/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcdctmgr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcdctmgr.c |
3 | | * |
4 | | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | | * Modified 2003-2013 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains the forward-DCT management logic. |
10 | | * This code selects a particular DCT implementation to be used, |
11 | | * and it performs related housekeeping chores including coefficient |
12 | | * quantization. |
13 | | */ |
14 | | |
15 | | #define JPEG_INTERNALS |
16 | | #include "jinclude.h" |
17 | | #include "jpeglib.h" |
18 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
19 | | |
20 | | |
21 | | /* Private subobject for this module */ |
22 | | |
23 | | typedef struct { |
24 | | struct jpeg_forward_dct pub; /* public fields */ |
25 | | |
26 | | /* Pointer to the DCT routine actually in use */ |
27 | | forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; |
28 | | |
29 | | #ifdef DCT_FLOAT_SUPPORTED |
30 | | /* Same as above for the floating-point case. */ |
31 | | float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; |
32 | | #endif |
33 | | } my_fdct_controller; |
34 | | |
35 | | typedef my_fdct_controller * my_fdct_ptr; |
36 | | |
37 | | |
38 | | /* The allocated post-DCT divisor tables -- big enough for any |
39 | | * supported variant and not identical to the quant table entries, |
40 | | * because of scaling (especially for an unnormalized DCT) -- |
41 | | * are pointed to by dct_table in the per-component comp_info |
42 | | * structures. Each table is given in normal array order. |
43 | | */ |
44 | | |
45 | | typedef union { |
46 | | DCTELEM int_array[DCTSIZE2]; |
47 | | #ifdef DCT_FLOAT_SUPPORTED |
48 | | FAST_FLOAT float_array[DCTSIZE2]; |
49 | | #endif |
50 | | } divisor_table; |
51 | | |
52 | | |
53 | | /* The current scaled-DCT routines require ISLOW-style divisor tables, |
54 | | * so be sure to compile that code if either ISLOW or SCALING is requested. |
55 | | */ |
56 | | #ifdef DCT_ISLOW_SUPPORTED |
57 | | #define PROVIDE_ISLOW_TABLES |
58 | | #else |
59 | | #ifdef DCT_SCALING_SUPPORTED |
60 | | #define PROVIDE_ISLOW_TABLES |
61 | | #endif |
62 | | #endif |
63 | | |
64 | | |
65 | | /* |
66 | | * Perform forward DCT on one or more blocks of a component. |
67 | | * |
68 | | * The input samples are taken from the sample_data[] array starting at |
69 | | * position start_row/start_col, and moving to the right for any additional |
70 | | * blocks. The quantized coefficients are returned in coef_blocks[]. |
71 | | */ |
72 | | |
73 | | METHODDEF(void) |
74 | | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, |
75 | | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
76 | | JDIMENSION start_row, JDIMENSION start_col, |
77 | | JDIMENSION num_blocks) |
78 | | /* This version is used for integer DCT implementations. */ |
79 | 0 | { |
80 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
81 | 0 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
82 | 0 | forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; |
83 | 0 | DCTELEM * divisors = (DCTELEM *) compptr->dct_table; |
84 | 0 | DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
85 | 0 | JDIMENSION bi; |
86 | |
|
87 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
88 | |
|
89 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
90 | | /* Perform the DCT */ |
91 | 0 | (*do_dct) (workspace, sample_data, start_col); |
92 | | |
93 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
94 | 0 | { register DCTELEM temp, qval; |
95 | 0 | register int i; |
96 | 0 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
97 | |
|
98 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
99 | 0 | qval = divisors[i]; |
100 | 0 | temp = workspace[i]; |
101 | | /* Divide the coefficient value by qval, ensuring proper rounding. |
102 | | * Since C does not specify the direction of rounding for negative |
103 | | * quotients, we have to force the dividend positive for portability. |
104 | | * |
105 | | * In most files, at least half of the output values will be zero |
106 | | * (at default quantization settings, more like three-quarters...) |
107 | | * so we should ensure that this case is fast. On many machines, |
108 | | * a comparison is enough cheaper than a divide to make a special test |
109 | | * a win. Since both inputs will be nonnegative, we need only test |
110 | | * for a < b to discover whether a/b is 0. |
111 | | * If your machine's division is fast enough, define FAST_DIVIDE. |
112 | | */ |
113 | | #ifdef FAST_DIVIDE |
114 | | #define DIVIDE_BY(a,b) a /= b |
115 | | #else |
116 | 0 | #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 |
117 | 0 | #endif |
118 | 0 | if (temp < 0) { |
119 | 0 | temp = -temp; |
120 | 0 | temp += qval>>1; /* for rounding */ |
121 | 0 | DIVIDE_BY(temp, qval); |
122 | 0 | temp = -temp; |
123 | 0 | } else { |
124 | 0 | temp += qval>>1; /* for rounding */ |
125 | 0 | DIVIDE_BY(temp, qval); |
126 | 0 | } |
127 | 0 | output_ptr[i] = (JCOEF) temp; |
128 | 0 | } |
129 | 0 | } |
130 | 0 | } |
131 | 0 | } |
132 | | |
133 | | |
134 | | #ifdef DCT_FLOAT_SUPPORTED |
135 | | |
136 | | METHODDEF(void) |
137 | | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, |
138 | | JSAMPARRAY sample_data, JBLOCKROW coef_blocks, |
139 | | JDIMENSION start_row, JDIMENSION start_col, |
140 | | JDIMENSION num_blocks) |
141 | | /* This version is used for floating-point DCT implementations. */ |
142 | 0 | { |
143 | | /* This routine is heavily used, so it's worth coding it tightly. */ |
144 | 0 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
145 | 0 | float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; |
146 | 0 | FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table; |
147 | 0 | FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ |
148 | 0 | JDIMENSION bi; |
149 | |
|
150 | 0 | sample_data += start_row; /* fold in the vertical offset once */ |
151 | |
|
152 | 0 | for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { |
153 | | /* Perform the DCT */ |
154 | 0 | (*do_dct) (workspace, sample_data, start_col); |
155 | | |
156 | | /* Quantize/descale the coefficients, and store into coef_blocks[] */ |
157 | 0 | { register FAST_FLOAT temp; |
158 | 0 | register int i; |
159 | 0 | register JCOEFPTR output_ptr = coef_blocks[bi]; |
160 | |
|
161 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
162 | | /* Apply the quantization and scaling factor */ |
163 | 0 | temp = workspace[i] * divisors[i]; |
164 | | /* Round to nearest integer. |
165 | | * Since C does not specify the direction of rounding for negative |
166 | | * quotients, we have to force the dividend positive for portability. |
167 | | * The maximum coefficient size is +-16K (for 12-bit data), so this |
168 | | * code should work for either 16-bit or 32-bit ints. |
169 | | */ |
170 | 0 | output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); |
171 | 0 | } |
172 | 0 | } |
173 | 0 | } |
174 | 0 | } |
175 | | |
176 | | #endif /* DCT_FLOAT_SUPPORTED */ |
177 | | |
178 | | |
179 | | /* |
180 | | * Initialize for a processing pass. |
181 | | * Verify that all referenced Q-tables are present, and set up |
182 | | * the divisor table for each one. |
183 | | * In the current implementation, DCT of all components is done during |
184 | | * the first pass, even if only some components will be output in the |
185 | | * first scan. Hence all components should be examined here. |
186 | | */ |
187 | | |
188 | | METHODDEF(void) |
189 | | start_pass_fdctmgr (j_compress_ptr cinfo) |
190 | 0 | { |
191 | 0 | my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; |
192 | 0 | int ci, qtblno, i; |
193 | 0 | jpeg_component_info *compptr; |
194 | 0 | int method = 0; |
195 | 0 | JQUANT_TBL * qtbl; |
196 | 0 | DCTELEM * dtbl; |
197 | |
|
198 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
199 | 0 | ci++, compptr++) { |
200 | | /* Select the proper DCT routine for this component's scaling */ |
201 | 0 | switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { |
202 | 0 | #ifdef DCT_SCALING_SUPPORTED |
203 | 0 | case ((1 << 8) + 1): |
204 | 0 | fdct->do_dct[ci] = jpeg_fdct_1x1; |
205 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
206 | 0 | break; |
207 | 0 | case ((2 << 8) + 2): |
208 | 0 | fdct->do_dct[ci] = jpeg_fdct_2x2; |
209 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
210 | 0 | break; |
211 | 0 | case ((3 << 8) + 3): |
212 | 0 | fdct->do_dct[ci] = jpeg_fdct_3x3; |
213 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
214 | 0 | break; |
215 | 0 | case ((4 << 8) + 4): |
216 | 0 | fdct->do_dct[ci] = jpeg_fdct_4x4; |
217 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
218 | 0 | break; |
219 | 0 | case ((5 << 8) + 5): |
220 | 0 | fdct->do_dct[ci] = jpeg_fdct_5x5; |
221 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
222 | 0 | break; |
223 | 0 | case ((6 << 8) + 6): |
224 | 0 | fdct->do_dct[ci] = jpeg_fdct_6x6; |
225 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
226 | 0 | break; |
227 | 0 | case ((7 << 8) + 7): |
228 | 0 | fdct->do_dct[ci] = jpeg_fdct_7x7; |
229 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
230 | 0 | break; |
231 | 0 | case ((9 << 8) + 9): |
232 | 0 | fdct->do_dct[ci] = jpeg_fdct_9x9; |
233 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
234 | 0 | break; |
235 | 0 | case ((10 << 8) + 10): |
236 | 0 | fdct->do_dct[ci] = jpeg_fdct_10x10; |
237 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
238 | 0 | break; |
239 | 0 | case ((11 << 8) + 11): |
240 | 0 | fdct->do_dct[ci] = jpeg_fdct_11x11; |
241 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
242 | 0 | break; |
243 | 0 | case ((12 << 8) + 12): |
244 | 0 | fdct->do_dct[ci] = jpeg_fdct_12x12; |
245 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
246 | 0 | break; |
247 | 0 | case ((13 << 8) + 13): |
248 | 0 | fdct->do_dct[ci] = jpeg_fdct_13x13; |
249 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
250 | 0 | break; |
251 | 0 | case ((14 << 8) + 14): |
252 | 0 | fdct->do_dct[ci] = jpeg_fdct_14x14; |
253 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
254 | 0 | break; |
255 | 0 | case ((15 << 8) + 15): |
256 | 0 | fdct->do_dct[ci] = jpeg_fdct_15x15; |
257 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
258 | 0 | break; |
259 | 0 | case ((16 << 8) + 16): |
260 | 0 | fdct->do_dct[ci] = jpeg_fdct_16x16; |
261 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
262 | 0 | break; |
263 | 0 | case ((16 << 8) + 8): |
264 | 0 | fdct->do_dct[ci] = jpeg_fdct_16x8; |
265 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
266 | 0 | break; |
267 | 0 | case ((14 << 8) + 7): |
268 | 0 | fdct->do_dct[ci] = jpeg_fdct_14x7; |
269 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
270 | 0 | break; |
271 | 0 | case ((12 << 8) + 6): |
272 | 0 | fdct->do_dct[ci] = jpeg_fdct_12x6; |
273 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
274 | 0 | break; |
275 | 0 | case ((10 << 8) + 5): |
276 | 0 | fdct->do_dct[ci] = jpeg_fdct_10x5; |
277 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
278 | 0 | break; |
279 | 0 | case ((8 << 8) + 4): |
280 | 0 | fdct->do_dct[ci] = jpeg_fdct_8x4; |
281 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
282 | 0 | break; |
283 | 0 | case ((6 << 8) + 3): |
284 | 0 | fdct->do_dct[ci] = jpeg_fdct_6x3; |
285 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
286 | 0 | break; |
287 | 0 | case ((4 << 8) + 2): |
288 | 0 | fdct->do_dct[ci] = jpeg_fdct_4x2; |
289 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
290 | 0 | break; |
291 | 0 | case ((2 << 8) + 1): |
292 | 0 | fdct->do_dct[ci] = jpeg_fdct_2x1; |
293 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
294 | 0 | break; |
295 | 0 | case ((8 << 8) + 16): |
296 | 0 | fdct->do_dct[ci] = jpeg_fdct_8x16; |
297 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
298 | 0 | break; |
299 | 0 | case ((7 << 8) + 14): |
300 | 0 | fdct->do_dct[ci] = jpeg_fdct_7x14; |
301 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
302 | 0 | break; |
303 | 0 | case ((6 << 8) + 12): |
304 | 0 | fdct->do_dct[ci] = jpeg_fdct_6x12; |
305 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
306 | 0 | break; |
307 | 0 | case ((5 << 8) + 10): |
308 | 0 | fdct->do_dct[ci] = jpeg_fdct_5x10; |
309 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
310 | 0 | break; |
311 | 0 | case ((4 << 8) + 8): |
312 | 0 | fdct->do_dct[ci] = jpeg_fdct_4x8; |
313 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
314 | 0 | break; |
315 | 0 | case ((3 << 8) + 6): |
316 | 0 | fdct->do_dct[ci] = jpeg_fdct_3x6; |
317 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
318 | 0 | break; |
319 | 0 | case ((2 << 8) + 4): |
320 | 0 | fdct->do_dct[ci] = jpeg_fdct_2x4; |
321 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
322 | 0 | break; |
323 | 0 | case ((1 << 8) + 2): |
324 | 0 | fdct->do_dct[ci] = jpeg_fdct_1x2; |
325 | 0 | method = JDCT_ISLOW; /* jfdctint uses islow-style table */ |
326 | 0 | break; |
327 | 0 | #endif |
328 | 0 | case ((DCTSIZE << 8) + DCTSIZE): |
329 | 0 | switch (cinfo->dct_method) { |
330 | 0 | #ifdef DCT_ISLOW_SUPPORTED |
331 | 0 | case JDCT_ISLOW: |
332 | 0 | fdct->do_dct[ci] = jpeg_fdct_islow; |
333 | 0 | method = JDCT_ISLOW; |
334 | 0 | break; |
335 | 0 | #endif |
336 | 0 | #ifdef DCT_IFAST_SUPPORTED |
337 | 0 | case JDCT_IFAST: |
338 | 0 | fdct->do_dct[ci] = jpeg_fdct_ifast; |
339 | 0 | method = JDCT_IFAST; |
340 | 0 | break; |
341 | 0 | #endif |
342 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
343 | 0 | case JDCT_FLOAT: |
344 | 0 | fdct->do_float_dct[ci] = jpeg_fdct_float; |
345 | 0 | method = JDCT_FLOAT; |
346 | 0 | break; |
347 | 0 | #endif |
348 | 0 | default: |
349 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
350 | 0 | break; |
351 | 0 | } |
352 | 0 | break; |
353 | 0 | default: |
354 | 0 | ERREXIT2(cinfo, JERR_BAD_DCTSIZE, |
355 | 0 | compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); |
356 | 0 | break; |
357 | 0 | } |
358 | 0 | qtblno = compptr->quant_tbl_no; |
359 | | /* Make sure specified quantization table is present */ |
360 | 0 | if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || |
361 | 0 | cinfo->quant_tbl_ptrs[qtblno] == NULL) |
362 | 0 | ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); |
363 | 0 | qtbl = cinfo->quant_tbl_ptrs[qtblno]; |
364 | | /* Create divisor table from quant table */ |
365 | 0 | switch (method) { |
366 | 0 | #ifdef PROVIDE_ISLOW_TABLES |
367 | 0 | case JDCT_ISLOW: |
368 | | /* For LL&M IDCT method, divisors are equal to raw quantization |
369 | | * coefficients multiplied by 8 (to counteract scaling). |
370 | | */ |
371 | 0 | dtbl = (DCTELEM *) compptr->dct_table; |
372 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
373 | 0 | dtbl[i] = |
374 | 0 | ((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3); |
375 | 0 | } |
376 | 0 | fdct->pub.forward_DCT[ci] = forward_DCT; |
377 | 0 | break; |
378 | 0 | #endif |
379 | 0 | #ifdef DCT_IFAST_SUPPORTED |
380 | 0 | case JDCT_IFAST: |
381 | 0 | { |
382 | | /* For AA&N IDCT method, divisors are equal to quantization |
383 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
384 | | * scalefactor[0] = 1 |
385 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
386 | | * We apply a further scale factor of 8. |
387 | | */ |
388 | 0 | #define CONST_BITS 14 |
389 | 0 | static const INT16 aanscales[DCTSIZE2] = { |
390 | | /* precomputed values scaled up by 14 bits */ |
391 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
392 | 0 | 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, |
393 | 0 | 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, |
394 | 0 | 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, |
395 | 0 | 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, |
396 | 0 | 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, |
397 | 0 | 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, |
398 | 0 | 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 |
399 | 0 | }; |
400 | 0 | SHIFT_TEMPS |
401 | |
|
402 | 0 | dtbl = (DCTELEM *) compptr->dct_table; |
403 | 0 | for (i = 0; i < DCTSIZE2; i++) { |
404 | 0 | dtbl[i] = (DCTELEM) |
405 | 0 | DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], |
406 | 0 | (INT32) aanscales[i]), |
407 | 0 | compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3); |
408 | 0 | } |
409 | 0 | } |
410 | 0 | fdct->pub.forward_DCT[ci] = forward_DCT; |
411 | 0 | break; |
412 | 0 | #endif |
413 | 0 | #ifdef DCT_FLOAT_SUPPORTED |
414 | 0 | case JDCT_FLOAT: |
415 | 0 | { |
416 | | /* For float AA&N IDCT method, divisors are equal to quantization |
417 | | * coefficients scaled by scalefactor[row]*scalefactor[col], where |
418 | | * scalefactor[0] = 1 |
419 | | * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 |
420 | | * We apply a further scale factor of 8. |
421 | | * What's actually stored is 1/divisor so that the inner loop can |
422 | | * use a multiplication rather than a division. |
423 | | */ |
424 | 0 | FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table; |
425 | 0 | int row, col; |
426 | 0 | static const double aanscalefactor[DCTSIZE] = { |
427 | 0 | 1.0, 1.387039845, 1.306562965, 1.175875602, |
428 | 0 | 1.0, 0.785694958, 0.541196100, 0.275899379 |
429 | 0 | }; |
430 | |
|
431 | 0 | i = 0; |
432 | 0 | for (row = 0; row < DCTSIZE; row++) { |
433 | 0 | for (col = 0; col < DCTSIZE; col++) { |
434 | 0 | fdtbl[i] = (FAST_FLOAT) |
435 | 0 | (1.0 / ((double) qtbl->quantval[i] * |
436 | 0 | aanscalefactor[row] * aanscalefactor[col] * |
437 | 0 | (compptr->component_needed ? 16.0 : 8.0))); |
438 | 0 | i++; |
439 | 0 | } |
440 | 0 | } |
441 | 0 | } |
442 | 0 | fdct->pub.forward_DCT[ci] = forward_DCT_float; |
443 | 0 | break; |
444 | 0 | #endif |
445 | 0 | default: |
446 | 0 | ERREXIT(cinfo, JERR_NOT_COMPILED); |
447 | 0 | break; |
448 | 0 | } |
449 | 0 | } |
450 | 0 | } |
451 | | |
452 | | |
453 | | /* |
454 | | * Initialize FDCT manager. |
455 | | */ |
456 | | |
457 | | GLOBAL(void) |
458 | | jinit_forward_dct (j_compress_ptr cinfo) |
459 | 0 | { |
460 | 0 | my_fdct_ptr fdct; |
461 | 0 | int ci; |
462 | 0 | jpeg_component_info *compptr; |
463 | |
|
464 | 0 | fdct = (my_fdct_ptr) |
465 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
466 | 0 | SIZEOF(my_fdct_controller)); |
467 | 0 | cinfo->fdct = &fdct->pub; |
468 | 0 | fdct->pub.start_pass = start_pass_fdctmgr; |
469 | |
|
470 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
471 | 0 | ci++, compptr++) { |
472 | | /* Allocate a divisor table for each component */ |
473 | 0 | compptr->dct_table = |
474 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
475 | 0 | SIZEOF(divisor_table)); |
476 | 0 | } |
477 | 0 | } |