/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jdarith.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jdarith.c |
3 | | * |
4 | | * Developed 1997-2019 by Guido Vollbeding. |
5 | | * This file is part of the Independent JPEG Group's software. |
6 | | * For conditions of distribution and use, see the accompanying README file. |
7 | | * |
8 | | * This file contains portable arithmetic entropy decoding routines for JPEG |
9 | | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
10 | | * |
11 | | * Both sequential and progressive modes are supported in this single module. |
12 | | * |
13 | | * Suspension is not currently supported in this module. |
14 | | */ |
15 | | |
16 | | #define JPEG_INTERNALS |
17 | | #include "jinclude.h" |
18 | | #include "jpeglib.h" |
19 | | |
20 | | |
21 | | /* Expanded entropy decoder object for arithmetic decoding. */ |
22 | | |
23 | | typedef struct { |
24 | | struct jpeg_entropy_decoder pub; /* public fields */ |
25 | | |
26 | | INT32 c; /* C register, base of coding interval + input bit buffer */ |
27 | | INT32 a; /* A register, normalized size of coding interval */ |
28 | | int ct; /* bit shift counter, # of bits left in bit buffer part of C */ |
29 | | /* init: ct = -16 */ |
30 | | /* run: ct = 0..7 */ |
31 | | /* error: ct = -1 */ |
32 | | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
33 | | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
34 | | |
35 | | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
36 | | |
37 | | /* Pointers to statistics areas (these workspaces have image lifespan) */ |
38 | | unsigned char * dc_stats[NUM_ARITH_TBLS]; |
39 | | unsigned char * ac_stats[NUM_ARITH_TBLS]; |
40 | | |
41 | | /* Statistics bin for coding with fixed probability 0.5 */ |
42 | | unsigned char fixed_bin[4]; |
43 | | } arith_entropy_decoder; |
44 | | |
45 | | typedef arith_entropy_decoder * arith_entropy_ptr; |
46 | | |
47 | | /* The following two definitions specify the allocation chunk size |
48 | | * for the statistics area. |
49 | | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
50 | | * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
51 | | * |
52 | | * We use a compact representation with 1 byte per statistics bin, |
53 | | * thus the numbers directly represent byte sizes. |
54 | | * This 1 byte per statistics bin contains the meaning of the MPS |
55 | | * (more probable symbol) in the highest bit (mask 0x80), and the |
56 | | * index into the probability estimation state machine table |
57 | | * in the lower bits (mask 0x7F). |
58 | | */ |
59 | | |
60 | 0 | #define DC_STAT_BINS 64 |
61 | 0 | #define AC_STAT_BINS 256 |
62 | | |
63 | | |
64 | | LOCAL(int) |
65 | | get_byte (j_decompress_ptr cinfo) |
66 | | /* Read next input byte; we do not support suspension in this module. */ |
67 | 0 | { |
68 | 0 | struct jpeg_source_mgr * src = cinfo->src; |
69 | |
|
70 | 0 | if (src->bytes_in_buffer == 0) |
71 | 0 | if (! (*src->fill_input_buffer) (cinfo)) |
72 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
73 | 0 | src->bytes_in_buffer--; |
74 | 0 | return GETJOCTET(*src->next_input_byte++); |
75 | 0 | } |
76 | | |
77 | | |
78 | | /* |
79 | | * The core arithmetic decoding routine (common in JPEG and JBIG). |
80 | | * This needs to go as fast as possible. |
81 | | * Machine-dependent optimization facilities |
82 | | * are not utilized in this portable implementation. |
83 | | * However, this code should be fairly efficient and |
84 | | * may be a good base for further optimizations anyway. |
85 | | * |
86 | | * Return value is 0 or 1 (binary decision). |
87 | | * |
88 | | * Note: I've changed the handling of the code base & bit |
89 | | * buffer register C compared to other implementations |
90 | | * based on the standards layout & procedures. |
91 | | * While it also contains both the actual base of the |
92 | | * coding interval (16 bits) and the next-bits buffer, |
93 | | * the cut-point between these two parts is floating |
94 | | * (instead of fixed) with the bit shift counter CT. |
95 | | * Thus, we also need only one (variable instead of |
96 | | * fixed size) shift for the LPS/MPS decision, and |
97 | | * we can do away with any renormalization update |
98 | | * of C (except for new data insertion, of course). |
99 | | * |
100 | | * I've also introduced a new scheme for accessing |
101 | | * the probability estimation state machine table, |
102 | | * derived from Markus Kuhn's JBIG implementation. |
103 | | */ |
104 | | |
105 | | LOCAL(int) |
106 | | arith_decode (j_decompress_ptr cinfo, unsigned char *st) |
107 | 0 | { |
108 | 0 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
109 | 0 | register unsigned char nl, nm; |
110 | 0 | register INT32 qe, temp; |
111 | 0 | register int sv, data; |
112 | | |
113 | | /* Renormalization & data input per section D.2.6 */ |
114 | 0 | while (e->a < 0x8000L) { |
115 | 0 | if (--e->ct < 0) { |
116 | | /* Need to fetch next data byte */ |
117 | 0 | if (cinfo->unread_marker) |
118 | 0 | data = 0; /* stuff zero data */ |
119 | 0 | else { |
120 | 0 | data = get_byte(cinfo); /* read next input byte */ |
121 | 0 | if (data == 0xFF) { /* zero stuff or marker code */ |
122 | 0 | do data = get_byte(cinfo); |
123 | 0 | while (data == 0xFF); /* swallow extra 0xFF bytes */ |
124 | 0 | if (data == 0) |
125 | 0 | data = 0xFF; /* discard stuffed zero byte */ |
126 | 0 | else { |
127 | | /* Note: Different from the Huffman decoder, hitting |
128 | | * a marker while processing the compressed data |
129 | | * segment is legal in arithmetic coding. |
130 | | * The convention is to supply zero data |
131 | | * then until decoding is complete. |
132 | | */ |
133 | 0 | cinfo->unread_marker = data; |
134 | 0 | data = 0; |
135 | 0 | } |
136 | 0 | } |
137 | 0 | } |
138 | 0 | e->c = (e->c << 8) | data; /* insert data into C register */ |
139 | 0 | if ((e->ct += 8) < 0) /* update bit shift counter */ |
140 | | /* Need more initial bytes */ |
141 | 0 | if (++e->ct == 0) |
142 | | /* Got 2 initial bytes -> re-init A and exit loop */ |
143 | 0 | e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ |
144 | 0 | } |
145 | 0 | e->a <<= 1; |
146 | 0 | } |
147 | | |
148 | | /* Fetch values from our compact representation of Table D.3(D.2): |
149 | | * Qe values and probability estimation state machine |
150 | | */ |
151 | 0 | sv = *st; |
152 | 0 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
153 | 0 | nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
154 | 0 | nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ |
155 | | |
156 | | /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ |
157 | 0 | temp = e->a - qe; |
158 | 0 | e->a = temp; |
159 | 0 | temp <<= e->ct; |
160 | 0 | if (e->c >= temp) { |
161 | 0 | e->c -= temp; |
162 | | /* Conditional LPS (less probable symbol) exchange */ |
163 | 0 | if (e->a < qe) { |
164 | 0 | e->a = qe; |
165 | 0 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
166 | 0 | } else { |
167 | 0 | e->a = qe; |
168 | 0 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
169 | 0 | sv ^= 0x80; /* Exchange LPS/MPS */ |
170 | 0 | } |
171 | 0 | } else if (e->a < 0x8000L) { |
172 | | /* Conditional MPS (more probable symbol) exchange */ |
173 | 0 | if (e->a < qe) { |
174 | 0 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
175 | 0 | sv ^= 0x80; /* Exchange LPS/MPS */ |
176 | 0 | } else { |
177 | 0 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
178 | 0 | } |
179 | 0 | } |
180 | |
|
181 | 0 | return sv >> 7; |
182 | 0 | } |
183 | | |
184 | | |
185 | | /* |
186 | | * Check for a restart marker & resynchronize decoder. |
187 | | */ |
188 | | |
189 | | LOCAL(void) |
190 | | process_restart (j_decompress_ptr cinfo) |
191 | 0 | { |
192 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
193 | 0 | int ci; |
194 | 0 | jpeg_component_info * compptr; |
195 | | |
196 | | /* Advance past the RSTn marker */ |
197 | 0 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
198 | 0 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
199 | | |
200 | | /* Re-initialize statistics areas */ |
201 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
202 | 0 | compptr = cinfo->cur_comp_info[ci]; |
203 | 0 | if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
204 | 0 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
205 | | /* Reset DC predictions to 0 */ |
206 | 0 | entropy->last_dc_val[ci] = 0; |
207 | 0 | entropy->dc_context[ci] = 0; |
208 | 0 | } |
209 | 0 | if ((! cinfo->progressive_mode && cinfo->lim_Se) || |
210 | 0 | (cinfo->progressive_mode && cinfo->Ss)) { |
211 | 0 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
212 | 0 | } |
213 | 0 | } |
214 | | |
215 | | /* Reset arithmetic decoding variables */ |
216 | 0 | entropy->c = 0; |
217 | 0 | entropy->a = 0; |
218 | 0 | entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
219 | | |
220 | | /* Reset restart counter */ |
221 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
222 | 0 | } |
223 | | |
224 | | |
225 | | /* |
226 | | * Arithmetic MCU decoding. |
227 | | * Each of these routines decodes and returns one MCU's worth of |
228 | | * arithmetic-compressed coefficients. |
229 | | * The coefficients are reordered from zigzag order into natural array order, |
230 | | * but are not dequantized. |
231 | | * |
232 | | * The i'th block of the MCU is stored into the block pointed to by |
233 | | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
234 | | */ |
235 | | |
236 | | /* |
237 | | * MCU decoding for DC initial scan (either spectral selection, |
238 | | * or first pass of successive approximation). |
239 | | */ |
240 | | |
241 | | METHODDEF(boolean) |
242 | | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
243 | 0 | { |
244 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
245 | 0 | JBLOCKROW block; |
246 | 0 | unsigned char *st; |
247 | 0 | int blkn, ci, tbl, sign; |
248 | 0 | int v, m; |
249 | | |
250 | | /* Process restart marker if needed */ |
251 | 0 | if (cinfo->restart_interval) { |
252 | 0 | if (entropy->restarts_to_go == 0) |
253 | 0 | process_restart(cinfo); |
254 | 0 | entropy->restarts_to_go--; |
255 | 0 | } |
256 | |
|
257 | 0 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
258 | | |
259 | | /* Outer loop handles each block in the MCU */ |
260 | | |
261 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
262 | 0 | block = MCU_data[blkn]; |
263 | 0 | ci = cinfo->MCU_membership[blkn]; |
264 | 0 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
265 | | |
266 | | /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
267 | | |
268 | | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
269 | 0 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
270 | | |
271 | | /* Figure F.19: Decode_DC_DIFF */ |
272 | 0 | if (arith_decode(cinfo, st) == 0) |
273 | 0 | entropy->dc_context[ci] = 0; |
274 | 0 | else { |
275 | | /* Figure F.21: Decoding nonzero value v */ |
276 | | /* Figure F.22: Decoding the sign of v */ |
277 | 0 | sign = arith_decode(cinfo, st + 1); |
278 | 0 | st += 2; st += sign; |
279 | | /* Figure F.23: Decoding the magnitude category of v */ |
280 | 0 | if ((m = arith_decode(cinfo, st)) != 0) { |
281 | 0 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
282 | 0 | while (arith_decode(cinfo, st)) { |
283 | 0 | if ((m <<= 1) == (int) 0x8000U) { |
284 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
285 | 0 | entropy->ct = -1; /* magnitude overflow */ |
286 | 0 | return TRUE; |
287 | 0 | } |
288 | 0 | st += 1; |
289 | 0 | } |
290 | 0 | } |
291 | | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
292 | 0 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
293 | 0 | entropy->dc_context[ci] = 0; /* zero diff category */ |
294 | 0 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
295 | 0 | entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
296 | 0 | else |
297 | 0 | entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
298 | 0 | v = m; |
299 | | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
300 | 0 | st += 14; |
301 | 0 | while (m >>= 1) |
302 | 0 | if (arith_decode(cinfo, st)) v |= m; |
303 | 0 | v += 1; if (sign) v = -v; |
304 | 0 | entropy->last_dc_val[ci] += v; |
305 | 0 | } |
306 | | |
307 | | /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ |
308 | 0 | (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); |
309 | 0 | } |
310 | | |
311 | 0 | return TRUE; |
312 | 0 | } |
313 | | |
314 | | |
315 | | /* |
316 | | * MCU decoding for AC initial scan (either spectral selection, |
317 | | * or first pass of successive approximation). |
318 | | */ |
319 | | |
320 | | METHODDEF(boolean) |
321 | | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
322 | 0 | { |
323 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
324 | 0 | JBLOCKROW block; |
325 | 0 | unsigned char *st; |
326 | 0 | int tbl, sign, k; |
327 | 0 | int v, m; |
328 | 0 | const int * natural_order; |
329 | | |
330 | | /* Process restart marker if needed */ |
331 | 0 | if (cinfo->restart_interval) { |
332 | 0 | if (entropy->restarts_to_go == 0) |
333 | 0 | process_restart(cinfo); |
334 | 0 | entropy->restarts_to_go--; |
335 | 0 | } |
336 | |
|
337 | 0 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
338 | | |
339 | 0 | natural_order = cinfo->natural_order; |
340 | | |
341 | | /* There is always only one block per MCU */ |
342 | 0 | block = MCU_data[0]; |
343 | 0 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
344 | | |
345 | | /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
346 | | |
347 | | /* Figure F.20: Decode_AC_coefficients */ |
348 | 0 | k = cinfo->Ss - 1; |
349 | 0 | do { |
350 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
351 | 0 | if (arith_decode(cinfo, st)) break; /* EOB flag */ |
352 | 0 | for (;;) { |
353 | 0 | k++; |
354 | 0 | if (arith_decode(cinfo, st + 1)) break; |
355 | 0 | st += 3; |
356 | 0 | if (k >= cinfo->Se) { |
357 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
358 | 0 | entropy->ct = -1; /* spectral overflow */ |
359 | 0 | return TRUE; |
360 | 0 | } |
361 | 0 | } |
362 | | /* Figure F.21: Decoding nonzero value v */ |
363 | | /* Figure F.22: Decoding the sign of v */ |
364 | 0 | sign = arith_decode(cinfo, entropy->fixed_bin); |
365 | 0 | st += 2; |
366 | | /* Figure F.23: Decoding the magnitude category of v */ |
367 | 0 | if ((m = arith_decode(cinfo, st)) != 0) { |
368 | 0 | if (arith_decode(cinfo, st)) { |
369 | 0 | m <<= 1; |
370 | 0 | st = entropy->ac_stats[tbl] + |
371 | 0 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
372 | 0 | while (arith_decode(cinfo, st)) { |
373 | 0 | if ((m <<= 1) == (int) 0x8000U) { |
374 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
375 | 0 | entropy->ct = -1; /* magnitude overflow */ |
376 | 0 | return TRUE; |
377 | 0 | } |
378 | 0 | st += 1; |
379 | 0 | } |
380 | 0 | } |
381 | 0 | } |
382 | 0 | v = m; |
383 | | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
384 | 0 | st += 14; |
385 | 0 | while (m >>= 1) |
386 | 0 | if (arith_decode(cinfo, st)) v |= m; |
387 | 0 | v += 1; if (sign) v = -v; |
388 | | /* Scale and output coefficient in natural (dezigzagged) order */ |
389 | 0 | (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); |
390 | 0 | } while (k < cinfo->Se); |
391 | | |
392 | 0 | return TRUE; |
393 | 0 | } |
394 | | |
395 | | |
396 | | /* |
397 | | * MCU decoding for DC successive approximation refinement scan. |
398 | | * Note: we assume such scans can be multi-component, |
399 | | * although the spec is not very clear on the point. |
400 | | */ |
401 | | |
402 | | METHODDEF(boolean) |
403 | | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
404 | 0 | { |
405 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
406 | 0 | unsigned char *st; |
407 | 0 | JCOEF p1; |
408 | 0 | int blkn; |
409 | | |
410 | | /* Process restart marker if needed */ |
411 | 0 | if (cinfo->restart_interval) { |
412 | 0 | if (entropy->restarts_to_go == 0) |
413 | 0 | process_restart(cinfo); |
414 | 0 | entropy->restarts_to_go--; |
415 | 0 | } |
416 | |
|
417 | 0 | st = entropy->fixed_bin; /* use fixed probability estimation */ |
418 | 0 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
419 | | |
420 | | /* Outer loop handles each block in the MCU */ |
421 | |
|
422 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
423 | | /* Encoded data is simply the next bit of the two's-complement DC value */ |
424 | 0 | if (arith_decode(cinfo, st)) |
425 | 0 | MCU_data[blkn][0][0] |= p1; |
426 | 0 | } |
427 | |
|
428 | 0 | return TRUE; |
429 | 0 | } |
430 | | |
431 | | |
432 | | /* |
433 | | * MCU decoding for AC successive approximation refinement scan. |
434 | | */ |
435 | | |
436 | | METHODDEF(boolean) |
437 | | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
438 | 0 | { |
439 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
440 | 0 | JBLOCKROW block; |
441 | 0 | JCOEFPTR thiscoef; |
442 | 0 | unsigned char *st; |
443 | 0 | int tbl, k, kex; |
444 | 0 | JCOEF p1, m1; |
445 | 0 | const int * natural_order; |
446 | | |
447 | | /* Process restart marker if needed */ |
448 | 0 | if (cinfo->restart_interval) { |
449 | 0 | if (entropy->restarts_to_go == 0) |
450 | 0 | process_restart(cinfo); |
451 | 0 | entropy->restarts_to_go--; |
452 | 0 | } |
453 | |
|
454 | 0 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
455 | | |
456 | 0 | natural_order = cinfo->natural_order; |
457 | | |
458 | | /* There is always only one block per MCU */ |
459 | 0 | block = MCU_data[0]; |
460 | 0 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
461 | |
|
462 | 0 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
463 | 0 | m1 = -p1; /* -1 in the bit position being coded */ |
464 | | |
465 | | /* Establish EOBx (previous stage end-of-block) index */ |
466 | 0 | kex = cinfo->Se; |
467 | 0 | do { |
468 | 0 | if ((*block)[natural_order[kex]]) break; |
469 | 0 | } while (--kex); |
470 | | |
471 | 0 | k = cinfo->Ss - 1; |
472 | 0 | do { |
473 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
474 | 0 | if (k >= kex) |
475 | 0 | if (arith_decode(cinfo, st)) break; /* EOB flag */ |
476 | 0 | for (;;) { |
477 | 0 | thiscoef = *block + natural_order[++k]; |
478 | 0 | if (*thiscoef) { /* previously nonzero coef */ |
479 | 0 | if (arith_decode(cinfo, st + 2)) { |
480 | 0 | if (*thiscoef < 0) |
481 | 0 | *thiscoef += m1; |
482 | 0 | else |
483 | 0 | *thiscoef += p1; |
484 | 0 | } |
485 | 0 | break; |
486 | 0 | } |
487 | 0 | if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ |
488 | 0 | if (arith_decode(cinfo, entropy->fixed_bin)) |
489 | 0 | *thiscoef = m1; |
490 | 0 | else |
491 | 0 | *thiscoef = p1; |
492 | 0 | break; |
493 | 0 | } |
494 | 0 | st += 3; |
495 | 0 | if (k >= cinfo->Se) { |
496 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
497 | 0 | entropy->ct = -1; /* spectral overflow */ |
498 | 0 | return TRUE; |
499 | 0 | } |
500 | 0 | } |
501 | 0 | } while (k < cinfo->Se); |
502 | | |
503 | 0 | return TRUE; |
504 | 0 | } |
505 | | |
506 | | |
507 | | /* |
508 | | * Decode one MCU's worth of arithmetic-compressed coefficients. |
509 | | */ |
510 | | |
511 | | METHODDEF(boolean) |
512 | | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
513 | 0 | { |
514 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
515 | 0 | jpeg_component_info * compptr; |
516 | 0 | JBLOCKROW block; |
517 | 0 | unsigned char *st; |
518 | 0 | int blkn, ci, tbl, sign, k; |
519 | 0 | int v, m; |
520 | 0 | const int * natural_order; |
521 | | |
522 | | /* Process restart marker if needed */ |
523 | 0 | if (cinfo->restart_interval) { |
524 | 0 | if (entropy->restarts_to_go == 0) |
525 | 0 | process_restart(cinfo); |
526 | 0 | entropy->restarts_to_go--; |
527 | 0 | } |
528 | |
|
529 | 0 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
530 | | |
531 | 0 | natural_order = cinfo->natural_order; |
532 | | |
533 | | /* Outer loop handles each block in the MCU */ |
534 | |
|
535 | 0 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
536 | 0 | block = MCU_data[blkn]; |
537 | 0 | ci = cinfo->MCU_membership[blkn]; |
538 | 0 | compptr = cinfo->cur_comp_info[ci]; |
539 | | |
540 | | /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
541 | |
|
542 | 0 | tbl = compptr->dc_tbl_no; |
543 | | |
544 | | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
545 | 0 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
546 | | |
547 | | /* Figure F.19: Decode_DC_DIFF */ |
548 | 0 | if (arith_decode(cinfo, st) == 0) |
549 | 0 | entropy->dc_context[ci] = 0; |
550 | 0 | else { |
551 | | /* Figure F.21: Decoding nonzero value v */ |
552 | | /* Figure F.22: Decoding the sign of v */ |
553 | 0 | sign = arith_decode(cinfo, st + 1); |
554 | 0 | st += 2; st += sign; |
555 | | /* Figure F.23: Decoding the magnitude category of v */ |
556 | 0 | if ((m = arith_decode(cinfo, st)) != 0) { |
557 | 0 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
558 | 0 | while (arith_decode(cinfo, st)) { |
559 | 0 | if ((m <<= 1) == (int) 0x8000U) { |
560 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
561 | 0 | entropy->ct = -1; /* magnitude overflow */ |
562 | 0 | return TRUE; |
563 | 0 | } |
564 | 0 | st += 1; |
565 | 0 | } |
566 | 0 | } |
567 | | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
568 | 0 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
569 | 0 | entropy->dc_context[ci] = 0; /* zero diff category */ |
570 | 0 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
571 | 0 | entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
572 | 0 | else |
573 | 0 | entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
574 | 0 | v = m; |
575 | | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
576 | 0 | st += 14; |
577 | 0 | while (m >>= 1) |
578 | 0 | if (arith_decode(cinfo, st)) v |= m; |
579 | 0 | v += 1; if (sign) v = -v; |
580 | 0 | entropy->last_dc_val[ci] += v; |
581 | 0 | } |
582 | | |
583 | 0 | (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; |
584 | | |
585 | | /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
586 | |
|
587 | 0 | if (cinfo->lim_Se == 0) continue; |
588 | 0 | tbl = compptr->ac_tbl_no; |
589 | 0 | k = 0; |
590 | | |
591 | | /* Figure F.20: Decode_AC_coefficients */ |
592 | 0 | do { |
593 | 0 | st = entropy->ac_stats[tbl] + 3 * k; |
594 | 0 | if (arith_decode(cinfo, st)) break; /* EOB flag */ |
595 | 0 | for (;;) { |
596 | 0 | k++; |
597 | 0 | if (arith_decode(cinfo, st + 1)) break; |
598 | 0 | st += 3; |
599 | 0 | if (k >= cinfo->lim_Se) { |
600 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
601 | 0 | entropy->ct = -1; /* spectral overflow */ |
602 | 0 | return TRUE; |
603 | 0 | } |
604 | 0 | } |
605 | | /* Figure F.21: Decoding nonzero value v */ |
606 | | /* Figure F.22: Decoding the sign of v */ |
607 | 0 | sign = arith_decode(cinfo, entropy->fixed_bin); |
608 | 0 | st += 2; |
609 | | /* Figure F.23: Decoding the magnitude category of v */ |
610 | 0 | if ((m = arith_decode(cinfo, st)) != 0) { |
611 | 0 | if (arith_decode(cinfo, st)) { |
612 | 0 | m <<= 1; |
613 | 0 | st = entropy->ac_stats[tbl] + |
614 | 0 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
615 | 0 | while (arith_decode(cinfo, st)) { |
616 | 0 | if ((m <<= 1) == (int) 0x8000U) { |
617 | 0 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
618 | 0 | entropy->ct = -1; /* magnitude overflow */ |
619 | 0 | return TRUE; |
620 | 0 | } |
621 | 0 | st += 1; |
622 | 0 | } |
623 | 0 | } |
624 | 0 | } |
625 | 0 | v = m; |
626 | | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
627 | 0 | st += 14; |
628 | 0 | while (m >>= 1) |
629 | 0 | if (arith_decode(cinfo, st)) v |= m; |
630 | 0 | v += 1; if (sign) v = -v; |
631 | 0 | (*block)[natural_order[k]] = (JCOEF) v; |
632 | 0 | } while (k < cinfo->lim_Se); |
633 | 0 | } |
634 | | |
635 | 0 | return TRUE; |
636 | 0 | } |
637 | | |
638 | | |
639 | | /* |
640 | | * Initialize for an arithmetic-compressed scan. |
641 | | */ |
642 | | |
643 | | METHODDEF(void) |
644 | | start_pass (j_decompress_ptr cinfo) |
645 | 0 | { |
646 | 0 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
647 | 0 | int ci, tbl; |
648 | 0 | jpeg_component_info * compptr; |
649 | |
|
650 | 0 | if (cinfo->progressive_mode) { |
651 | | /* Validate progressive scan parameters */ |
652 | 0 | if (cinfo->Ss == 0) { |
653 | 0 | if (cinfo->Se != 0) |
654 | 0 | goto bad; |
655 | 0 | } else { |
656 | | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
657 | 0 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) |
658 | 0 | goto bad; |
659 | | /* AC scans may have only one component */ |
660 | 0 | if (cinfo->comps_in_scan != 1) |
661 | 0 | goto bad; |
662 | 0 | } |
663 | 0 | if (cinfo->Ah != 0) { |
664 | | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
665 | 0 | if (cinfo->Ah-1 != cinfo->Al) |
666 | 0 | goto bad; |
667 | 0 | } |
668 | 0 | if (cinfo->Al > 13) { /* need not check for < 0 */ |
669 | 0 | bad: |
670 | 0 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
671 | 0 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
672 | 0 | } |
673 | | /* Update progression status, and verify that scan order is legal. |
674 | | * Note that inter-scan inconsistencies are treated as warnings |
675 | | * not fatal errors ... not clear if this is right way to behave. |
676 | | */ |
677 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
678 | 0 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
679 | 0 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
680 | 0 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
681 | 0 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
682 | 0 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
683 | 0 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
684 | 0 | if (cinfo->Ah != expected) |
685 | 0 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
686 | 0 | coef_bit_ptr[coefi] = cinfo->Al; |
687 | 0 | } |
688 | 0 | } |
689 | | /* Select MCU decoding routine */ |
690 | 0 | if (cinfo->Ah == 0) { |
691 | 0 | if (cinfo->Ss == 0) |
692 | 0 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
693 | 0 | else |
694 | 0 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
695 | 0 | } else { |
696 | 0 | if (cinfo->Ss == 0) |
697 | 0 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
698 | 0 | else |
699 | 0 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
700 | 0 | } |
701 | 0 | } else { |
702 | | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
703 | | * This ought to be an error condition, but we make it a warning. |
704 | | */ |
705 | 0 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
706 | 0 | (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) |
707 | 0 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
708 | | /* Select MCU decoding routine */ |
709 | 0 | entropy->pub.decode_mcu = decode_mcu; |
710 | 0 | } |
711 | | |
712 | | /* Allocate & initialize requested statistics areas */ |
713 | 0 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
714 | 0 | compptr = cinfo->cur_comp_info[ci]; |
715 | 0 | if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
716 | 0 | tbl = compptr->dc_tbl_no; |
717 | 0 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
718 | 0 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
719 | 0 | if (entropy->dc_stats[tbl] == NULL) |
720 | 0 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
721 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
722 | 0 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
723 | | /* Initialize DC predictions to 0 */ |
724 | 0 | entropy->last_dc_val[ci] = 0; |
725 | 0 | entropy->dc_context[ci] = 0; |
726 | 0 | } |
727 | 0 | if ((! cinfo->progressive_mode && cinfo->lim_Se) || |
728 | 0 | (cinfo->progressive_mode && cinfo->Ss)) { |
729 | 0 | tbl = compptr->ac_tbl_no; |
730 | 0 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
731 | 0 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
732 | 0 | if (entropy->ac_stats[tbl] == NULL) |
733 | 0 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
734 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
735 | 0 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
736 | 0 | } |
737 | 0 | } |
738 | | |
739 | | /* Initialize arithmetic decoding variables */ |
740 | 0 | entropy->c = 0; |
741 | 0 | entropy->a = 0; |
742 | 0 | entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
743 | | |
744 | | /* Initialize restart counter */ |
745 | 0 | entropy->restarts_to_go = cinfo->restart_interval; |
746 | 0 | } |
747 | | |
748 | | |
749 | | /* |
750 | | * Finish up at the end of an arithmetic-compressed scan. |
751 | | */ |
752 | | |
753 | | METHODDEF(void) |
754 | | finish_pass (j_decompress_ptr cinfo) |
755 | 0 | { |
756 | | /* no work necessary here */ |
757 | 0 | } |
758 | | |
759 | | |
760 | | /* |
761 | | * Module initialization routine for arithmetic entropy decoding. |
762 | | */ |
763 | | |
764 | | GLOBAL(void) |
765 | | jinit_arith_decoder (j_decompress_ptr cinfo) |
766 | 0 | { |
767 | 0 | arith_entropy_ptr entropy; |
768 | 0 | int i; |
769 | |
|
770 | 0 | entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) |
771 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder)); |
772 | 0 | cinfo->entropy = &entropy->pub; |
773 | 0 | entropy->pub.start_pass = start_pass; |
774 | 0 | entropy->pub.finish_pass = finish_pass; |
775 | | |
776 | | /* Mark tables unallocated */ |
777 | 0 | for (i = 0; i < NUM_ARITH_TBLS; i++) { |
778 | 0 | entropy->dc_stats[i] = NULL; |
779 | 0 | entropy->ac_stats[i] = NULL; |
780 | 0 | } |
781 | | |
782 | | /* Initialize index for fixed probability estimation */ |
783 | 0 | entropy->fixed_bin[0] = 113; |
784 | |
|
785 | 0 | if (cinfo->progressive_mode) { |
786 | | /* Create progression status table */ |
787 | 0 | int *coef_bit_ptr, ci; |
788 | 0 | cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) |
789 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
790 | 0 | cinfo->num_components * DCTSIZE2 * SIZEOF(int)); |
791 | 0 | coef_bit_ptr = & cinfo->coef_bits[0][0]; |
792 | 0 | for (ci = 0; ci < cinfo->num_components; ci++) |
793 | 0 | for (i = 0; i < DCTSIZE2; i++) |
794 | 0 | *coef_bit_ptr++ = -1; |
795 | 0 | } |
796 | 0 | } |