/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcsample.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jcsample.c |
3 | | * |
4 | | * Copyright (C) 1991-1996, Thomas G. Lane. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains downsampling routines. |
9 | | * |
10 | | * Downsampling input data is counted in "row groups". A row group |
11 | | * is defined to be max_v_samp_factor pixel rows of each component, |
12 | | * from which the downsampler produces v_samp_factor sample rows. |
13 | | * A single row group is processed in each call to the downsampler module. |
14 | | * |
15 | | * The downsampler is responsible for edge-expansion of its output data |
16 | | * to fill an integral number of DCT blocks horizontally. The source buffer |
17 | | * may be modified if it is helpful for this purpose (the source buffer is |
18 | | * allocated wide enough to correspond to the desired output width). |
19 | | * The caller (the prep controller) is responsible for vertical padding. |
20 | | * |
21 | | * The downsampler may request "context rows" by setting need_context_rows |
22 | | * during startup. In this case, the input arrays will contain at least |
23 | | * one row group's worth of pixels above and below the passed-in data; |
24 | | * the caller will create dummy rows at image top and bottom by replicating |
25 | | * the first or last real pixel row. |
26 | | * |
27 | | * An excellent reference for image resampling is |
28 | | * Digital Image Warping, George Wolberg, 1990. |
29 | | * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
30 | | * |
31 | | * The downsampling algorithm used here is a simple average of the source |
32 | | * pixels covered by the output pixel. The hi-falutin sampling literature |
33 | | * refers to this as a "box filter". In general the characteristics of a box |
34 | | * filter are not very good, but for the specific cases we normally use (1:1 |
35 | | * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
36 | | * nearly so bad. If you intend to use other sampling ratios, you'd be well |
37 | | * advised to improve this code. |
38 | | * |
39 | | * A simple input-smoothing capability is provided. This is mainly intended |
40 | | * for cleaning up color-dithered GIF input files (if you find it inadequate, |
41 | | * we suggest using an external filtering program such as pnmconvol). When |
42 | | * enabled, each input pixel P is replaced by a weighted sum of itself and its |
43 | | * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
44 | | * where SF = (smoothing_factor / 1024). |
45 | | * Currently, smoothing is only supported for 2h2v sampling factors. |
46 | | */ |
47 | | |
48 | | #define JPEG_INTERNALS |
49 | | #include "jinclude.h" |
50 | | #include "jpeglib.h" |
51 | | |
52 | | |
53 | | /* Pointer to routine to downsample a single component */ |
54 | | typedef JMETHOD(void, downsample1_ptr, |
55 | | (j_compress_ptr cinfo, jpeg_component_info * compptr, |
56 | | JSAMPARRAY input_data, JSAMPARRAY output_data)); |
57 | | |
58 | | /* Private subobject */ |
59 | | |
60 | | typedef struct { |
61 | | struct jpeg_downsampler pub; /* public fields */ |
62 | | |
63 | | /* Downsampling method pointers, one per component */ |
64 | | downsample1_ptr methods[MAX_COMPONENTS]; |
65 | | |
66 | | /* Height of an output row group for each component. */ |
67 | | int rowgroup_height[MAX_COMPONENTS]; |
68 | | |
69 | | /* These arrays save pixel expansion factors so that int_downsample need not |
70 | | * recompute them each time. They are unused for other downsampling methods. |
71 | | */ |
72 | | UINT8 h_expand[MAX_COMPONENTS]; |
73 | | UINT8 v_expand[MAX_COMPONENTS]; |
74 | | } my_downsampler; |
75 | | |
76 | | typedef my_downsampler * my_downsample_ptr; |
77 | | |
78 | | |
79 | | /* |
80 | | * Initialize for a downsampling pass. |
81 | | */ |
82 | | |
83 | | METHODDEF(void) |
84 | | start_pass_downsample (j_compress_ptr cinfo) |
85 | 0 | { |
86 | | /* no work for now */ |
87 | 0 | } |
88 | | |
89 | | |
90 | | /* |
91 | | * Expand a component horizontally from width input_cols to width output_cols, |
92 | | * by duplicating the rightmost samples. |
93 | | */ |
94 | | |
95 | | LOCAL(void) |
96 | | expand_right_edge (JSAMPARRAY image_data, int num_rows, |
97 | | JDIMENSION input_cols, JDIMENSION output_cols) |
98 | 0 | { |
99 | 0 | register JSAMPROW ptr; |
100 | 0 | register JSAMPLE pixval; |
101 | 0 | register int count; |
102 | 0 | int row; |
103 | 0 | int numcols = (int) (output_cols - input_cols); |
104 | |
|
105 | 0 | if (numcols > 0) { |
106 | 0 | for (row = 0; row < num_rows; row++) { |
107 | 0 | ptr = image_data[row] + input_cols; |
108 | 0 | pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
109 | 0 | for (count = numcols; count > 0; count--) |
110 | 0 | *ptr++ = pixval; |
111 | 0 | } |
112 | 0 | } |
113 | 0 | } |
114 | | |
115 | | |
116 | | /* |
117 | | * Do downsampling for a whole row group (all components). |
118 | | * |
119 | | * In this version we simply downsample each component independently. |
120 | | */ |
121 | | |
122 | | METHODDEF(void) |
123 | | sep_downsample (j_compress_ptr cinfo, |
124 | | JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
125 | | JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
126 | 0 | { |
127 | 0 | my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
128 | 0 | int ci; |
129 | 0 | jpeg_component_info * compptr; |
130 | 0 | JSAMPARRAY in_ptr, out_ptr; |
131 | |
|
132 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
133 | 0 | ci++, compptr++) { |
134 | 0 | in_ptr = input_buf[ci] + in_row_index; |
135 | 0 | out_ptr = output_buf[ci] + |
136 | 0 | (out_row_group_index * downsample->rowgroup_height[ci]); |
137 | 0 | (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
138 | 0 | } |
139 | 0 | } |
140 | | |
141 | | |
142 | | /* |
143 | | * Downsample pixel values of a single component. |
144 | | * One row group is processed per call. |
145 | | * This version handles arbitrary integral sampling ratios, without smoothing. |
146 | | * Note that this version is not actually used for customary sampling ratios. |
147 | | */ |
148 | | |
149 | | METHODDEF(void) |
150 | | int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
151 | | JSAMPARRAY input_data, JSAMPARRAY output_data) |
152 | 0 | { |
153 | 0 | my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
154 | 0 | int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
155 | 0 | JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
156 | 0 | JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
157 | 0 | JSAMPROW inptr, outptr; |
158 | 0 | INT32 outvalue; |
159 | |
|
160 | 0 | h_expand = downsample->h_expand[compptr->component_index]; |
161 | 0 | v_expand = downsample->v_expand[compptr->component_index]; |
162 | 0 | numpix = h_expand * v_expand; |
163 | 0 | numpix2 = numpix/2; |
164 | | |
165 | | /* Expand input data enough to let all the output samples be generated |
166 | | * by the standard loop. Special-casing padded output would be more |
167 | | * efficient. |
168 | | */ |
169 | 0 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
170 | 0 | cinfo->image_width, output_cols * h_expand); |
171 | |
|
172 | 0 | inrow = outrow = 0; |
173 | 0 | while (inrow < cinfo->max_v_samp_factor) { |
174 | 0 | outptr = output_data[outrow]; |
175 | 0 | for (outcol = 0, outcol_h = 0; outcol < output_cols; |
176 | 0 | outcol++, outcol_h += h_expand) { |
177 | 0 | outvalue = 0; |
178 | 0 | for (v = 0; v < v_expand; v++) { |
179 | 0 | inptr = input_data[inrow+v] + outcol_h; |
180 | 0 | for (h = 0; h < h_expand; h++) { |
181 | 0 | outvalue += (INT32) GETJSAMPLE(*inptr++); |
182 | 0 | } |
183 | 0 | } |
184 | 0 | *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
185 | 0 | } |
186 | 0 | inrow += v_expand; |
187 | 0 | outrow++; |
188 | 0 | } |
189 | 0 | } |
190 | | |
191 | | |
192 | | /* |
193 | | * Downsample pixel values of a single component. |
194 | | * This version handles the special case of a full-size component, |
195 | | * without smoothing. |
196 | | */ |
197 | | |
198 | | METHODDEF(void) |
199 | | fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
200 | | JSAMPARRAY input_data, JSAMPARRAY output_data) |
201 | 0 | { |
202 | | /* Copy the data */ |
203 | 0 | jcopy_sample_rows(input_data, 0, output_data, 0, |
204 | 0 | cinfo->max_v_samp_factor, cinfo->image_width); |
205 | | /* Edge-expand */ |
206 | 0 | expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, |
207 | 0 | compptr->width_in_blocks * compptr->DCT_h_scaled_size); |
208 | 0 | } |
209 | | |
210 | | |
211 | | /* |
212 | | * Downsample pixel values of a single component. |
213 | | * This version handles the common case of 2:1 horizontal and 1:1 vertical, |
214 | | * without smoothing. |
215 | | * |
216 | | * A note about the "bias" calculations: when rounding fractional values to |
217 | | * integer, we do not want to always round 0.5 up to the next integer. |
218 | | * If we did that, we'd introduce a noticeable bias towards larger values. |
219 | | * Instead, this code is arranged so that 0.5 will be rounded up or down at |
220 | | * alternate pixel locations (a simple ordered dither pattern). |
221 | | */ |
222 | | |
223 | | METHODDEF(void) |
224 | | h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
225 | | JSAMPARRAY input_data, JSAMPARRAY output_data) |
226 | 0 | { |
227 | 0 | int inrow; |
228 | 0 | JDIMENSION outcol; |
229 | 0 | JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
230 | 0 | register JSAMPROW inptr, outptr; |
231 | 0 | register int bias; |
232 | | |
233 | | /* Expand input data enough to let all the output samples be generated |
234 | | * by the standard loop. Special-casing padded output would be more |
235 | | * efficient. |
236 | | */ |
237 | 0 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
238 | 0 | cinfo->image_width, output_cols * 2); |
239 | |
|
240 | 0 | for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
241 | 0 | outptr = output_data[inrow]; |
242 | 0 | inptr = input_data[inrow]; |
243 | 0 | bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
244 | 0 | for (outcol = 0; outcol < output_cols; outcol++) { |
245 | 0 | *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
246 | 0 | + bias) >> 1); |
247 | 0 | bias ^= 1; /* 0=>1, 1=>0 */ |
248 | 0 | inptr += 2; |
249 | 0 | } |
250 | 0 | } |
251 | 0 | } |
252 | | |
253 | | |
254 | | /* |
255 | | * Downsample pixel values of a single component. |
256 | | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
257 | | * without smoothing. |
258 | | */ |
259 | | |
260 | | METHODDEF(void) |
261 | | h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
262 | | JSAMPARRAY input_data, JSAMPARRAY output_data) |
263 | 0 | { |
264 | 0 | int inrow, outrow; |
265 | 0 | JDIMENSION outcol; |
266 | 0 | JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
267 | 0 | register JSAMPROW inptr0, inptr1, outptr; |
268 | 0 | register int bias; |
269 | | |
270 | | /* Expand input data enough to let all the output samples be generated |
271 | | * by the standard loop. Special-casing padded output would be more |
272 | | * efficient. |
273 | | */ |
274 | 0 | expand_right_edge(input_data, cinfo->max_v_samp_factor, |
275 | 0 | cinfo->image_width, output_cols * 2); |
276 | |
|
277 | 0 | inrow = outrow = 0; |
278 | 0 | while (inrow < cinfo->max_v_samp_factor) { |
279 | 0 | outptr = output_data[outrow]; |
280 | 0 | inptr0 = input_data[inrow]; |
281 | 0 | inptr1 = input_data[inrow+1]; |
282 | 0 | bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
283 | 0 | for (outcol = 0; outcol < output_cols; outcol++) { |
284 | 0 | *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
285 | 0 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
286 | 0 | + bias) >> 2); |
287 | 0 | bias ^= 3; /* 1=>2, 2=>1 */ |
288 | 0 | inptr0 += 2; inptr1 += 2; |
289 | 0 | } |
290 | 0 | inrow += 2; |
291 | 0 | outrow++; |
292 | 0 | } |
293 | 0 | } |
294 | | |
295 | | |
296 | | #ifdef INPUT_SMOOTHING_SUPPORTED |
297 | | |
298 | | /* |
299 | | * Downsample pixel values of a single component. |
300 | | * This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
301 | | * with smoothing. One row of context is required. |
302 | | */ |
303 | | |
304 | | METHODDEF(void) |
305 | | h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
306 | | JSAMPARRAY input_data, JSAMPARRAY output_data) |
307 | 0 | { |
308 | 0 | int inrow, outrow; |
309 | 0 | JDIMENSION colctr; |
310 | 0 | JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
311 | 0 | register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
312 | 0 | INT32 membersum, neighsum, memberscale, neighscale; |
313 | | |
314 | | /* Expand input data enough to let all the output samples be generated |
315 | | * by the standard loop. Special-casing padded output would be more |
316 | | * efficient. |
317 | | */ |
318 | 0 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
319 | 0 | cinfo->image_width, output_cols * 2); |
320 | | |
321 | | /* We don't bother to form the individual "smoothed" input pixel values; |
322 | | * we can directly compute the output which is the average of the four |
323 | | * smoothed values. Each of the four member pixels contributes a fraction |
324 | | * (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
325 | | * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
326 | | * output. The four corner-adjacent neighbor pixels contribute a fraction |
327 | | * SF to just one smoothed pixel, or SF/4 to the final output; while the |
328 | | * eight edge-adjacent neighbors contribute SF to each of two smoothed |
329 | | * pixels, or SF/2 overall. In order to use integer arithmetic, these |
330 | | * factors are scaled by 2^16 = 65536. |
331 | | * Also recall that SF = smoothing_factor / 1024. |
332 | | */ |
333 | |
|
334 | 0 | memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
335 | 0 | neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
336 | |
|
337 | 0 | inrow = outrow = 0; |
338 | 0 | while (inrow < cinfo->max_v_samp_factor) { |
339 | 0 | outptr = output_data[outrow]; |
340 | 0 | inptr0 = input_data[inrow]; |
341 | 0 | inptr1 = input_data[inrow+1]; |
342 | 0 | above_ptr = input_data[inrow-1]; |
343 | 0 | below_ptr = input_data[inrow+2]; |
344 | | |
345 | | /* Special case for first column: pretend column -1 is same as column 0 */ |
346 | 0 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
347 | 0 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
348 | 0 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
349 | 0 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
350 | 0 | GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
351 | 0 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
352 | 0 | neighsum += neighsum; |
353 | 0 | neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
354 | 0 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
355 | 0 | membersum = membersum * memberscale + neighsum * neighscale; |
356 | 0 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
357 | 0 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
358 | |
|
359 | 0 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
360 | | /* sum of pixels directly mapped to this output element */ |
361 | 0 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
362 | 0 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
363 | | /* sum of edge-neighbor pixels */ |
364 | 0 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
365 | 0 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
366 | 0 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
367 | 0 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
368 | | /* The edge-neighbors count twice as much as corner-neighbors */ |
369 | 0 | neighsum += neighsum; |
370 | | /* Add in the corner-neighbors */ |
371 | 0 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
372 | 0 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
373 | | /* form final output scaled up by 2^16 */ |
374 | 0 | membersum = membersum * memberscale + neighsum * neighscale; |
375 | | /* round, descale and output it */ |
376 | 0 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
377 | 0 | inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
378 | 0 | } |
379 | | |
380 | | /* Special case for last column */ |
381 | 0 | membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
382 | 0 | GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
383 | 0 | neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
384 | 0 | GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
385 | 0 | GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
386 | 0 | GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
387 | 0 | neighsum += neighsum; |
388 | 0 | neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
389 | 0 | GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
390 | 0 | membersum = membersum * memberscale + neighsum * neighscale; |
391 | 0 | *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
392 | |
|
393 | 0 | inrow += 2; |
394 | 0 | outrow++; |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | | |
399 | | /* |
400 | | * Downsample pixel values of a single component. |
401 | | * This version handles the special case of a full-size component, |
402 | | * with smoothing. One row of context is required. |
403 | | */ |
404 | | |
405 | | METHODDEF(void) |
406 | | fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
407 | | JSAMPARRAY input_data, JSAMPARRAY output_data) |
408 | 0 | { |
409 | 0 | int inrow; |
410 | 0 | JDIMENSION colctr; |
411 | 0 | JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
412 | 0 | register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
413 | 0 | INT32 membersum, neighsum, memberscale, neighscale; |
414 | 0 | int colsum, lastcolsum, nextcolsum; |
415 | | |
416 | | /* Expand input data enough to let all the output samples be generated |
417 | | * by the standard loop. Special-casing padded output would be more |
418 | | * efficient. |
419 | | */ |
420 | 0 | expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
421 | 0 | cinfo->image_width, output_cols); |
422 | | |
423 | | /* Each of the eight neighbor pixels contributes a fraction SF to the |
424 | | * smoothed pixel, while the main pixel contributes (1-8*SF). In order |
425 | | * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
426 | | * Also recall that SF = smoothing_factor / 1024. |
427 | | */ |
428 | |
|
429 | 0 | memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
430 | 0 | neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
431 | |
|
432 | 0 | for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
433 | 0 | outptr = output_data[inrow]; |
434 | 0 | inptr = input_data[inrow]; |
435 | 0 | above_ptr = input_data[inrow-1]; |
436 | 0 | below_ptr = input_data[inrow+1]; |
437 | | |
438 | | /* Special case for first column */ |
439 | 0 | colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
440 | 0 | GETJSAMPLE(*inptr); |
441 | 0 | membersum = GETJSAMPLE(*inptr++); |
442 | 0 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
443 | 0 | GETJSAMPLE(*inptr); |
444 | 0 | neighsum = colsum + (colsum - membersum) + nextcolsum; |
445 | 0 | membersum = membersum * memberscale + neighsum * neighscale; |
446 | 0 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
447 | 0 | lastcolsum = colsum; colsum = nextcolsum; |
448 | |
|
449 | 0 | for (colctr = output_cols - 2; colctr > 0; colctr--) { |
450 | 0 | membersum = GETJSAMPLE(*inptr++); |
451 | 0 | above_ptr++; below_ptr++; |
452 | 0 | nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
453 | 0 | GETJSAMPLE(*inptr); |
454 | 0 | neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
455 | 0 | membersum = membersum * memberscale + neighsum * neighscale; |
456 | 0 | *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
457 | 0 | lastcolsum = colsum; colsum = nextcolsum; |
458 | 0 | } |
459 | | |
460 | | /* Special case for last column */ |
461 | 0 | membersum = GETJSAMPLE(*inptr); |
462 | 0 | neighsum = lastcolsum + (colsum - membersum) + colsum; |
463 | 0 | membersum = membersum * memberscale + neighsum * neighscale; |
464 | 0 | *outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
465 | |
|
466 | 0 | } |
467 | 0 | } |
468 | | |
469 | | #endif /* INPUT_SMOOTHING_SUPPORTED */ |
470 | | |
471 | | |
472 | | /* |
473 | | * Module initialization routine for downsampling. |
474 | | * Note that we must select a routine for each component. |
475 | | */ |
476 | | |
477 | | GLOBAL(void) |
478 | | jinit_downsampler (j_compress_ptr cinfo) |
479 | 0 | { |
480 | 0 | my_downsample_ptr downsample; |
481 | 0 | int ci; |
482 | 0 | jpeg_component_info * compptr; |
483 | 0 | boolean smoothok = TRUE; |
484 | 0 | int h_in_group, v_in_group, h_out_group, v_out_group; |
485 | |
|
486 | 0 | downsample = (my_downsample_ptr) |
487 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
488 | 0 | SIZEOF(my_downsampler)); |
489 | 0 | cinfo->downsample = (struct jpeg_downsampler *) downsample; |
490 | 0 | downsample->pub.start_pass = start_pass_downsample; |
491 | 0 | downsample->pub.downsample = sep_downsample; |
492 | 0 | downsample->pub.need_context_rows = FALSE; |
493 | |
|
494 | 0 | if (cinfo->CCIR601_sampling) |
495 | 0 | ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
496 | | |
497 | | /* Verify we can handle the sampling factors, and set up method pointers */ |
498 | 0 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
499 | 0 | ci++, compptr++) { |
500 | | /* Compute size of an "output group" for DCT scaling. This many samples |
501 | | * are to be converted from max_h_samp_factor * max_v_samp_factor pixels. |
502 | | */ |
503 | 0 | h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / |
504 | 0 | cinfo->min_DCT_h_scaled_size; |
505 | 0 | v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
506 | 0 | cinfo->min_DCT_v_scaled_size; |
507 | 0 | h_in_group = cinfo->max_h_samp_factor; |
508 | 0 | v_in_group = cinfo->max_v_samp_factor; |
509 | 0 | downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ |
510 | 0 | if (h_in_group == h_out_group && v_in_group == v_out_group) { |
511 | 0 | #ifdef INPUT_SMOOTHING_SUPPORTED |
512 | 0 | if (cinfo->smoothing_factor) { |
513 | 0 | downsample->methods[ci] = fullsize_smooth_downsample; |
514 | 0 | downsample->pub.need_context_rows = TRUE; |
515 | 0 | } else |
516 | 0 | #endif |
517 | 0 | downsample->methods[ci] = fullsize_downsample; |
518 | 0 | } else if (h_in_group == h_out_group * 2 && |
519 | 0 | v_in_group == v_out_group) { |
520 | 0 | smoothok = FALSE; |
521 | 0 | downsample->methods[ci] = h2v1_downsample; |
522 | 0 | } else if (h_in_group == h_out_group * 2 && |
523 | 0 | v_in_group == v_out_group * 2) { |
524 | 0 | #ifdef INPUT_SMOOTHING_SUPPORTED |
525 | 0 | if (cinfo->smoothing_factor) { |
526 | 0 | downsample->methods[ci] = h2v2_smooth_downsample; |
527 | 0 | downsample->pub.need_context_rows = TRUE; |
528 | 0 | } else |
529 | 0 | #endif |
530 | 0 | downsample->methods[ci] = h2v2_downsample; |
531 | 0 | } else if ((h_in_group % h_out_group) == 0 && |
532 | 0 | (v_in_group % v_out_group) == 0) { |
533 | 0 | smoothok = FALSE; |
534 | 0 | downsample->methods[ci] = int_downsample; |
535 | 0 | downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); |
536 | 0 | downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); |
537 | 0 | } else |
538 | 0 | ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
539 | 0 | } |
540 | |
|
541 | 0 | #ifdef INPUT_SMOOTHING_SUPPORTED |
542 | 0 | if (cinfo->smoothing_factor && !smoothok) |
543 | 0 | TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
544 | 0 | #endif |
545 | 0 | } |