/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jidctfst.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jidctfst.c |
3 | | * |
4 | | * Copyright (C) 1994-1998, Thomas G. Lane. |
5 | | * Modified 2015-2017 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains a fast, not so accurate integer implementation of the |
10 | | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
11 | | * must also perform dequantization of the input coefficients. |
12 | | * |
13 | | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
14 | | * on each row (or vice versa, but it's more convenient to emit a row at |
15 | | * a time). Direct algorithms are also available, but they are much more |
16 | | * complex and seem not to be any faster when reduced to code. |
17 | | * |
18 | | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
19 | | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
20 | | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
21 | | * JPEG textbook (see REFERENCES section in file README). The following code |
22 | | * is based directly on figure 4-8 in P&M. |
23 | | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
24 | | * possible to arrange the computation so that many of the multiplies are |
25 | | * simple scalings of the final outputs. These multiplies can then be |
26 | | * folded into the multiplications or divisions by the JPEG quantization |
27 | | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
28 | | * to be done in the DCT itself. |
29 | | * The primary disadvantage of this method is that with fixed-point math, |
30 | | * accuracy is lost due to imprecise representation of the scaled |
31 | | * quantization values. The smaller the quantization table entry, the less |
32 | | * precise the scaled value, so this implementation does worse with high- |
33 | | * quality-setting files than with low-quality ones. |
34 | | */ |
35 | | |
36 | | #define JPEG_INTERNALS |
37 | | #include "jinclude.h" |
38 | | #include "jpeglib.h" |
39 | | #include "jdct.h" /* Private declarations for DCT subsystem */ |
40 | | |
41 | | #ifdef DCT_IFAST_SUPPORTED |
42 | | |
43 | | |
44 | | /* |
45 | | * This module is specialized to the case DCTSIZE = 8. |
46 | | */ |
47 | | |
48 | | #if DCTSIZE != 8 |
49 | | Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
50 | | #endif |
51 | | |
52 | | |
53 | | /* Scaling decisions are generally the same as in the LL&M algorithm; |
54 | | * see jidctint.c for more details. However, we choose to descale |
55 | | * (right shift) multiplication products as soon as they are formed, |
56 | | * rather than carrying additional fractional bits into subsequent additions. |
57 | | * This compromises accuracy slightly, but it lets us save a few shifts. |
58 | | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
59 | | * everywhere except in the multiplications proper; this saves a good deal |
60 | | * of work on 16-bit-int machines. |
61 | | * |
62 | | * The dequantized coefficients are not integers because the AA&N scaling |
63 | | * factors have been incorporated. We represent them scaled up by PASS1_BITS, |
64 | | * so that the first and second IDCT rounds have the same input scaling. |
65 | | * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to |
66 | | * avoid a descaling shift; this compromises accuracy rather drastically |
67 | | * for small quantization table entries, but it saves a lot of shifts. |
68 | | * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, |
69 | | * so we use a much larger scaling factor to preserve accuracy. |
70 | | * |
71 | | * A final compromise is to represent the multiplicative constants to only |
72 | | * 8 fractional bits, rather than 13. This saves some shifting work on some |
73 | | * machines, and may also reduce the cost of multiplication (since there |
74 | | * are fewer one-bits in the constants). |
75 | | */ |
76 | | |
77 | | #if BITS_IN_JSAMPLE == 8 |
78 | | #define CONST_BITS 8 |
79 | 0 | #define PASS1_BITS 2 |
80 | | #else |
81 | | #define CONST_BITS 8 |
82 | | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
83 | | #endif |
84 | | |
85 | | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
86 | | * causing a lot of useless floating-point operations at run time. |
87 | | * To get around this we use the following pre-calculated constants. |
88 | | * If you change CONST_BITS you may want to add appropriate values. |
89 | | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
90 | | */ |
91 | | |
92 | | #if CONST_BITS == 8 |
93 | | #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ |
94 | | #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ |
95 | | #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ |
96 | | #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ |
97 | | #else |
98 | | #define FIX_1_082392200 FIX(1.082392200) |
99 | | #define FIX_1_414213562 FIX(1.414213562) |
100 | | #define FIX_1_847759065 FIX(1.847759065) |
101 | | #define FIX_2_613125930 FIX(2.613125930) |
102 | | #endif |
103 | | |
104 | | |
105 | | /* We can gain a little more speed, with a further compromise in accuracy, |
106 | | * by omitting the addition in a descaling shift. This yields an incorrectly |
107 | | * rounded result half the time... |
108 | | */ |
109 | | |
110 | | #ifndef USE_ACCURATE_ROUNDING |
111 | | #undef DESCALE |
112 | 0 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
113 | | #endif |
114 | | |
115 | | |
116 | | /* Multiply a DCTELEM variable by an INT32 constant, and immediately |
117 | | * descale to yield a DCTELEM result. |
118 | | */ |
119 | | |
120 | 0 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
121 | | |
122 | | |
123 | | /* Dequantize a coefficient by multiplying it by the multiplier-table |
124 | | * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 |
125 | | * multiplication will do. For 12-bit data, the multiplier table is |
126 | | * declared INT32, so a 32-bit multiply will be used. |
127 | | */ |
128 | | |
129 | | #if BITS_IN_JSAMPLE == 8 |
130 | 0 | #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) |
131 | | #else |
132 | | #define DEQUANTIZE(coef,quantval) \ |
133 | | DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) |
134 | | #endif |
135 | | |
136 | | |
137 | | /* |
138 | | * Perform dequantization and inverse DCT on one block of coefficients. |
139 | | * |
140 | | * cK represents cos(K*pi/16). |
141 | | */ |
142 | | |
143 | | GLOBAL(void) |
144 | | jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
145 | | JCOEFPTR coef_block, |
146 | | JSAMPARRAY output_buf, JDIMENSION output_col) |
147 | 0 | { |
148 | 0 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
149 | 0 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
150 | 0 | DCTELEM z5, z10, z11, z12, z13; |
151 | 0 | JCOEFPTR inptr; |
152 | 0 | IFAST_MULT_TYPE * quantptr; |
153 | 0 | int * wsptr; |
154 | 0 | JSAMPROW outptr; |
155 | 0 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
156 | 0 | int ctr; |
157 | 0 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
158 | | SHIFT_TEMPS /* for DESCALE */ |
159 | | ISHIFT_TEMPS /* for IRIGHT_SHIFT */ |
160 | | |
161 | | /* Pass 1: process columns from input, store into work array. */ |
162 | |
|
163 | 0 | inptr = coef_block; |
164 | 0 | quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; |
165 | 0 | wsptr = workspace; |
166 | 0 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
167 | | /* Due to quantization, we will usually find that many of the input |
168 | | * coefficients are zero, especially the AC terms. We can exploit this |
169 | | * by short-circuiting the IDCT calculation for any column in which all |
170 | | * the AC terms are zero. In that case each output is equal to the |
171 | | * DC coefficient (with scale factor as needed). |
172 | | * With typical images and quantization tables, half or more of the |
173 | | * column DCT calculations can be simplified this way. |
174 | | */ |
175 | | |
176 | 0 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
177 | 0 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
178 | 0 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
179 | 0 | inptr[DCTSIZE*7] == 0) { |
180 | | /* AC terms all zero */ |
181 | 0 | int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
182 | |
|
183 | 0 | wsptr[DCTSIZE*0] = dcval; |
184 | 0 | wsptr[DCTSIZE*1] = dcval; |
185 | 0 | wsptr[DCTSIZE*2] = dcval; |
186 | 0 | wsptr[DCTSIZE*3] = dcval; |
187 | 0 | wsptr[DCTSIZE*4] = dcval; |
188 | 0 | wsptr[DCTSIZE*5] = dcval; |
189 | 0 | wsptr[DCTSIZE*6] = dcval; |
190 | 0 | wsptr[DCTSIZE*7] = dcval; |
191 | | |
192 | 0 | inptr++; /* advance pointers to next column */ |
193 | 0 | quantptr++; |
194 | 0 | wsptr++; |
195 | 0 | continue; |
196 | 0 | } |
197 | | |
198 | | /* Even part */ |
199 | | |
200 | 0 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
201 | 0 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
202 | 0 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
203 | 0 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
204 | |
|
205 | 0 | tmp10 = tmp0 + tmp2; /* phase 3 */ |
206 | 0 | tmp11 = tmp0 - tmp2; |
207 | |
|
208 | 0 | tmp13 = tmp1 + tmp3; /* phases 5-3 */ |
209 | 0 | tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ |
210 | |
|
211 | 0 | tmp0 = tmp10 + tmp13; /* phase 2 */ |
212 | 0 | tmp3 = tmp10 - tmp13; |
213 | 0 | tmp1 = tmp11 + tmp12; |
214 | 0 | tmp2 = tmp11 - tmp12; |
215 | | |
216 | | /* Odd part */ |
217 | |
|
218 | 0 | tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
219 | 0 | tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
220 | 0 | tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
221 | 0 | tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
222 | |
|
223 | 0 | z13 = tmp6 + tmp5; /* phase 6 */ |
224 | 0 | z10 = tmp6 - tmp5; |
225 | 0 | z11 = tmp4 + tmp7; |
226 | 0 | z12 = tmp4 - tmp7; |
227 | |
|
228 | 0 | tmp7 = z11 + z13; /* phase 5 */ |
229 | 0 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
230 | |
|
231 | 0 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
232 | 0 | tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ |
233 | 0 | tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ |
234 | |
|
235 | 0 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
236 | 0 | tmp5 = tmp11 - tmp6; |
237 | 0 | tmp4 = tmp10 - tmp5; |
238 | |
|
239 | 0 | wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); |
240 | 0 | wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); |
241 | 0 | wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); |
242 | 0 | wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); |
243 | 0 | wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); |
244 | 0 | wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); |
245 | 0 | wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4); |
246 | 0 | wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4); |
247 | |
|
248 | 0 | inptr++; /* advance pointers to next column */ |
249 | 0 | quantptr++; |
250 | 0 | wsptr++; |
251 | 0 | } |
252 | | |
253 | | /* Pass 2: process rows from work array, store into output array. |
254 | | * Note that we must descale the results by a factor of 8 == 2**3, |
255 | | * and also undo the PASS1_BITS scaling. |
256 | | */ |
257 | |
|
258 | 0 | wsptr = workspace; |
259 | 0 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
260 | 0 | outptr = output_buf[ctr] + output_col; |
261 | | |
262 | | /* Add range center and fudge factor for final descale and range-limit. */ |
263 | 0 | z5 = (DCTELEM) wsptr[0] + |
264 | 0 | ((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) + |
265 | 0 | (1 << (PASS1_BITS+2))); |
266 | | |
267 | | /* Rows of zeroes can be exploited in the same way as we did with columns. |
268 | | * However, the column calculation has created many nonzero AC terms, so |
269 | | * the simplification applies less often (typically 5% to 10% of the time). |
270 | | * On machines with very fast multiplication, it's possible that the |
271 | | * test takes more time than it's worth. In that case this section |
272 | | * may be commented out. |
273 | | */ |
274 | | |
275 | 0 | #ifndef NO_ZERO_ROW_TEST |
276 | 0 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
277 | 0 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
278 | | /* AC terms all zero */ |
279 | 0 | JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3) |
280 | 0 | & RANGE_MASK]; |
281 | | |
282 | 0 | outptr[0] = dcval; |
283 | 0 | outptr[1] = dcval; |
284 | 0 | outptr[2] = dcval; |
285 | 0 | outptr[3] = dcval; |
286 | 0 | outptr[4] = dcval; |
287 | 0 | outptr[5] = dcval; |
288 | 0 | outptr[6] = dcval; |
289 | 0 | outptr[7] = dcval; |
290 | |
|
291 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
292 | 0 | continue; |
293 | 0 | } |
294 | 0 | #endif |
295 | | |
296 | | /* Even part */ |
297 | | |
298 | 0 | tmp10 = z5 + (DCTELEM) wsptr[4]; |
299 | 0 | tmp11 = z5 - (DCTELEM) wsptr[4]; |
300 | |
|
301 | 0 | tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]; |
302 | 0 | tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], |
303 | 0 | FIX_1_414213562) - tmp13; /* 2*c4 */ |
304 | |
|
305 | 0 | tmp0 = tmp10 + tmp13; |
306 | 0 | tmp3 = tmp10 - tmp13; |
307 | 0 | tmp1 = tmp11 + tmp12; |
308 | 0 | tmp2 = tmp11 - tmp12; |
309 | | |
310 | | /* Odd part */ |
311 | |
|
312 | 0 | z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; |
313 | 0 | z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; |
314 | 0 | z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; |
315 | 0 | z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; |
316 | |
|
317 | 0 | tmp7 = z11 + z13; /* phase 5 */ |
318 | 0 | tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ |
319 | |
|
320 | 0 | z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ |
321 | 0 | tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ |
322 | 0 | tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ |
323 | |
|
324 | 0 | tmp6 = tmp12 - tmp7; /* phase 2 */ |
325 | 0 | tmp5 = tmp11 - tmp6; |
326 | 0 | tmp4 = tmp10 - tmp5; |
327 | | |
328 | | /* Final output stage: scale down by a factor of 8 and range-limit */ |
329 | |
|
330 | 0 | outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3) |
331 | 0 | & RANGE_MASK]; |
332 | 0 | outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3) |
333 | 0 | & RANGE_MASK]; |
334 | 0 | outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3) |
335 | 0 | & RANGE_MASK]; |
336 | 0 | outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3) |
337 | 0 | & RANGE_MASK]; |
338 | 0 | outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3) |
339 | 0 | & RANGE_MASK]; |
340 | 0 | outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3) |
341 | 0 | & RANGE_MASK]; |
342 | 0 | outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3) |
343 | 0 | & RANGE_MASK]; |
344 | 0 | outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3) |
345 | 0 | & RANGE_MASK]; |
346 | |
|
347 | 0 | wsptr += DCTSIZE; /* advance pointer to next row */ |
348 | 0 | } |
349 | 0 | } |
350 | | |
351 | | #endif /* DCT_IFAST_SUPPORTED */ |