Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jfdctfst.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jfdctfst.c
3
 *
4
 * Copyright (C) 1994-1996, Thomas G. Lane.
5
 * Modified 2003-2017 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains a fast, not so accurate integer implementation of the
10
 * forward DCT (Discrete Cosine Transform).
11
 *
12
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
13
 * on each column.  Direct algorithms are also available, but they are
14
 * much more complex and seem not to be any faster when reduced to code.
15
 *
16
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
17
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
18
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
19
 * JPEG textbook (see REFERENCES section in file README).  The following code
20
 * is based directly on figure 4-8 in P&M.
21
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
22
 * possible to arrange the computation so that many of the multiplies are
23
 * simple scalings of the final outputs.  These multiplies can then be
24
 * folded into the multiplications or divisions by the JPEG quantization
25
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
26
 * to be done in the DCT itself.
27
 * The primary disadvantage of this method is that with fixed-point math,
28
 * accuracy is lost due to imprecise representation of the scaled
29
 * quantization values.  The smaller the quantization table entry, the less
30
 * precise the scaled value, so this implementation does worse with high-
31
 * quality-setting files than with low-quality ones.
32
 */
33
34
#define JPEG_INTERNALS
35
#include "jinclude.h"
36
#include "jpeglib.h"
37
#include "jdct.h"   /* Private declarations for DCT subsystem */
38
39
#ifdef DCT_IFAST_SUPPORTED
40
41
42
/*
43
 * This module is specialized to the case DCTSIZE = 8.
44
 */
45
46
#if DCTSIZE != 8
47
  Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
48
#endif
49
50
51
/* Scaling decisions are generally the same as in the LL&M algorithm;
52
 * see jfdctint.c for more details.  However, we choose to descale
53
 * (right shift) multiplication products as soon as they are formed,
54
 * rather than carrying additional fractional bits into subsequent additions.
55
 * This compromises accuracy slightly, but it lets us save a few shifts.
56
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
57
 * everywhere except in the multiplications proper; this saves a good deal
58
 * of work on 16-bit-int machines.
59
 *
60
 * Again to save a few shifts, the intermediate results between pass 1 and
61
 * pass 2 are not upscaled, but are represented only to integral precision.
62
 *
63
 * A final compromise is to represent the multiplicative constants to only
64
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
65
 * machines, and may also reduce the cost of multiplication (since there
66
 * are fewer one-bits in the constants).
67
 */
68
69
#define CONST_BITS  8
70
71
72
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
73
 * causing a lot of useless floating-point operations at run time.
74
 * To get around this we use the following pre-calculated constants.
75
 * If you change CONST_BITS you may want to add appropriate values.
76
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
77
 */
78
79
#if CONST_BITS == 8
80
#define FIX_0_382683433  ((INT32)   98)   /* FIX(0.382683433) */
81
#define FIX_0_541196100  ((INT32)  139)   /* FIX(0.541196100) */
82
#define FIX_0_707106781  ((INT32)  181)   /* FIX(0.707106781) */
83
#define FIX_1_306562965  ((INT32)  334)   /* FIX(1.306562965) */
84
#else
85
#define FIX_0_382683433  FIX(0.382683433)
86
#define FIX_0_541196100  FIX(0.541196100)
87
#define FIX_0_707106781  FIX(0.707106781)
88
#define FIX_1_306562965  FIX(1.306562965)
89
#endif
90
91
92
/* We can gain a little more speed, with a further compromise in accuracy,
93
 * by omitting the addition in a descaling shift.  This yields an incorrectly
94
 * rounded result half the time...
95
 */
96
97
#ifndef USE_ACCURATE_ROUNDING
98
#undef DESCALE
99
0
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
100
#endif
101
102
103
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
104
 * descale to yield a DCTELEM result.
105
 */
106
107
0
#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
108
109
110
/*
111
 * Perform the forward DCT on one block of samples.
112
 *
113
 * cK represents cos(K*pi/16).
114
 */
115
116
GLOBAL(void)
117
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
118
0
{
119
0
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
120
0
  DCTELEM tmp10, tmp11, tmp12, tmp13;
121
0
  DCTELEM z1, z2, z3, z4, z5, z11, z13;
122
0
  DCTELEM *dataptr;
123
0
  JSAMPROW elemptr;
124
0
  int ctr;
125
0
  SHIFT_TEMPS
126
127
  /* Pass 1: process rows. */
128
129
0
  dataptr = data;
130
0
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
131
0
    elemptr = sample_data[ctr] + start_col;
132
133
    /* Load data into workspace */
134
0
    tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
135
0
    tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
136
0
    tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
137
0
    tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
138
0
    tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
139
0
    tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
140
0
    tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
141
0
    tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
142
143
    /* Even part */
144
145
0
    tmp10 = tmp0 + tmp3;  /* phase 2 */
146
0
    tmp13 = tmp0 - tmp3;
147
0
    tmp11 = tmp1 + tmp2;
148
0
    tmp12 = tmp1 - tmp2;
149
150
    /* Apply unsigned->signed conversion. */
151
0
    dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
152
0
    dataptr[4] = tmp10 - tmp11;
153
154
0
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
155
0
    dataptr[2] = tmp13 + z1;  /* phase 5 */
156
0
    dataptr[6] = tmp13 - z1;
157
158
    /* Odd part */
159
160
0
    tmp10 = tmp4 + tmp5;  /* phase 2 */
161
0
    tmp11 = tmp5 + tmp6;
162
0
    tmp12 = tmp6 + tmp7;
163
164
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
165
0
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
166
0
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
167
0
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
168
0
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
169
170
0
    z11 = tmp7 + z3;    /* phase 5 */
171
0
    z13 = tmp7 - z3;
172
173
0
    dataptr[5] = z13 + z2;  /* phase 6 */
174
0
    dataptr[3] = z13 - z2;
175
0
    dataptr[1] = z11 + z4;
176
0
    dataptr[7] = z11 - z4;
177
178
0
    dataptr += DCTSIZE;   /* advance pointer to next row */
179
0
  }
180
181
  /* Pass 2: process columns. */
182
183
0
  dataptr = data;
184
0
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
185
0
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
186
0
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
187
0
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
188
0
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
189
0
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
190
0
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
191
0
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
192
0
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
193
194
    /* Even part */
195
196
0
    tmp10 = tmp0 + tmp3;  /* phase 2 */
197
0
    tmp13 = tmp0 - tmp3;
198
0
    tmp11 = tmp1 + tmp2;
199
0
    tmp12 = tmp1 - tmp2;
200
201
0
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
202
0
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
203
204
0
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
205
0
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
206
0
    dataptr[DCTSIZE*6] = tmp13 - z1;
207
208
    /* Odd part */
209
210
0
    tmp10 = tmp4 + tmp5;  /* phase 2 */
211
0
    tmp11 = tmp5 + tmp6;
212
0
    tmp12 = tmp6 + tmp7;
213
214
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
215
0
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
216
0
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
217
0
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
218
0
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
219
220
0
    z11 = tmp7 + z3;    /* phase 5 */
221
0
    z13 = tmp7 - z3;
222
223
0
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
224
0
    dataptr[DCTSIZE*3] = z13 - z2;
225
0
    dataptr[DCTSIZE*1] = z11 + z4;
226
0
    dataptr[DCTSIZE*7] = z11 - z4;
227
228
0
    dataptr++;      /* advance pointer to next column */
229
0
  }
230
0
}
231
232
#endif /* DCT_IFAST_SUPPORTED */