;
451
0
    }
452
0
    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
453
0
  }
454
0
}