/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jchuff.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jchuff.c |
3 | | * |
4 | | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | | * Modified 2006-2019 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains Huffman entropy encoding routines. |
10 | | * Both sequential and progressive modes are supported in this single module. |
11 | | * |
12 | | * Much of the complexity here has to do with supporting output suspension. |
13 | | * If the data destination module demands suspension, we want to be able to |
14 | | * back up to the start of the current MCU. To do this, we copy state |
15 | | * variables into local working storage, and update them back to the |
16 | | * permanent JPEG objects only upon successful completion of an MCU. |
17 | | * |
18 | | * We do not support output suspension for the progressive JPEG mode, since |
19 | | * the library currently does not allow multiple-scan files to be written |
20 | | * with output suspension. |
21 | | */ |
22 | | |
23 | | #define JPEG_INTERNALS |
24 | | #include "jinclude.h" |
25 | | #include "jpeglib.h" |
26 | | |
27 | | |
28 | | /* The legal range of a DCT coefficient is |
29 | | * -1024 .. +1023 for 8-bit data; |
30 | | * -16384 .. +16383 for 12-bit data. |
31 | | * Hence the magnitude should always fit in 10 or 14 bits respectively. |
32 | | */ |
33 | | |
34 | | #if BITS_IN_JSAMPLE == 8 |
35 | 0 | #define MAX_COEF_BITS 10 |
36 | | #else |
37 | | #define MAX_COEF_BITS 14 |
38 | | #endif |
39 | | |
40 | | /* Derived data constructed for each Huffman table */ |
41 | | |
42 | | typedef struct { |
43 | | unsigned int ehufco[256]; /* code for each symbol */ |
44 | | char ehufsi[256]; /* length of code for each symbol */ |
45 | | /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ |
46 | | } c_derived_tbl; |
47 | | |
48 | | |
49 | | /* Expanded entropy encoder object for Huffman encoding. |
50 | | * |
51 | | * The savable_state subrecord contains fields that change within an MCU, |
52 | | * but must not be updated permanently until we complete the MCU. |
53 | | */ |
54 | | |
55 | | typedef struct { |
56 | | INT32 put_buffer; /* current bit-accumulation buffer */ |
57 | | int put_bits; /* # of bits now in it */ |
58 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
59 | | } savable_state; |
60 | | |
61 | | /* This macro is to work around compilers with missing or broken |
62 | | * structure assignment. You'll need to fix this code if you have |
63 | | * such a compiler and you change MAX_COMPS_IN_SCAN. |
64 | | */ |
65 | | |
66 | | #ifndef NO_STRUCT_ASSIGN |
67 | 0 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
68 | | #else |
69 | | #if MAX_COMPS_IN_SCAN == 4 |
70 | | #define ASSIGN_STATE(dest,src) \ |
71 | | ((dest).put_buffer = (src).put_buffer, \ |
72 | | (dest).put_bits = (src).put_bits, \ |
73 | | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
74 | | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
75 | | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
76 | | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
77 | | #endif |
78 | | #endif |
79 | | |
80 | | |
81 | | typedef struct { |
82 | | struct jpeg_entropy_encoder pub; /* public fields */ |
83 | | |
84 | | savable_state saved; /* Bit buffer & DC state at start of MCU */ |
85 | | |
86 | | /* These fields are NOT loaded into local working state. */ |
87 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
88 | | int next_restart_num; /* next restart number to write (0-7) */ |
89 | | |
90 | | /* Pointers to derived tables (these workspaces have image lifespan) */ |
91 | | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
92 | | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
93 | | |
94 | | /* Statistics tables for optimization */ |
95 | | long * dc_count_ptrs[NUM_HUFF_TBLS]; |
96 | | long * ac_count_ptrs[NUM_HUFF_TBLS]; |
97 | | |
98 | | /* Following fields used only in progressive mode */ |
99 | | |
100 | | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
101 | | boolean gather_statistics; |
102 | | |
103 | | /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
104 | | */ |
105 | | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
106 | | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
107 | | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
108 | | |
109 | | /* Coding status for AC components */ |
110 | | int ac_tbl_no; /* the table number of the single component */ |
111 | | unsigned int EOBRUN; /* run length of EOBs */ |
112 | | unsigned int BE; /* # of buffered correction bits before MCU */ |
113 | | char * bit_buffer; /* buffer for correction bits (1 per char) */ |
114 | | /* packing correction bits tightly would save some space but cost time... */ |
115 | | } huff_entropy_encoder; |
116 | | |
117 | | typedef huff_entropy_encoder * huff_entropy_ptr; |
118 | | |
119 | | /* Working state while writing an MCU (sequential mode). |
120 | | * This struct contains all the fields that are needed by subroutines. |
121 | | */ |
122 | | |
123 | | typedef struct { |
124 | | JOCTET * next_output_byte; /* => next byte to write in buffer */ |
125 | | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
126 | | savable_state cur; /* Current bit buffer & DC state */ |
127 | | j_compress_ptr cinfo; /* dump_buffer needs access to this */ |
128 | | } working_state; |
129 | | |
130 | | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
131 | | * buffer can hold. Larger sizes may slightly improve compression, but |
132 | | * 1000 is already well into the realm of overkill. |
133 | | * The minimum safe size is 64 bits. |
134 | | */ |
135 | | |
136 | 0 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
137 | | |
138 | | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. |
139 | | * We assume that int right shift is unsigned if INT32 right shift is, |
140 | | * which should be safe. |
141 | | */ |
142 | | |
143 | | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
144 | | #define ISHIFT_TEMPS int ishift_temp; |
145 | | #define IRIGHT_SHIFT(x,shft) \ |
146 | | ((ishift_temp = (x)) < 0 ? \ |
147 | | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
148 | | (ishift_temp >> (shft))) |
149 | | #else |
150 | | #define ISHIFT_TEMPS |
151 | 0 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
152 | | #endif |
153 | | |
154 | | |
155 | | /* |
156 | | * Compute the derived values for a Huffman table. |
157 | | * This routine also performs some validation checks on the table. |
158 | | */ |
159 | | |
160 | | LOCAL(void) |
161 | | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, |
162 | | c_derived_tbl ** pdtbl) |
163 | 0 | { |
164 | 0 | JHUFF_TBL *htbl; |
165 | 0 | c_derived_tbl *dtbl; |
166 | 0 | int p, i, l, lastp, si, maxsymbol; |
167 | 0 | char huffsize[257]; |
168 | 0 | unsigned int huffcode[257]; |
169 | 0 | unsigned int code; |
170 | | |
171 | | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
172 | | * paralleling the order of the symbols themselves in htbl->huffval[]. |
173 | | */ |
174 | | |
175 | | /* Find the input Huffman table */ |
176 | 0 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
177 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
178 | 0 | htbl = |
179 | 0 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
180 | 0 | if (htbl == NULL) |
181 | 0 | htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); |
182 | | |
183 | | /* Allocate a workspace if we haven't already done so. */ |
184 | 0 | if (*pdtbl == NULL) |
185 | 0 | *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) |
186 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl)); |
187 | 0 | dtbl = *pdtbl; |
188 | | |
189 | | /* Figure C.1: make table of Huffman code length for each symbol */ |
190 | |
|
191 | 0 | p = 0; |
192 | 0 | for (l = 1; l <= 16; l++) { |
193 | 0 | i = (int) htbl->bits[l]; |
194 | 0 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
195 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
196 | 0 | while (i--) |
197 | 0 | huffsize[p++] = (char) l; |
198 | 0 | } |
199 | 0 | huffsize[p] = 0; |
200 | 0 | lastp = p; |
201 | | |
202 | | /* Figure C.2: generate the codes themselves */ |
203 | | /* We also validate that the counts represent a legal Huffman code tree. */ |
204 | |
|
205 | 0 | code = 0; |
206 | 0 | si = huffsize[0]; |
207 | 0 | p = 0; |
208 | 0 | while (huffsize[p]) { |
209 | 0 | while (((int) huffsize[p]) == si) { |
210 | 0 | huffcode[p++] = code; |
211 | 0 | code++; |
212 | 0 | } |
213 | | /* code is now 1 more than the last code used for codelength si; but |
214 | | * it must still fit in si bits, since no code is allowed to be all ones. |
215 | | */ |
216 | 0 | if (((INT32) code) >= (((INT32) 1) << si)) |
217 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
218 | 0 | code <<= 1; |
219 | 0 | si++; |
220 | 0 | } |
221 | | |
222 | | /* Figure C.3: generate encoding tables */ |
223 | | /* These are code and size indexed by symbol value */ |
224 | | |
225 | | /* Set all codeless symbols to have code length 0; |
226 | | * this lets us detect duplicate VAL entries here, and later |
227 | | * allows emit_bits to detect any attempt to emit such symbols. |
228 | | */ |
229 | 0 | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); |
230 | | |
231 | | /* This is also a convenient place to check for out-of-range |
232 | | * and duplicated VAL entries. We allow 0..255 for AC symbols |
233 | | * but only 0..15 for DC. (We could constrain them further |
234 | | * based on data depth and mode, but this seems enough.) |
235 | | */ |
236 | 0 | maxsymbol = isDC ? 15 : 255; |
237 | |
|
238 | 0 | for (p = 0; p < lastp; p++) { |
239 | 0 | i = htbl->huffval[p]; |
240 | 0 | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) |
241 | 0 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
242 | 0 | dtbl->ehufco[i] = huffcode[p]; |
243 | 0 | dtbl->ehufsi[i] = huffsize[p]; |
244 | 0 | } |
245 | 0 | } |
246 | | |
247 | | |
248 | | /* Outputting bytes to the file. |
249 | | * NB: these must be called only when actually outputting, |
250 | | * that is, entropy->gather_statistics == FALSE. |
251 | | */ |
252 | | |
253 | | /* Emit a byte, taking 'action' if must suspend. */ |
254 | | #define emit_byte_s(state,val,action) \ |
255 | 0 | { *(state)->next_output_byte++ = (JOCTET) (val); \ |
256 | 0 | if (--(state)->free_in_buffer == 0) \ |
257 | 0 | if (! dump_buffer_s(state)) \ |
258 | 0 | { action; } } |
259 | | |
260 | | /* Emit a byte */ |
261 | | #define emit_byte_e(entropy,val) \ |
262 | 0 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
263 | 0 | if (--(entropy)->free_in_buffer == 0) \ |
264 | 0 | dump_buffer_e(entropy); } |
265 | | |
266 | | |
267 | | LOCAL(boolean) |
268 | | dump_buffer_s (working_state * state) |
269 | | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ |
270 | 0 | { |
271 | 0 | struct jpeg_destination_mgr * dest = state->cinfo->dest; |
272 | |
|
273 | 0 | if (! (*dest->empty_output_buffer) (state->cinfo)) |
274 | 0 | return FALSE; |
275 | | /* After a successful buffer dump, must reset buffer pointers */ |
276 | 0 | state->next_output_byte = dest->next_output_byte; |
277 | 0 | state->free_in_buffer = dest->free_in_buffer; |
278 | 0 | return TRUE; |
279 | 0 | } |
280 | | |
281 | | |
282 | | LOCAL(void) |
283 | | dump_buffer_e (huff_entropy_ptr entropy) |
284 | | /* Empty the output buffer; we do not support suspension in this case. */ |
285 | 0 | { |
286 | 0 | struct jpeg_destination_mgr * dest = entropy->cinfo->dest; |
287 | |
|
288 | 0 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
289 | 0 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
290 | | /* After a successful buffer dump, must reset buffer pointers */ |
291 | 0 | entropy->next_output_byte = dest->next_output_byte; |
292 | 0 | entropy->free_in_buffer = dest->free_in_buffer; |
293 | 0 | } |
294 | | |
295 | | |
296 | | /* Outputting bits to the file */ |
297 | | |
298 | | /* Only the right 24 bits of put_buffer are used; the valid bits are |
299 | | * left-justified in this part. At most 16 bits can be passed to emit_bits |
300 | | * in one call, and we never retain more than 7 bits in put_buffer |
301 | | * between calls, so 24 bits are sufficient. |
302 | | */ |
303 | | |
304 | | INLINE |
305 | | LOCAL(boolean) |
306 | | emit_bits_s (working_state * state, unsigned int code, int size) |
307 | | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ |
308 | 0 | { |
309 | | /* This routine is heavily used, so it's worth coding tightly. */ |
310 | 0 | register INT32 put_buffer; |
311 | 0 | register int put_bits; |
312 | | |
313 | | /* if size is 0, caller used an invalid Huffman table entry */ |
314 | 0 | if (size == 0) |
315 | 0 | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); |
316 | | |
317 | | /* mask off any extra bits in code */ |
318 | 0 | put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
319 | | |
320 | | /* new number of bits in buffer */ |
321 | 0 | put_bits = size + state->cur.put_bits; |
322 | |
|
323 | 0 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
324 | | |
325 | | /* and merge with old buffer contents */ |
326 | 0 | put_buffer |= state->cur.put_buffer; |
327 | |
|
328 | 0 | while (put_bits >= 8) { |
329 | 0 | int c = (int) ((put_buffer >> 16) & 0xFF); |
330 | |
|
331 | 0 | emit_byte_s(state, c, return FALSE); |
332 | 0 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
333 | 0 | emit_byte_s(state, 0, return FALSE); |
334 | 0 | } |
335 | 0 | put_buffer <<= 8; |
336 | 0 | put_bits -= 8; |
337 | 0 | } |
338 | | |
339 | 0 | state->cur.put_buffer = put_buffer; /* update state variables */ |
340 | 0 | state->cur.put_bits = put_bits; |
341 | |
|
342 | 0 | return TRUE; |
343 | 0 | } |
344 | | |
345 | | |
346 | | INLINE |
347 | | LOCAL(void) |
348 | | emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) |
349 | | /* Emit some bits, unless we are in gather mode */ |
350 | 0 | { |
351 | | /* This routine is heavily used, so it's worth coding tightly. */ |
352 | 0 | register INT32 put_buffer; |
353 | 0 | register int put_bits; |
354 | | |
355 | | /* if size is 0, caller used an invalid Huffman table entry */ |
356 | 0 | if (size == 0) |
357 | 0 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
358 | |
|
359 | 0 | if (entropy->gather_statistics) |
360 | 0 | return; /* do nothing if we're only getting stats */ |
361 | | |
362 | | /* mask off any extra bits in code */ |
363 | 0 | put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); |
364 | | |
365 | | /* new number of bits in buffer */ |
366 | 0 | put_bits = size + entropy->saved.put_bits; |
367 | |
|
368 | 0 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
369 | | |
370 | | /* and merge with old buffer contents */ |
371 | 0 | put_buffer |= entropy->saved.put_buffer; |
372 | |
|
373 | 0 | while (put_bits >= 8) { |
374 | 0 | int c = (int) ((put_buffer >> 16) & 0xFF); |
375 | |
|
376 | 0 | emit_byte_e(entropy, c); |
377 | 0 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
378 | 0 | emit_byte_e(entropy, 0); |
379 | 0 | } |
380 | 0 | put_buffer <<= 8; |
381 | 0 | put_bits -= 8; |
382 | 0 | } |
383 | |
|
384 | 0 | entropy->saved.put_buffer = put_buffer; /* update variables */ |
385 | 0 | entropy->saved.put_bits = put_bits; |
386 | 0 | } |
387 | | |
388 | | |
389 | | LOCAL(boolean) |
390 | | flush_bits_s (working_state * state) |
391 | 0 | { |
392 | 0 | if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ |
393 | 0 | return FALSE; |
394 | 0 | state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ |
395 | 0 | state->cur.put_bits = 0; |
396 | 0 | return TRUE; |
397 | 0 | } |
398 | | |
399 | | |
400 | | LOCAL(void) |
401 | | flush_bits_e (huff_entropy_ptr entropy) |
402 | 0 | { |
403 | 0 | emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
404 | 0 | entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ |
405 | 0 | entropy->saved.put_bits = 0; |
406 | 0 | } |
407 | | |
408 | | |
409 | | /* |
410 | | * Emit (or just count) a Huffman symbol. |
411 | | */ |
412 | | |
413 | | INLINE |
414 | | LOCAL(void) |
415 | | emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
416 | 0 | { |
417 | 0 | if (entropy->gather_statistics) |
418 | 0 | entropy->dc_count_ptrs[tbl_no][symbol]++; |
419 | 0 | else { |
420 | 0 | c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; |
421 | 0 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
422 | 0 | } |
423 | 0 | } |
424 | | |
425 | | |
426 | | INLINE |
427 | | LOCAL(void) |
428 | | emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) |
429 | 0 | { |
430 | 0 | if (entropy->gather_statistics) |
431 | 0 | entropy->ac_count_ptrs[tbl_no][symbol]++; |
432 | 0 | else { |
433 | 0 | c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; |
434 | 0 | emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
435 | 0 | } |
436 | 0 | } |
437 | | |
438 | | |
439 | | /* |
440 | | * Emit bits from a correction bit buffer. |
441 | | */ |
442 | | |
443 | | LOCAL(void) |
444 | | emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, |
445 | | unsigned int nbits) |
446 | 0 | { |
447 | 0 | if (entropy->gather_statistics) |
448 | 0 | return; /* no real work */ |
449 | | |
450 | 0 | while (nbits > 0) { |
451 | 0 | emit_bits_e(entropy, (unsigned int) (*bufstart), 1); |
452 | 0 | bufstart++; |
453 | 0 | nbits--; |
454 | 0 | } |
455 | 0 | } |
456 | | |
457 | | |
458 | | /* |
459 | | * Emit any pending EOBRUN symbol. |
460 | | */ |
461 | | |
462 | | LOCAL(void) |
463 | | emit_eobrun (huff_entropy_ptr entropy) |
464 | 0 | { |
465 | 0 | register int temp, nbits; |
466 | |
|
467 | 0 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
468 | 0 | temp = entropy->EOBRUN; |
469 | 0 | nbits = 0; |
470 | 0 | while ((temp >>= 1)) |
471 | 0 | nbits++; |
472 | | /* safety check: shouldn't happen given limited correction-bit buffer */ |
473 | 0 | if (nbits > 14) |
474 | 0 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
475 | |
|
476 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
477 | 0 | if (nbits) |
478 | 0 | emit_bits_e(entropy, entropy->EOBRUN, nbits); |
479 | |
|
480 | 0 | entropy->EOBRUN = 0; |
481 | | |
482 | | /* Emit any buffered correction bits */ |
483 | 0 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
484 | 0 | entropy->BE = 0; |
485 | 0 | } |
486 | 0 | } |
487 | | |
488 | | |
489 | | /* |
490 | | * Emit a restart marker & resynchronize predictions. |
491 | | */ |
492 | | |
493 | | LOCAL(boolean) |
494 | | emit_restart_s (working_state * state, int restart_num) |
495 | 0 | { |
496 | 0 | int ci; |
497 | |
|
498 | 0 | if (! flush_bits_s(state)) |
499 | 0 | return FALSE; |
500 | | |
501 | 0 | emit_byte_s(state, 0xFF, return FALSE); |
502 | 0 | emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); |
503 | | |
504 | | /* Re-initialize DC predictions to 0 */ |
505 | 0 | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) |
506 | 0 | state->cur.last_dc_val[ci] = 0; |
507 | | |
508 | | /* The restart counter is not updated until we successfully write the MCU. */ |
509 | |
|
510 | 0 | return TRUE; |
511 | 0 | } |
512 | | |
513 | | |
514 | | LOCAL(void) |
515 | | emit_restart_e (huff_entropy_ptr entropy, int restart_num) |
516 | 0 | { |
517 | 0 | int ci; |
518 | |
|
519 | 0 | emit_eobrun(entropy); |
520 | |
|
521 | 0 | if (! entropy->gather_statistics) { |
522 | 0 | flush_bits_e(entropy); |
523 | 0 | emit_byte_e(entropy, 0xFF); |
524 | 0 | emit_byte_e(entropy, JPEG_RST0 + restart_num); |
525 | 0 | } |
526 | |
|
527 | 0 | if (entropy->cinfo->Ss == 0) { |
528 | | /* Re-initialize DC predictions to 0 */ |
529 | 0 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
530 | 0 | entropy->saved.last_dc_val[ci] = 0; |
531 | 0 | } else { |
532 | | /* Re-initialize all AC-related fields to 0 */ |
533 | 0 | entropy->EOBRUN = 0; |
534 | 0 | entropy->BE = 0; |
535 | 0 | } |
536 | 0 | } |
537 | | |
538 | | |
539 | | /* |
540 | | * MCU encoding for DC initial scan (either spectral selection, |
541 | | * or first pass of successive approximation). |
542 | | */ |
543 | | |
544 | | METHODDEF(boolean) |
545 | | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
546 | 0 | { |
547 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
548 | 0 | register int temp, temp2; |
549 | 0 | register int nbits; |
550 | 0 | int blkn, ci, tbl; |
551 | 0 | ISHIFT_TEMPS |
552 | |
|
553 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
554 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
555 | | |
556 | | /* Emit restart marker if needed */ |
557 | 0 | if (cinfo->restart_interval) |
558 | 0 | if (entropy->restarts_to_go == 0) |
559 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
560 | | |
561 | | /* Encode the MCU data blocks */ |
562 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
563 | 0 | ci = cinfo->MCU_membership[blkn]; |
564 | 0 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
565 | | |
566 | | /* Compute the DC value after the required point transform by Al. |
567 | | * This is simply an arithmetic right shift. |
568 | | */ |
569 | 0 | temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); |
570 | | |
571 | | /* DC differences are figured on the point-transformed values. */ |
572 | 0 | temp2 = temp - entropy->saved.last_dc_val[ci]; |
573 | 0 | entropy->saved.last_dc_val[ci] = temp; |
574 | | |
575 | | /* Encode the DC coefficient difference per section G.1.2.1 */ |
576 | 0 | temp = temp2; |
577 | 0 | if (temp < 0) { |
578 | 0 | temp = -temp; /* temp is abs value of input */ |
579 | | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
580 | | /* This code assumes we are on a two's complement machine */ |
581 | 0 | temp2--; |
582 | 0 | } |
583 | | |
584 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
585 | 0 | nbits = 0; |
586 | 0 | while (temp) { |
587 | 0 | nbits++; |
588 | 0 | temp >>= 1; |
589 | 0 | } |
590 | | /* Check for out-of-range coefficient values. |
591 | | * Since we're encoding a difference, the range limit is twice as much. |
592 | | */ |
593 | 0 | if (nbits > MAX_COEF_BITS+1) |
594 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
595 | | |
596 | | /* Count/emit the Huffman-coded symbol for the number of bits */ |
597 | 0 | emit_dc_symbol(entropy, tbl, nbits); |
598 | | |
599 | | /* Emit that number of bits of the value, if positive, */ |
600 | | /* or the complement of its magnitude, if negative. */ |
601 | 0 | if (nbits) /* emit_bits rejects calls with size 0 */ |
602 | 0 | emit_bits_e(entropy, (unsigned int) temp2, nbits); |
603 | 0 | } |
604 | |
|
605 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
606 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
607 | | |
608 | | /* Update restart-interval state too */ |
609 | 0 | if (cinfo->restart_interval) { |
610 | 0 | if (entropy->restarts_to_go == 0) { |
611 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
612 | 0 | entropy->next_restart_num++; |
613 | 0 | entropy->next_restart_num &= 7; |
614 | 0 | } |
615 | 0 | entropy->restarts_to_go--; |
616 | 0 | } |
617 | |
|
618 | 0 | return TRUE; |
619 | 0 | } |
620 | | |
621 | | |
622 | | /* |
623 | | * MCU encoding for AC initial scan (either spectral selection, |
624 | | * or first pass of successive approximation). |
625 | | */ |
626 | | |
627 | | METHODDEF(boolean) |
628 | | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
629 | 0 | { |
630 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
631 | 0 | const int * natural_order; |
632 | 0 | JBLOCKROW block; |
633 | 0 | register int temp, temp2; |
634 | 0 | register int nbits; |
635 | 0 | register int r, k; |
636 | 0 | int Se, Al; |
637 | |
|
638 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
639 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
640 | | |
641 | | /* Emit restart marker if needed */ |
642 | 0 | if (cinfo->restart_interval) |
643 | 0 | if (entropy->restarts_to_go == 0) |
644 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
645 | |
|
646 | 0 | Se = cinfo->Se; |
647 | 0 | Al = cinfo->Al; |
648 | 0 | natural_order = cinfo->natural_order; |
649 | | |
650 | | /* Encode the MCU data block */ |
651 | 0 | block = MCU_data[0]; |
652 | | |
653 | | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
654 | | |
655 | 0 | r = 0; /* r = run length of zeros */ |
656 | | |
657 | 0 | for (k = cinfo->Ss; k <= Se; k++) { |
658 | 0 | if ((temp = (*block)[natural_order[k]]) == 0) { |
659 | 0 | r++; |
660 | 0 | continue; |
661 | 0 | } |
662 | | /* We must apply the point transform by Al. For AC coefficients this |
663 | | * is an integer division with rounding towards 0. To do this portably |
664 | | * in C, we shift after obtaining the absolute value; so the code is |
665 | | * interwoven with finding the abs value (temp) and output bits (temp2). |
666 | | */ |
667 | 0 | if (temp < 0) { |
668 | 0 | temp = -temp; /* temp is abs value of input */ |
669 | 0 | temp >>= Al; /* apply the point transform */ |
670 | | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
671 | 0 | temp2 = ~temp; |
672 | 0 | } else { |
673 | 0 | temp >>= Al; /* apply the point transform */ |
674 | 0 | temp2 = temp; |
675 | 0 | } |
676 | | /* Watch out for case that nonzero coef is zero after point transform */ |
677 | 0 | if (temp == 0) { |
678 | 0 | r++; |
679 | 0 | continue; |
680 | 0 | } |
681 | | |
682 | | /* Emit any pending EOBRUN */ |
683 | 0 | if (entropy->EOBRUN > 0) |
684 | 0 | emit_eobrun(entropy); |
685 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
686 | 0 | while (r > 15) { |
687 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
688 | 0 | r -= 16; |
689 | 0 | } |
690 | | |
691 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
692 | 0 | nbits = 1; /* there must be at least one 1 bit */ |
693 | 0 | while ((temp >>= 1)) |
694 | 0 | nbits++; |
695 | | /* Check for out-of-range coefficient values */ |
696 | 0 | if (nbits > MAX_COEF_BITS) |
697 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
698 | | |
699 | | /* Count/emit Huffman symbol for run length / number of bits */ |
700 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
701 | | |
702 | | /* Emit that number of bits of the value, if positive, */ |
703 | | /* or the complement of its magnitude, if negative. */ |
704 | 0 | emit_bits_e(entropy, (unsigned int) temp2, nbits); |
705 | |
|
706 | 0 | r = 0; /* reset zero run length */ |
707 | 0 | } |
708 | |
|
709 | 0 | if (r > 0) { /* If there are trailing zeroes, */ |
710 | 0 | entropy->EOBRUN++; /* count an EOB */ |
711 | 0 | if (entropy->EOBRUN == 0x7FFF) |
712 | 0 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
713 | 0 | } |
714 | |
|
715 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
716 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
717 | | |
718 | | /* Update restart-interval state too */ |
719 | 0 | if (cinfo->restart_interval) { |
720 | 0 | if (entropy->restarts_to_go == 0) { |
721 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
722 | 0 | entropy->next_restart_num++; |
723 | 0 | entropy->next_restart_num &= 7; |
724 | 0 | } |
725 | 0 | entropy->restarts_to_go--; |
726 | 0 | } |
727 | |
|
728 | 0 | return TRUE; |
729 | 0 | } |
730 | | |
731 | | |
732 | | /* |
733 | | * MCU encoding for DC successive approximation refinement scan. |
734 | | * Note: we assume such scans can be multi-component, |
735 | | * although the spec is not very clear on the point. |
736 | | */ |
737 | | |
738 | | METHODDEF(boolean) |
739 | | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
740 | 0 | { |
741 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
742 | 0 | int Al, blkn; |
743 | |
|
744 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
745 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
746 | | |
747 | | /* Emit restart marker if needed */ |
748 | 0 | if (cinfo->restart_interval) |
749 | 0 | if (entropy->restarts_to_go == 0) |
750 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
751 | |
|
752 | 0 | Al = cinfo->Al; |
753 | | |
754 | | /* Encode the MCU data blocks */ |
755 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
756 | | /* We simply emit the Al'th bit of the DC coefficient value. */ |
757 | 0 | emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); |
758 | 0 | } |
759 | |
|
760 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
761 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
762 | | |
763 | | /* Update restart-interval state too */ |
764 | 0 | if (cinfo->restart_interval) { |
765 | 0 | if (entropy->restarts_to_go == 0) { |
766 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
767 | 0 | entropy->next_restart_num++; |
768 | 0 | entropy->next_restart_num &= 7; |
769 | 0 | } |
770 | 0 | entropy->restarts_to_go--; |
771 | 0 | } |
772 | |
|
773 | 0 | return TRUE; |
774 | 0 | } |
775 | | |
776 | | |
777 | | /* |
778 | | * MCU encoding for AC successive approximation refinement scan. |
779 | | */ |
780 | | |
781 | | METHODDEF(boolean) |
782 | | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
783 | 0 | { |
784 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
785 | 0 | const int * natural_order; |
786 | 0 | JBLOCKROW block; |
787 | 0 | register int temp; |
788 | 0 | register int r, k; |
789 | 0 | int Se, Al; |
790 | 0 | int EOB; |
791 | 0 | char *BR_buffer; |
792 | 0 | unsigned int BR; |
793 | 0 | int absvalues[DCTSIZE2]; |
794 | |
|
795 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
796 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
797 | | |
798 | | /* Emit restart marker if needed */ |
799 | 0 | if (cinfo->restart_interval) |
800 | 0 | if (entropy->restarts_to_go == 0) |
801 | 0 | emit_restart_e(entropy, entropy->next_restart_num); |
802 | |
|
803 | 0 | Se = cinfo->Se; |
804 | 0 | Al = cinfo->Al; |
805 | 0 | natural_order = cinfo->natural_order; |
806 | | |
807 | | /* Encode the MCU data block */ |
808 | 0 | block = MCU_data[0]; |
809 | | |
810 | | /* It is convenient to make a pre-pass to determine the transformed |
811 | | * coefficients' absolute values and the EOB position. |
812 | | */ |
813 | 0 | EOB = 0; |
814 | 0 | for (k = cinfo->Ss; k <= Se; k++) { |
815 | 0 | temp = (*block)[natural_order[k]]; |
816 | | /* We must apply the point transform by Al. For AC coefficients this |
817 | | * is an integer division with rounding towards 0. To do this portably |
818 | | * in C, we shift after obtaining the absolute value. |
819 | | */ |
820 | 0 | if (temp < 0) |
821 | 0 | temp = -temp; /* temp is abs value of input */ |
822 | 0 | temp >>= Al; /* apply the point transform */ |
823 | 0 | absvalues[k] = temp; /* save abs value for main pass */ |
824 | 0 | if (temp == 1) |
825 | 0 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
826 | 0 | } |
827 | | |
828 | | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
829 | | |
830 | 0 | r = 0; /* r = run length of zeros */ |
831 | 0 | BR = 0; /* BR = count of buffered bits added now */ |
832 | 0 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
833 | |
|
834 | 0 | for (k = cinfo->Ss; k <= Se; k++) { |
835 | 0 | if ((temp = absvalues[k]) == 0) { |
836 | 0 | r++; |
837 | 0 | continue; |
838 | 0 | } |
839 | | |
840 | | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
841 | 0 | while (r > 15 && k <= EOB) { |
842 | | /* emit any pending EOBRUN and the BE correction bits */ |
843 | 0 | emit_eobrun(entropy); |
844 | | /* Emit ZRL */ |
845 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
846 | 0 | r -= 16; |
847 | | /* Emit buffered correction bits that must be associated with ZRL */ |
848 | 0 | emit_buffered_bits(entropy, BR_buffer, BR); |
849 | 0 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
850 | 0 | BR = 0; |
851 | 0 | } |
852 | | |
853 | | /* If the coef was previously nonzero, it only needs a correction bit. |
854 | | * NOTE: a straight translation of the spec's figure G.7 would suggest |
855 | | * that we also need to test r > 15. But if r > 15, we can only get here |
856 | | * if k > EOB, which implies that this coefficient is not 1. |
857 | | */ |
858 | 0 | if (temp > 1) { |
859 | | /* The correction bit is the next bit of the absolute value. */ |
860 | 0 | BR_buffer[BR++] = (char) (temp & 1); |
861 | 0 | continue; |
862 | 0 | } |
863 | | |
864 | | /* Emit any pending EOBRUN and the BE correction bits */ |
865 | 0 | emit_eobrun(entropy); |
866 | | |
867 | | /* Count/emit Huffman symbol for run length / number of bits */ |
868 | 0 | emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
869 | | |
870 | | /* Emit output bit for newly-nonzero coef */ |
871 | 0 | temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; |
872 | 0 | emit_bits_e(entropy, (unsigned int) temp, 1); |
873 | | |
874 | | /* Emit buffered correction bits that must be associated with this code */ |
875 | 0 | emit_buffered_bits(entropy, BR_buffer, BR); |
876 | 0 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
877 | 0 | BR = 0; |
878 | 0 | r = 0; /* reset zero run length */ |
879 | 0 | } |
880 | |
|
881 | 0 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
882 | 0 | entropy->EOBRUN++; /* count an EOB */ |
883 | 0 | entropy->BE += BR; /* concat my correction bits to older ones */ |
884 | | /* We force out the EOB if we risk either: |
885 | | * 1. overflow of the EOB counter; |
886 | | * 2. overflow of the correction bit buffer during the next MCU. |
887 | | */ |
888 | 0 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
889 | 0 | emit_eobrun(entropy); |
890 | 0 | } |
891 | |
|
892 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
893 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
894 | | |
895 | | /* Update restart-interval state too */ |
896 | 0 | if (cinfo->restart_interval) { |
897 | 0 | if (entropy->restarts_to_go == 0) { |
898 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
899 | 0 | entropy->next_restart_num++; |
900 | 0 | entropy->next_restart_num &= 7; |
901 | 0 | } |
902 | 0 | entropy->restarts_to_go--; |
903 | 0 | } |
904 | |
|
905 | 0 | return TRUE; |
906 | 0 | } |
907 | | |
908 | | |
909 | | /* Encode a single block's worth of coefficients */ |
910 | | |
911 | | LOCAL(boolean) |
912 | | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, |
913 | | c_derived_tbl *dctbl, c_derived_tbl *actbl) |
914 | 0 | { |
915 | 0 | register int temp, temp2; |
916 | 0 | register int nbits; |
917 | 0 | register int r, k; |
918 | 0 | int Se = state->cinfo->lim_Se; |
919 | 0 | const int * natural_order = state->cinfo->natural_order; |
920 | | |
921 | | /* Encode the DC coefficient difference per section F.1.2.1 */ |
922 | |
|
923 | 0 | temp = temp2 = block[0] - last_dc_val; |
924 | |
|
925 | 0 | if (temp < 0) { |
926 | 0 | temp = -temp; /* temp is abs value of input */ |
927 | | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
928 | | /* This code assumes we are on a two's complement machine */ |
929 | 0 | temp2--; |
930 | 0 | } |
931 | | |
932 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
933 | 0 | nbits = 0; |
934 | 0 | while (temp) { |
935 | 0 | nbits++; |
936 | 0 | temp >>= 1; |
937 | 0 | } |
938 | | /* Check for out-of-range coefficient values. |
939 | | * Since we're encoding a difference, the range limit is twice as much. |
940 | | */ |
941 | 0 | if (nbits > MAX_COEF_BITS+1) |
942 | 0 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
943 | | |
944 | | /* Emit the Huffman-coded symbol for the number of bits */ |
945 | 0 | if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) |
946 | 0 | return FALSE; |
947 | | |
948 | | /* Emit that number of bits of the value, if positive, */ |
949 | | /* or the complement of its magnitude, if negative. */ |
950 | 0 | if (nbits) /* emit_bits rejects calls with size 0 */ |
951 | 0 | if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
952 | 0 | return FALSE; |
953 | | |
954 | | /* Encode the AC coefficients per section F.1.2.2 */ |
955 | | |
956 | 0 | r = 0; /* r = run length of zeros */ |
957 | |
|
958 | 0 | for (k = 1; k <= Se; k++) { |
959 | 0 | if ((temp2 = block[natural_order[k]]) == 0) { |
960 | 0 | r++; |
961 | 0 | } else { |
962 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
963 | 0 | while (r > 15) { |
964 | 0 | if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) |
965 | 0 | return FALSE; |
966 | 0 | r -= 16; |
967 | 0 | } |
968 | | |
969 | 0 | temp = temp2; |
970 | 0 | if (temp < 0) { |
971 | 0 | temp = -temp; /* temp is abs value of input */ |
972 | | /* This code assumes we are on a two's complement machine */ |
973 | 0 | temp2--; |
974 | 0 | } |
975 | | |
976 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
977 | 0 | nbits = 1; /* there must be at least one 1 bit */ |
978 | 0 | while ((temp >>= 1)) |
979 | 0 | nbits++; |
980 | | /* Check for out-of-range coefficient values */ |
981 | 0 | if (nbits > MAX_COEF_BITS) |
982 | 0 | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); |
983 | | |
984 | | /* Emit Huffman symbol for run length / number of bits */ |
985 | 0 | temp = (r << 4) + nbits; |
986 | 0 | if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) |
987 | 0 | return FALSE; |
988 | | |
989 | | /* Emit that number of bits of the value, if positive, */ |
990 | | /* or the complement of its magnitude, if negative. */ |
991 | 0 | if (! emit_bits_s(state, (unsigned int) temp2, nbits)) |
992 | 0 | return FALSE; |
993 | | |
994 | 0 | r = 0; |
995 | 0 | } |
996 | 0 | } |
997 | | |
998 | | /* If the last coef(s) were zero, emit an end-of-block code */ |
999 | 0 | if (r > 0) |
1000 | 0 | if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) |
1001 | 0 | return FALSE; |
1002 | | |
1003 | 0 | return TRUE; |
1004 | 0 | } |
1005 | | |
1006 | | |
1007 | | /* |
1008 | | * Encode and output one MCU's worth of Huffman-compressed coefficients. |
1009 | | */ |
1010 | | |
1011 | | METHODDEF(boolean) |
1012 | | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
1013 | 0 | { |
1014 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1015 | 0 | working_state state; |
1016 | 0 | int blkn, ci; |
1017 | 0 | jpeg_component_info * compptr; |
1018 | | |
1019 | | /* Load up working state */ |
1020 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
1021 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
1022 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
1023 | 0 | state.cinfo = cinfo; |
1024 | | |
1025 | | /* Emit restart marker if needed */ |
1026 | 0 | if (cinfo->restart_interval) { |
1027 | 0 | if (entropy->restarts_to_go == 0) |
1028 | 0 | if (! emit_restart_s(&state, entropy->next_restart_num)) |
1029 | 0 | return FALSE; |
1030 | 0 | } |
1031 | | |
1032 | | /* Encode the MCU data blocks */ |
1033 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1034 | 0 | ci = cinfo->MCU_membership[blkn]; |
1035 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1036 | 0 | if (! encode_one_block(&state, |
1037 | 0 | MCU_data[blkn][0], state.cur.last_dc_val[ci], |
1038 | 0 | entropy->dc_derived_tbls[compptr->dc_tbl_no], |
1039 | 0 | entropy->ac_derived_tbls[compptr->ac_tbl_no])) |
1040 | 0 | return FALSE; |
1041 | | /* Update last_dc_val */ |
1042 | 0 | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; |
1043 | 0 | } |
1044 | | |
1045 | | /* Completed MCU, so update state */ |
1046 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
1047 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
1048 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
1049 | | |
1050 | | /* Update restart-interval state too */ |
1051 | 0 | if (cinfo->restart_interval) { |
1052 | 0 | if (entropy->restarts_to_go == 0) { |
1053 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
1054 | 0 | entropy->next_restart_num++; |
1055 | 0 | entropy->next_restart_num &= 7; |
1056 | 0 | } |
1057 | 0 | entropy->restarts_to_go--; |
1058 | 0 | } |
1059 | |
|
1060 | 0 | return TRUE; |
1061 | 0 | } |
1062 | | |
1063 | | |
1064 | | /* |
1065 | | * Finish up at the end of a Huffman-compressed scan. |
1066 | | */ |
1067 | | |
1068 | | METHODDEF(void) |
1069 | | finish_pass_huff (j_compress_ptr cinfo) |
1070 | 0 | { |
1071 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1072 | 0 | working_state state; |
1073 | |
|
1074 | 0 | if (cinfo->progressive_mode) { |
1075 | 0 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
1076 | 0 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
1077 | | |
1078 | | /* Flush out any buffered data */ |
1079 | 0 | emit_eobrun(entropy); |
1080 | 0 | flush_bits_e(entropy); |
1081 | |
|
1082 | 0 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
1083 | 0 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
1084 | 0 | } else { |
1085 | | /* Load up working state ... flush_bits needs it */ |
1086 | 0 | state.next_output_byte = cinfo->dest->next_output_byte; |
1087 | 0 | state.free_in_buffer = cinfo->dest->free_in_buffer; |
1088 | 0 | ASSIGN_STATE(state.cur, entropy->saved); |
1089 | 0 | state.cinfo = cinfo; |
1090 | | |
1091 | | /* Flush out the last data */ |
1092 | 0 | if (! flush_bits_s(&state)) |
1093 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
1094 | | |
1095 | | /* Update state */ |
1096 | 0 | cinfo->dest->next_output_byte = state.next_output_byte; |
1097 | 0 | cinfo->dest->free_in_buffer = state.free_in_buffer; |
1098 | 0 | ASSIGN_STATE(entropy->saved, state.cur); |
1099 | 0 | } |
1100 | 0 | } |
1101 | | |
1102 | | |
1103 | | /* |
1104 | | * Huffman coding optimization. |
1105 | | * |
1106 | | * We first scan the supplied data and count the number of uses of each symbol |
1107 | | * that is to be Huffman-coded. (This process MUST agree with the code above.) |
1108 | | * Then we build a Huffman coding tree for the observed counts. |
1109 | | * Symbols which are not needed at all for the particular image are not |
1110 | | * assigned any code, which saves space in the DHT marker as well as in |
1111 | | * the compressed data. |
1112 | | */ |
1113 | | |
1114 | | |
1115 | | /* Process a single block's worth of coefficients */ |
1116 | | |
1117 | | LOCAL(void) |
1118 | | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, |
1119 | | long dc_counts[], long ac_counts[]) |
1120 | 0 | { |
1121 | 0 | register int temp; |
1122 | 0 | register int nbits; |
1123 | 0 | register int r, k; |
1124 | 0 | int Se = cinfo->lim_Se; |
1125 | 0 | const int * natural_order = cinfo->natural_order; |
1126 | | |
1127 | | /* Encode the DC coefficient difference per section F.1.2.1 */ |
1128 | |
|
1129 | 0 | temp = block[0] - last_dc_val; |
1130 | 0 | if (temp < 0) |
1131 | 0 | temp = -temp; |
1132 | | |
1133 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
1134 | 0 | nbits = 0; |
1135 | 0 | while (temp) { |
1136 | 0 | nbits++; |
1137 | 0 | temp >>= 1; |
1138 | 0 | } |
1139 | | /* Check for out-of-range coefficient values. |
1140 | | * Since we're encoding a difference, the range limit is twice as much. |
1141 | | */ |
1142 | 0 | if (nbits > MAX_COEF_BITS+1) |
1143 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
1144 | | |
1145 | | /* Count the Huffman symbol for the number of bits */ |
1146 | 0 | dc_counts[nbits]++; |
1147 | | |
1148 | | /* Encode the AC coefficients per section F.1.2.2 */ |
1149 | |
|
1150 | 0 | r = 0; /* r = run length of zeros */ |
1151 | |
|
1152 | 0 | for (k = 1; k <= Se; k++) { |
1153 | 0 | if ((temp = block[natural_order[k]]) == 0) { |
1154 | 0 | r++; |
1155 | 0 | } else { |
1156 | | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
1157 | 0 | while (r > 15) { |
1158 | 0 | ac_counts[0xF0]++; |
1159 | 0 | r -= 16; |
1160 | 0 | } |
1161 | | |
1162 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
1163 | 0 | if (temp < 0) |
1164 | 0 | temp = -temp; |
1165 | | |
1166 | | /* Find the number of bits needed for the magnitude of the coefficient */ |
1167 | 0 | nbits = 1; /* there must be at least one 1 bit */ |
1168 | 0 | while ((temp >>= 1)) |
1169 | 0 | nbits++; |
1170 | | /* Check for out-of-range coefficient values */ |
1171 | 0 | if (nbits > MAX_COEF_BITS) |
1172 | 0 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
1173 | | |
1174 | | /* Count Huffman symbol for run length / number of bits */ |
1175 | 0 | ac_counts[(r << 4) + nbits]++; |
1176 | |
|
1177 | 0 | r = 0; |
1178 | 0 | } |
1179 | 0 | } |
1180 | | |
1181 | | /* If the last coef(s) were zero, emit an end-of-block code */ |
1182 | 0 | if (r > 0) |
1183 | 0 | ac_counts[0]++; |
1184 | 0 | } |
1185 | | |
1186 | | |
1187 | | /* |
1188 | | * Trial-encode one MCU's worth of Huffman-compressed coefficients. |
1189 | | * No data is actually output, so no suspension return is possible. |
1190 | | */ |
1191 | | |
1192 | | METHODDEF(boolean) |
1193 | | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
1194 | 0 | { |
1195 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1196 | 0 | int blkn, ci; |
1197 | 0 | jpeg_component_info * compptr; |
1198 | | |
1199 | | /* Take care of restart intervals if needed */ |
1200 | 0 | if (cinfo->restart_interval) { |
1201 | 0 | if (entropy->restarts_to_go == 0) { |
1202 | | /* Re-initialize DC predictions to 0 */ |
1203 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
1204 | 0 | entropy->saved.last_dc_val[ci] = 0; |
1205 | | /* Update restart state */ |
1206 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
1207 | 0 | } |
1208 | 0 | entropy->restarts_to_go--; |
1209 | 0 | } |
1210 | |
|
1211 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1212 | 0 | ci = cinfo->MCU_membership[blkn]; |
1213 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1214 | 0 | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], |
1215 | 0 | entropy->dc_count_ptrs[compptr->dc_tbl_no], |
1216 | 0 | entropy->ac_count_ptrs[compptr->ac_tbl_no]); |
1217 | 0 | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; |
1218 | 0 | } |
1219 | |
|
1220 | 0 | return TRUE; |
1221 | 0 | } |
1222 | | |
1223 | | |
1224 | | /* |
1225 | | * Generate the best Huffman code table for the given counts, fill htbl. |
1226 | | * |
1227 | | * The JPEG standard requires that no symbol be assigned a codeword of all |
1228 | | * one bits (so that padding bits added at the end of a compressed segment |
1229 | | * can't look like a valid code). Because of the canonical ordering of |
1230 | | * codewords, this just means that there must be an unused slot in the |
1231 | | * longest codeword length category. Section K.2 of the JPEG spec suggests |
1232 | | * reserving such a slot by pretending that symbol 256 is a valid symbol |
1233 | | * with count 1. In theory that's not optimal; giving it count zero but |
1234 | | * including it in the symbol set anyway should give a better Huffman code. |
1235 | | * But the theoretically better code actually seems to come out worse in |
1236 | | * practice, because it produces more all-ones bytes (which incur stuffed |
1237 | | * zero bytes in the final file). In any case the difference is tiny. |
1238 | | * |
1239 | | * The JPEG standard requires Huffman codes to be no more than 16 bits long. |
1240 | | * If some symbols have a very small but nonzero probability, the Huffman tree |
1241 | | * must be adjusted to meet the code length restriction. We currently use |
1242 | | * the adjustment method suggested in JPEG section K.2. This method is *not* |
1243 | | * optimal; it may not choose the best possible limited-length code. But |
1244 | | * typically only very-low-frequency symbols will be given less-than-optimal |
1245 | | * lengths, so the code is almost optimal. Experimental comparisons against |
1246 | | * an optimal limited-length-code algorithm indicate that the difference is |
1247 | | * microscopic --- usually less than a hundredth of a percent of total size. |
1248 | | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. |
1249 | | */ |
1250 | | |
1251 | | LOCAL(void) |
1252 | | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) |
1253 | 0 | { |
1254 | 0 | #define MAX_CLEN 32 /* assumed maximum initial code length */ |
1255 | 0 | UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ |
1256 | 0 | int codesize[257]; /* codesize[k] = code length of symbol k */ |
1257 | 0 | int others[257]; /* next symbol in current branch of tree */ |
1258 | 0 | int c1, c2, i, j; |
1259 | 0 | UINT8 *p; |
1260 | 0 | long v; |
1261 | |
|
1262 | 0 | freq[256] = 1; /* make sure 256 has a nonzero count */ |
1263 | | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees |
1264 | | * that no real symbol is given code-value of all ones, because 256 |
1265 | | * will be placed last in the largest codeword category. |
1266 | | * In the symbol list build procedure this element serves as sentinel |
1267 | | * for the zero run loop. |
1268 | | */ |
1269 | |
|
1270 | 0 | #ifndef DONT_USE_FANCY_HUFF_OPT |
1271 | | |
1272 | | /* Build list of symbols sorted in order of descending frequency */ |
1273 | | /* This approach has several benefits (thank to John Korejwa for the idea): |
1274 | | * 1. |
1275 | | * If a codelength category is split during the length limiting procedure |
1276 | | * below, the feature that more frequent symbols are assigned shorter |
1277 | | * codewords remains valid for the adjusted code. |
1278 | | * 2. |
1279 | | * To reduce consecutive ones in a Huffman data stream (thus reducing the |
1280 | | * number of stuff bytes in JPEG) it is preferable to follow 0 branches |
1281 | | * (and avoid 1 branches) as much as possible. This is easily done by |
1282 | | * assigning symbols to leaves of the Huffman tree in order of decreasing |
1283 | | * frequency, with no secondary sort based on codelengths. |
1284 | | * 3. |
1285 | | * The symbol list can be built independently from the assignment of code |
1286 | | * lengths by the Huffman procedure below. |
1287 | | * Note: The symbol list build procedure must be performed first, because |
1288 | | * the Huffman procedure assigning the codelengths clobbers the frequency |
1289 | | * counts! |
1290 | | */ |
1291 | | |
1292 | | /* Here we use the others array as a linked list of nonzero frequencies |
1293 | | * to be sorted. Already sorted elements are removed from the list. |
1294 | | */ |
1295 | | |
1296 | | /* Building list */ |
1297 | | |
1298 | | /* This item does not correspond to a valid symbol frequency and is used |
1299 | | * as starting index. |
1300 | | */ |
1301 | 0 | j = 256; |
1302 | |
|
1303 | 0 | for (i = 0;; i++) { |
1304 | 0 | if (freq[i] == 0) /* skip zero frequencies */ |
1305 | 0 | continue; |
1306 | 0 | if (i > 255) |
1307 | 0 | break; |
1308 | 0 | others[j] = i; /* this symbol value */ |
1309 | 0 | j = i; /* previous symbol value */ |
1310 | 0 | } |
1311 | 0 | others[j] = -1; /* mark end of list */ |
1312 | | |
1313 | | /* Sorting list */ |
1314 | |
|
1315 | 0 | p = htbl->huffval; |
1316 | 0 | while ((c1 = others[256]) >= 0) { |
1317 | 0 | v = freq[c1]; |
1318 | 0 | i = c1; /* first symbol value */ |
1319 | 0 | j = 256; /* pseudo symbol value for starting index */ |
1320 | 0 | while ((c2 = others[c1]) >= 0) { |
1321 | 0 | if (freq[c2] > v) { |
1322 | 0 | v = freq[c2]; |
1323 | 0 | i = c2; /* this symbol value */ |
1324 | 0 | j = c1; /* previous symbol value */ |
1325 | 0 | } |
1326 | 0 | c1 = c2; |
1327 | 0 | } |
1328 | 0 | others[j] = others[i]; /* remove this symbol i from list */ |
1329 | 0 | *p++ = (UINT8) i; |
1330 | 0 | } |
1331 | |
|
1332 | 0 | #endif /* DONT_USE_FANCY_HUFF_OPT */ |
1333 | | |
1334 | | /* This algorithm is explained in section K.2 of the JPEG standard */ |
1335 | |
|
1336 | 0 | MEMZERO(bits, SIZEOF(bits)); |
1337 | 0 | MEMZERO(codesize, SIZEOF(codesize)); |
1338 | 0 | for (i = 0; i < 257; i++) |
1339 | 0 | others[i] = -1; /* init links to empty */ |
1340 | | |
1341 | | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ |
1342 | |
|
1343 | 0 | for (;;) { |
1344 | | /* Find the smallest nonzero frequency, set c1 = its symbol */ |
1345 | | /* In case of ties, take the larger symbol number */ |
1346 | 0 | c1 = -1; |
1347 | 0 | v = 1000000000L; |
1348 | 0 | for (i = 0; i <= 256; i++) { |
1349 | 0 | if (freq[i] && freq[i] <= v) { |
1350 | 0 | v = freq[i]; |
1351 | 0 | c1 = i; |
1352 | 0 | } |
1353 | 0 | } |
1354 | | |
1355 | | /* Find the next smallest nonzero frequency, set c2 = its symbol */ |
1356 | | /* In case of ties, take the larger symbol number */ |
1357 | 0 | c2 = -1; |
1358 | 0 | v = 1000000000L; |
1359 | 0 | for (i = 0; i <= 256; i++) { |
1360 | 0 | if (freq[i] && freq[i] <= v && i != c1) { |
1361 | 0 | v = freq[i]; |
1362 | 0 | c2 = i; |
1363 | 0 | } |
1364 | 0 | } |
1365 | | |
1366 | | /* Done if we've merged everything into one frequency */ |
1367 | 0 | if (c2 < 0) |
1368 | 0 | break; |
1369 | | |
1370 | | /* Else merge the two counts/trees */ |
1371 | 0 | freq[c1] += freq[c2]; |
1372 | 0 | freq[c2] = 0; |
1373 | | |
1374 | | /* Increment the codesize of everything in c1's tree branch */ |
1375 | 0 | codesize[c1]++; |
1376 | 0 | while (others[c1] >= 0) { |
1377 | 0 | c1 = others[c1]; |
1378 | 0 | codesize[c1]++; |
1379 | 0 | } |
1380 | |
|
1381 | 0 | others[c1] = c2; /* chain c2 onto c1's tree branch */ |
1382 | | |
1383 | | /* Increment the codesize of everything in c2's tree branch */ |
1384 | 0 | codesize[c2]++; |
1385 | 0 | while (others[c2] >= 0) { |
1386 | 0 | c2 = others[c2]; |
1387 | 0 | codesize[c2]++; |
1388 | 0 | } |
1389 | 0 | } |
1390 | | |
1391 | | /* Now count the number of symbols of each code length */ |
1392 | 0 | for (i = 0; i <= 256; i++) { |
1393 | 0 | if (codesize[i]) { |
1394 | | /* The JPEG standard seems to think that this can't happen, */ |
1395 | | /* but I'm paranoid... */ |
1396 | 0 | if (codesize[i] > MAX_CLEN) |
1397 | 0 | ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
1398 | |
|
1399 | 0 | bits[codesize[i]]++; |
1400 | 0 | } |
1401 | 0 | } |
1402 | | |
1403 | | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure |
1404 | | * Huffman procedure assigned any such lengths, we must adjust the coding. |
1405 | | * Here is what the JPEG spec says about how this next bit works: |
1406 | | * Since symbols are paired for the longest Huffman code, the symbols are |
1407 | | * removed from this length category two at a time. The prefix for the pair |
1408 | | * (which is one bit shorter) is allocated to one of the pair; then, |
1409 | | * skipping the BITS entry for that prefix length, a code word from the next |
1410 | | * shortest nonzero BITS entry is converted into a prefix for two code words |
1411 | | * one bit longer. |
1412 | | */ |
1413 | |
|
1414 | 0 | for (i = MAX_CLEN; i > 16; i--) { |
1415 | 0 | while (bits[i] > 0) { |
1416 | 0 | j = i - 2; /* find length of new prefix to be used */ |
1417 | 0 | while (bits[j] == 0) { |
1418 | 0 | if (j == 0) |
1419 | 0 | ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); |
1420 | 0 | j--; |
1421 | 0 | } |
1422 | |
|
1423 | 0 | bits[i] -= 2; /* remove two symbols */ |
1424 | 0 | bits[i-1]++; /* one goes in this length */ |
1425 | 0 | bits[j+1] += 2; /* two new symbols in this length */ |
1426 | 0 | bits[j]--; /* symbol of this length is now a prefix */ |
1427 | 0 | } |
1428 | 0 | } |
1429 | | |
1430 | | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ |
1431 | 0 | while (bits[i] == 0) /* find largest codelength still in use */ |
1432 | 0 | i--; |
1433 | 0 | bits[i]--; |
1434 | | |
1435 | | /* Return final symbol counts (only for lengths 0..16) */ |
1436 | 0 | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); |
1437 | |
|
1438 | | #ifdef DONT_USE_FANCY_HUFF_OPT |
1439 | | |
1440 | | /* Return a list of the symbols sorted by code length */ |
1441 | | /* Note: Due to the codelength changes made above, it can happen |
1442 | | * that more frequent symbols are assigned longer codewords. |
1443 | | */ |
1444 | | p = htbl->huffval; |
1445 | | for (i = 1; i <= MAX_CLEN; i++) { |
1446 | | for (j = 0; j <= 255; j++) { |
1447 | | if (codesize[j] == i) { |
1448 | | *p++ = (UINT8) j; |
1449 | | } |
1450 | | } |
1451 | | } |
1452 | | |
1453 | | #endif /* DONT_USE_FANCY_HUFF_OPT */ |
1454 | | |
1455 | | /* Set sent_table FALSE so updated table will be written to JPEG file. */ |
1456 | 0 | htbl->sent_table = FALSE; |
1457 | 0 | } |
1458 | | |
1459 | | |
1460 | | /* |
1461 | | * Finish up a statistics-gathering pass and create the new Huffman tables. |
1462 | | */ |
1463 | | |
1464 | | METHODDEF(void) |
1465 | | finish_pass_gather (j_compress_ptr cinfo) |
1466 | 0 | { |
1467 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1468 | 0 | int ci, tbl; |
1469 | 0 | jpeg_component_info * compptr; |
1470 | 0 | JHUFF_TBL **htblptr; |
1471 | 0 | boolean did_dc[NUM_HUFF_TBLS]; |
1472 | 0 | boolean did_ac[NUM_HUFF_TBLS]; |
1473 | |
|
1474 | 0 | if (cinfo->progressive_mode) |
1475 | | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
1476 | 0 | emit_eobrun(entropy); |
1477 | | |
1478 | | /* It's important not to apply jpeg_gen_optimal_table more than once |
1479 | | * per table, because it clobbers the input frequency counts! |
1480 | | */ |
1481 | 0 | MEMZERO(did_dc, SIZEOF(did_dc)); |
1482 | 0 | MEMZERO(did_ac, SIZEOF(did_ac)); |
1483 | |
|
1484 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1485 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1486 | | /* DC needs no table for refinement scan */ |
1487 | 0 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
1488 | 0 | tbl = compptr->dc_tbl_no; |
1489 | 0 | if (! did_dc[tbl]) { |
1490 | 0 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
1491 | 0 | if (*htblptr == NULL) |
1492 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
1493 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); |
1494 | 0 | did_dc[tbl] = TRUE; |
1495 | 0 | } |
1496 | 0 | } |
1497 | | /* AC needs no table when not present */ |
1498 | 0 | if (cinfo->Se) { |
1499 | 0 | tbl = compptr->ac_tbl_no; |
1500 | 0 | if (! did_ac[tbl]) { |
1501 | 0 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
1502 | 0 | if (*htblptr == NULL) |
1503 | 0 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
1504 | 0 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); |
1505 | 0 | did_ac[tbl] = TRUE; |
1506 | 0 | } |
1507 | 0 | } |
1508 | 0 | } |
1509 | 0 | } |
1510 | | |
1511 | | |
1512 | | /* |
1513 | | * Initialize for a Huffman-compressed scan. |
1514 | | * If gather_statistics is TRUE, we do not output anything during the scan, |
1515 | | * just count the Huffman symbols used and generate Huffman code tables. |
1516 | | */ |
1517 | | |
1518 | | METHODDEF(void) |
1519 | | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) |
1520 | 0 | { |
1521 | 0 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1522 | 0 | int ci, tbl; |
1523 | 0 | jpeg_component_info * compptr; |
1524 | |
|
1525 | 0 | if (gather_statistics) |
1526 | 0 | entropy->pub.finish_pass = finish_pass_gather; |
1527 | 0 | else |
1528 | 0 | entropy->pub.finish_pass = finish_pass_huff; |
1529 | |
|
1530 | 0 | if (cinfo->progressive_mode) { |
1531 | 0 | entropy->cinfo = cinfo; |
1532 | 0 | entropy->gather_statistics = gather_statistics; |
1533 | | |
1534 | | /* We assume jcmaster.c already validated the scan parameters. */ |
1535 | | |
1536 | | /* Select execution routine */ |
1537 | 0 | if (cinfo->Ah == 0) { |
1538 | 0 | if (cinfo->Ss == 0) |
1539 | 0 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
1540 | 0 | else |
1541 | 0 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
1542 | 0 | } else { |
1543 | 0 | if (cinfo->Ss == 0) |
1544 | 0 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
1545 | 0 | else { |
1546 | 0 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
1547 | | /* AC refinement needs a correction bit buffer */ |
1548 | 0 | if (entropy->bit_buffer == NULL) |
1549 | 0 | entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) |
1550 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); |
1551 | 0 | } |
1552 | 0 | } |
1553 | | |
1554 | | /* Initialize AC stuff */ |
1555 | 0 | entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; |
1556 | 0 | entropy->EOBRUN = 0; |
1557 | 0 | entropy->BE = 0; |
1558 | 0 | } else { |
1559 | 0 | if (gather_statistics) |
1560 | 0 | entropy->pub.encode_mcu = encode_mcu_gather; |
1561 | 0 | else |
1562 | 0 | entropy->pub.encode_mcu = encode_mcu_huff; |
1563 | 0 | } |
1564 | |
|
1565 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1566 | 0 | compptr = cinfo->cur_comp_info[ci]; |
1567 | | /* DC needs no table for refinement scan */ |
1568 | 0 | if (cinfo->Ss == 0 && cinfo->Ah == 0) { |
1569 | 0 | tbl = compptr->dc_tbl_no; |
1570 | 0 | if (gather_statistics) { |
1571 | | /* Check for invalid table index */ |
1572 | | /* (make_c_derived_tbl does this in the other path) */ |
1573 | 0 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
1574 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
1575 | | /* Allocate and zero the statistics tables */ |
1576 | | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
1577 | 0 | if (entropy->dc_count_ptrs[tbl] == NULL) |
1578 | 0 | entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
1579 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
1580 | 0 | MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); |
1581 | 0 | } else { |
1582 | | /* Compute derived values for Huffman tables */ |
1583 | | /* We may do this more than once for a table, but it's not expensive */ |
1584 | 0 | jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, |
1585 | 0 | & entropy->dc_derived_tbls[tbl]); |
1586 | 0 | } |
1587 | | /* Initialize DC predictions to 0 */ |
1588 | 0 | entropy->saved.last_dc_val[ci] = 0; |
1589 | 0 | } |
1590 | | /* AC needs no table when not present */ |
1591 | 0 | if (cinfo->Se) { |
1592 | 0 | tbl = compptr->ac_tbl_no; |
1593 | 0 | if (gather_statistics) { |
1594 | 0 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
1595 | 0 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
1596 | 0 | if (entropy->ac_count_ptrs[tbl] == NULL) |
1597 | 0 | entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) |
1598 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); |
1599 | 0 | MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); |
1600 | 0 | } else { |
1601 | 0 | jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, |
1602 | 0 | & entropy->ac_derived_tbls[tbl]); |
1603 | 0 | } |
1604 | 0 | } |
1605 | 0 | } |
1606 | | |
1607 | | /* Initialize bit buffer to empty */ |
1608 | 0 | entropy->saved.put_buffer = 0; |
1609 | 0 | entropy->saved.put_bits = 0; |
1610 | | |
1611 | | /* Initialize restart stuff */ |
1612 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
1613 | 0 | entropy->next_restart_num = 0; |
1614 | 0 | } |
1615 | | |
1616 | | |
1617 | | /* |
1618 | | * Module initialization routine for Huffman entropy encoding. |
1619 | | */ |
1620 | | |
1621 | | GLOBAL(void) |
1622 | | jinit_huff_encoder (j_compress_ptr cinfo) |
1623 | 0 | { |
1624 | 0 | huff_entropy_ptr entropy; |
1625 | 0 | int i; |
1626 | |
|
1627 | 0 | entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) |
1628 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); |
1629 | 0 | cinfo->entropy = &entropy->pub; |
1630 | 0 | entropy->pub.start_pass = start_pass_huff; |
1631 | | |
1632 | | /* Mark tables unallocated */ |
1633 | 0 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1634 | 0 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
1635 | 0 | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; |
1636 | 0 | } |
1637 | |
|
1638 | 0 | if (cinfo->progressive_mode) |
1639 | 0 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
1640 | 0 | } |