Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcsample.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jcsample.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * This file is part of the Independent JPEG Group's software.
6
 * For conditions of distribution and use, see the accompanying README file.
7
 *
8
 * This file contains downsampling routines.
9
 *
10
 * Downsampling input data is counted in "row groups".  A row group
11
 * is defined to be max_v_samp_factor pixel rows of each component,
12
 * from which the downsampler produces v_samp_factor sample rows.
13
 * A single row group is processed in each call to the downsampler module.
14
 *
15
 * The downsampler is responsible for edge-expansion of its output data
16
 * to fill an integral number of DCT blocks horizontally.  The source buffer
17
 * may be modified if it is helpful for this purpose (the source buffer is
18
 * allocated wide enough to correspond to the desired output width).
19
 * The caller (the prep controller) is responsible for vertical padding.
20
 *
21
 * The downsampler may request "context rows" by setting need_context_rows
22
 * during startup.  In this case, the input arrays will contain at least
23
 * one row group's worth of pixels above and below the passed-in data;
24
 * the caller will create dummy rows at image top and bottom by replicating
25
 * the first or last real pixel row.
26
 *
27
 * An excellent reference for image resampling is
28
 *   Digital Image Warping, George Wolberg, 1990.
29
 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
30
 *
31
 * The downsampling algorithm used here is a simple average of the source
32
 * pixels covered by the output pixel.  The hi-falutin sampling literature
33
 * refers to this as a "box filter".  In general the characteristics of a box
34
 * filter are not very good, but for the specific cases we normally use (1:1
35
 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
36
 * nearly so bad.  If you intend to use other sampling ratios, you'd be well
37
 * advised to improve this code.
38
 *
39
 * A simple input-smoothing capability is provided.  This is mainly intended
40
 * for cleaning up color-dithered GIF input files (if you find it inadequate,
41
 * we suggest using an external filtering program such as pnmconvol).  When
42
 * enabled, each input pixel P is replaced by a weighted sum of itself and its
43
 * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
44
 * where SF = (smoothing_factor / 1024).
45
 * Currently, smoothing is only supported for 2h2v sampling factors.
46
 */
47
48
#define JPEG_INTERNALS
49
#include "jinclude.h"
50
#include "jpeglib.h"
51
52
53
/* Pointer to routine to downsample a single component */
54
typedef JMETHOD(void, downsample1_ptr,
55
    (j_compress_ptr cinfo, jpeg_component_info * compptr,
56
     JSAMPARRAY input_data, JSAMPARRAY output_data));
57
58
/* Private subobject */
59
60
typedef struct {
61
  struct jpeg_downsampler pub;  /* public fields */
62
63
  /* Downsampling method pointers, one per component */
64
  downsample1_ptr methods[MAX_COMPONENTS];
65
66
  /* Height of an output row group for each component. */
67
  int rowgroup_height[MAX_COMPONENTS];
68
69
  /* These arrays save pixel expansion factors so that int_downsample need not
70
   * recompute them each time.  They are unused for other downsampling methods.
71
   */
72
  UINT8 h_expand[MAX_COMPONENTS];
73
  UINT8 v_expand[MAX_COMPONENTS];
74
} my_downsampler;
75
76
typedef my_downsampler * my_downsample_ptr;
77
78
79
/*
80
 * Initialize for a downsampling pass.
81
 */
82
83
METHODDEF(void)
84
start_pass_downsample (j_compress_ptr cinfo)
85
0
{
86
  /* no work for now */
87
0
}
88
89
90
/*
91
 * Expand a component horizontally from width input_cols to width output_cols,
92
 * by duplicating the rightmost samples.
93
 */
94
95
LOCAL(void)
96
expand_right_edge (JSAMPARRAY image_data, int num_rows,
97
       JDIMENSION input_cols, JDIMENSION output_cols)
98
0
{
99
0
  register JSAMPROW ptr;
100
0
  register JSAMPLE pixval;
101
0
  register int count;
102
0
  int row;
103
0
  int numcols = (int) (output_cols - input_cols);
104
105
0
  if (numcols > 0) {
106
0
    for (row = 0; row < num_rows; row++) {
107
0
      ptr = image_data[row] + input_cols;
108
0
      pixval = ptr[-1];   /* don't need GETJSAMPLE() here */
109
0
      for (count = numcols; count > 0; count--)
110
0
  *ptr++ = pixval;
111
0
    }
112
0
  }
113
0
}
114
115
116
/*
117
 * Do downsampling for a whole row group (all components).
118
 *
119
 * In this version we simply downsample each component independently.
120
 */
121
122
METHODDEF(void)
123
sep_downsample (j_compress_ptr cinfo,
124
    JSAMPIMAGE input_buf, JDIMENSION in_row_index,
125
    JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
126
0
{
127
0
  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
128
0
  int ci;
129
0
  jpeg_component_info * compptr;
130
0
  JSAMPARRAY in_ptr, out_ptr;
131
132
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
133
0
       ci++, compptr++) {
134
0
    in_ptr = input_buf[ci] + in_row_index;
135
0
    out_ptr = output_buf[ci] +
136
0
        (out_row_group_index * downsample->rowgroup_height[ci]);
137
0
    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
138
0
  }
139
0
}
140
141
142
/*
143
 * Downsample pixel values of a single component.
144
 * One row group is processed per call.
145
 * This version handles arbitrary integral sampling ratios, without smoothing.
146
 * Note that this version is not actually used for customary sampling ratios.
147
 */
148
149
METHODDEF(void)
150
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
151
    JSAMPARRAY input_data, JSAMPARRAY output_data)
152
0
{
153
0
  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
154
0
  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
155
0
  JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
156
0
  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
157
0
  JSAMPROW inptr, outptr;
158
0
  INT32 outvalue;
159
160
0
  h_expand = downsample->h_expand[compptr->component_index];
161
0
  v_expand = downsample->v_expand[compptr->component_index];
162
0
  numpix = h_expand * v_expand;
163
0
  numpix2 = numpix/2;
164
165
  /* Expand input data enough to let all the output samples be generated
166
   * by the standard loop.  Special-casing padded output would be more
167
   * efficient.
168
   */
169
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
170
0
        cinfo->image_width, output_cols * h_expand);
171
172
0
  inrow = outrow = 0;
173
0
  while (inrow < cinfo->max_v_samp_factor) {
174
0
    outptr = output_data[outrow];
175
0
    for (outcol = 0, outcol_h = 0; outcol < output_cols;
176
0
   outcol++, outcol_h += h_expand) {
177
0
      outvalue = 0;
178
0
      for (v = 0; v < v_expand; v++) {
179
0
  inptr = input_data[inrow+v] + outcol_h;
180
0
  for (h = 0; h < h_expand; h++) {
181
0
    outvalue += (INT32) GETJSAMPLE(*inptr++);
182
0
  }
183
0
      }
184
0
      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
185
0
    }
186
0
    inrow += v_expand;
187
0
    outrow++;
188
0
  }
189
0
}
190
191
192
/*
193
 * Downsample pixel values of a single component.
194
 * This version handles the special case of a full-size component,
195
 * without smoothing.
196
 */
197
198
METHODDEF(void)
199
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
200
         JSAMPARRAY input_data, JSAMPARRAY output_data)
201
0
{
202
  /* Copy the data */
203
0
  jcopy_sample_rows(input_data, 0, output_data, 0,
204
0
        cinfo->max_v_samp_factor, cinfo->image_width);
205
  /* Edge-expand */
206
0
  expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
207
0
        compptr->width_in_blocks * compptr->DCT_h_scaled_size);
208
0
}
209
210
211
/*
212
 * Downsample pixel values of a single component.
213
 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
214
 * without smoothing.
215
 *
216
 * A note about the "bias" calculations: when rounding fractional values to
217
 * integer, we do not want to always round 0.5 up to the next integer.
218
 * If we did that, we'd introduce a noticeable bias towards larger values.
219
 * Instead, this code is arranged so that 0.5 will be rounded up or down at
220
 * alternate pixel locations (a simple ordered dither pattern).
221
 */
222
223
METHODDEF(void)
224
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
225
     JSAMPARRAY input_data, JSAMPARRAY output_data)
226
0
{
227
0
  int inrow;
228
0
  JDIMENSION outcol;
229
0
  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
230
0
  register JSAMPROW inptr, outptr;
231
0
  register int bias;
232
233
  /* Expand input data enough to let all the output samples be generated
234
   * by the standard loop.  Special-casing padded output would be more
235
   * efficient.
236
   */
237
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
238
0
        cinfo->image_width, output_cols * 2);
239
240
0
  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
241
0
    outptr = output_data[inrow];
242
0
    inptr = input_data[inrow];
243
0
    bias = 0;     /* bias = 0,1,0,1,... for successive samples */
244
0
    for (outcol = 0; outcol < output_cols; outcol++) {
245
0
      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
246
0
            + bias) >> 1);
247
0
      bias ^= 1;    /* 0=>1, 1=>0 */
248
0
      inptr += 2;
249
0
    }
250
0
  }
251
0
}
252
253
254
/*
255
 * Downsample pixel values of a single component.
256
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
257
 * without smoothing.
258
 */
259
260
METHODDEF(void)
261
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
262
     JSAMPARRAY input_data, JSAMPARRAY output_data)
263
0
{
264
0
  int inrow, outrow;
265
0
  JDIMENSION outcol;
266
0
  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
267
0
  register JSAMPROW inptr0, inptr1, outptr;
268
0
  register int bias;
269
270
  /* Expand input data enough to let all the output samples be generated
271
   * by the standard loop.  Special-casing padded output would be more
272
   * efficient.
273
   */
274
0
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
275
0
        cinfo->image_width, output_cols * 2);
276
277
0
  inrow = outrow = 0;
278
0
  while (inrow < cinfo->max_v_samp_factor) {
279
0
    outptr = output_data[outrow];
280
0
    inptr0 = input_data[inrow];
281
0
    inptr1 = input_data[inrow+1];
282
0
    bias = 1;     /* bias = 1,2,1,2,... for successive samples */
283
0
    for (outcol = 0; outcol < output_cols; outcol++) {
284
0
      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
285
0
            GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
286
0
            + bias) >> 2);
287
0
      bias ^= 3;    /* 1=>2, 2=>1 */
288
0
      inptr0 += 2; inptr1 += 2;
289
0
    }
290
0
    inrow += 2;
291
0
    outrow++;
292
0
  }
293
0
}
294
295
296
#ifdef INPUT_SMOOTHING_SUPPORTED
297
298
/*
299
 * Downsample pixel values of a single component.
300
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
301
 * with smoothing.  One row of context is required.
302
 */
303
304
METHODDEF(void)
305
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
306
      JSAMPARRAY input_data, JSAMPARRAY output_data)
307
0
{
308
0
  int inrow, outrow;
309
0
  JDIMENSION colctr;
310
0
  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
311
0
  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
312
0
  INT32 membersum, neighsum, memberscale, neighscale;
313
314
  /* Expand input data enough to let all the output samples be generated
315
   * by the standard loop.  Special-casing padded output would be more
316
   * efficient.
317
   */
318
0
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
319
0
        cinfo->image_width, output_cols * 2);
320
321
  /* We don't bother to form the individual "smoothed" input pixel values;
322
   * we can directly compute the output which is the average of the four
323
   * smoothed values.  Each of the four member pixels contributes a fraction
324
   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
325
   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
326
   * output.  The four corner-adjacent neighbor pixels contribute a fraction
327
   * SF to just one smoothed pixel, or SF/4 to the final output; while the
328
   * eight edge-adjacent neighbors contribute SF to each of two smoothed
329
   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
330
   * factors are scaled by 2^16 = 65536.
331
   * Also recall that SF = smoothing_factor / 1024.
332
   */
333
334
0
  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
335
0
  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
336
337
0
  inrow = outrow = 0;
338
0
  while (inrow < cinfo->max_v_samp_factor) {
339
0
    outptr = output_data[outrow];
340
0
    inptr0 = input_data[inrow];
341
0
    inptr1 = input_data[inrow+1];
342
0
    above_ptr = input_data[inrow-1];
343
0
    below_ptr = input_data[inrow+2];
344
345
    /* Special case for first column: pretend column -1 is same as column 0 */
346
0
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
347
0
    GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
348
0
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
349
0
         GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
350
0
         GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
351
0
         GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
352
0
    neighsum += neighsum;
353
0
    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
354
0
    GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
355
0
    membersum = membersum * memberscale + neighsum * neighscale;
356
0
    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
357
0
    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
358
359
0
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
360
      /* sum of pixels directly mapped to this output element */
361
0
      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
362
0
      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
363
      /* sum of edge-neighbor pixels */
364
0
      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
365
0
     GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
366
0
     GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
367
0
     GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
368
      /* The edge-neighbors count twice as much as corner-neighbors */
369
0
      neighsum += neighsum;
370
      /* Add in the corner-neighbors */
371
0
      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
372
0
      GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
373
      /* form final output scaled up by 2^16 */
374
0
      membersum = membersum * memberscale + neighsum * neighscale;
375
      /* round, descale and output it */
376
0
      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
377
0
      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
378
0
    }
379
380
    /* Special case for last column */
381
0
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
382
0
    GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
383
0
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
384
0
         GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
385
0
         GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
386
0
         GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
387
0
    neighsum += neighsum;
388
0
    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
389
0
    GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
390
0
    membersum = membersum * memberscale + neighsum * neighscale;
391
0
    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
392
393
0
    inrow += 2;
394
0
    outrow++;
395
0
  }
396
0
}
397
398
399
/*
400
 * Downsample pixel values of a single component.
401
 * This version handles the special case of a full-size component,
402
 * with smoothing.  One row of context is required.
403
 */
404
405
METHODDEF(void)
406
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
407
          JSAMPARRAY input_data, JSAMPARRAY output_data)
408
0
{
409
0
  int inrow;
410
0
  JDIMENSION colctr;
411
0
  JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
412
0
  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
413
0
  INT32 membersum, neighsum, memberscale, neighscale;
414
0
  int colsum, lastcolsum, nextcolsum;
415
416
  /* Expand input data enough to let all the output samples be generated
417
   * by the standard loop.  Special-casing padded output would be more
418
   * efficient.
419
   */
420
0
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
421
0
        cinfo->image_width, output_cols);
422
423
  /* Each of the eight neighbor pixels contributes a fraction SF to the
424
   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
425
   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
426
   * Also recall that SF = smoothing_factor / 1024.
427
   */
428
429
0
  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
430
0
  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
431
432
0
  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
433
0
    outptr = output_data[inrow];
434
0
    inptr = input_data[inrow];
435
0
    above_ptr = input_data[inrow-1];
436
0
    below_ptr = input_data[inrow+1];
437
438
    /* Special case for first column */
439
0
    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
440
0
       GETJSAMPLE(*inptr);
441
0
    membersum = GETJSAMPLE(*inptr++);
442
0
    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
443
0
     GETJSAMPLE(*inptr);
444
0
    neighsum = colsum + (colsum - membersum) + nextcolsum;
445
0
    membersum = membersum * memberscale + neighsum * neighscale;
446
0
    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
447
0
    lastcolsum = colsum; colsum = nextcolsum;
448
449
0
    for (colctr = output_cols - 2; colctr > 0; colctr--) {
450
0
      membersum = GETJSAMPLE(*inptr++);
451
0
      above_ptr++; below_ptr++;
452
0
      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
453
0
       GETJSAMPLE(*inptr);
454
0
      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
455
0
      membersum = membersum * memberscale + neighsum * neighscale;
456
0
      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
457
0
      lastcolsum = colsum; colsum = nextcolsum;
458
0
    }
459
460
    /* Special case for last column */
461
0
    membersum = GETJSAMPLE(*inptr);
462
0
    neighsum = lastcolsum + (colsum - membersum) + colsum;
463
0
    membersum = membersum * memberscale + neighsum * neighscale;
464
0
    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
465
466
0
  }
467
0
}
468
469
#endif /* INPUT_SMOOTHING_SUPPORTED */
470
471
472
/*
473
 * Module initialization routine for downsampling.
474
 * Note that we must select a routine for each component.
475
 */
476
477
GLOBAL(void)
478
jinit_downsampler (j_compress_ptr cinfo)
479
0
{
480
0
  my_downsample_ptr downsample;
481
0
  int ci;
482
0
  jpeg_component_info * compptr;
483
0
  boolean smoothok = TRUE;
484
0
  int h_in_group, v_in_group, h_out_group, v_out_group;
485
486
0
  downsample = (my_downsample_ptr)
487
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
488
0
        SIZEOF(my_downsampler));
489
0
  cinfo->downsample = (struct jpeg_downsampler *) downsample;
490
0
  downsample->pub.start_pass = start_pass_downsample;
491
0
  downsample->pub.downsample = sep_downsample;
492
0
  downsample->pub.need_context_rows = FALSE;
493
494
0
  if (cinfo->CCIR601_sampling)
495
0
    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
496
497
  /* Verify we can handle the sampling factors, and set up method pointers */
498
0
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
499
0
       ci++, compptr++) {
500
    /* Compute size of an "output group" for DCT scaling.  This many samples
501
     * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
502
     */
503
0
    h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
504
0
      cinfo->min_DCT_h_scaled_size;
505
0
    v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
506
0
      cinfo->min_DCT_v_scaled_size;
507
0
    h_in_group = cinfo->max_h_samp_factor;
508
0
    v_in_group = cinfo->max_v_samp_factor;
509
0
    downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
510
0
    if (h_in_group == h_out_group && v_in_group == v_out_group) {
511
0
#ifdef INPUT_SMOOTHING_SUPPORTED
512
0
      if (cinfo->smoothing_factor) {
513
0
  downsample->methods[ci] = fullsize_smooth_downsample;
514
0
  downsample->pub.need_context_rows = TRUE;
515
0
      } else
516
0
#endif
517
0
  downsample->methods[ci] = fullsize_downsample;
518
0
    } else if (h_in_group == h_out_group * 2 &&
519
0
         v_in_group == v_out_group) {
520
0
      smoothok = FALSE;
521
0
      downsample->methods[ci] = h2v1_downsample;
522
0
    } else if (h_in_group == h_out_group * 2 &&
523
0
         v_in_group == v_out_group * 2) {
524
0
#ifdef INPUT_SMOOTHING_SUPPORTED
525
0
      if (cinfo->smoothing_factor) {
526
0
  downsample->methods[ci] = h2v2_smooth_downsample;
527
0
  downsample->pub.need_context_rows = TRUE;
528
0
      } else
529
0
#endif
530
0
  downsample->methods[ci] = h2v2_downsample;
531
0
    } else if ((h_in_group % h_out_group) == 0 &&
532
0
         (v_in_group % v_out_group) == 0) {
533
0
      smoothok = FALSE;
534
0
      downsample->methods[ci] = int_downsample;
535
0
      downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
536
0
      downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
537
0
    } else
538
0
      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
539
0
  }
540
541
0
#ifdef INPUT_SMOOTHING_SUPPORTED
542
0
  if (cinfo->smoothing_factor && !smoothok)
543
0
    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
544
0
#endif
545
0
}