Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jidctfst.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jidctfst.c
3
 *
4
 * Copyright (C) 1994-1998, Thomas G. Lane.
5
 * Modified 2015-2017 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains a fast, not so accurate integer implementation of the
10
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
11
 * must also perform dequantization of the input coefficients.
12
 *
13
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
14
 * on each row (or vice versa, but it's more convenient to emit a row at
15
 * a time).  Direct algorithms are also available, but they are much more
16
 * complex and seem not to be any faster when reduced to code.
17
 *
18
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
19
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
20
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
21
 * JPEG textbook (see REFERENCES section in file README).  The following code
22
 * is based directly on figure 4-8 in P&M.
23
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
24
 * possible to arrange the computation so that many of the multiplies are
25
 * simple scalings of the final outputs.  These multiplies can then be
26
 * folded into the multiplications or divisions by the JPEG quantization
27
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
28
 * to be done in the DCT itself.
29
 * The primary disadvantage of this method is that with fixed-point math,
30
 * accuracy is lost due to imprecise representation of the scaled
31
 * quantization values.  The smaller the quantization table entry, the less
32
 * precise the scaled value, so this implementation does worse with high-
33
 * quality-setting files than with low-quality ones.
34
 */
35
36
#define JPEG_INTERNALS
37
#include "jinclude.h"
38
#include "jpeglib.h"
39
#include "jdct.h"   /* Private declarations for DCT subsystem */
40
41
#ifdef DCT_IFAST_SUPPORTED
42
43
44
/*
45
 * This module is specialized to the case DCTSIZE = 8.
46
 */
47
48
#if DCTSIZE != 8
49
  Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
50
#endif
51
52
53
/* Scaling decisions are generally the same as in the LL&M algorithm;
54
 * see jidctint.c for more details.  However, we choose to descale
55
 * (right shift) multiplication products as soon as they are formed,
56
 * rather than carrying additional fractional bits into subsequent additions.
57
 * This compromises accuracy slightly, but it lets us save a few shifts.
58
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
59
 * everywhere except in the multiplications proper; this saves a good deal
60
 * of work on 16-bit-int machines.
61
 *
62
 * The dequantized coefficients are not integers because the AA&N scaling
63
 * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
64
 * so that the first and second IDCT rounds have the same input scaling.
65
 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
66
 * avoid a descaling shift; this compromises accuracy rather drastically
67
 * for small quantization table entries, but it saves a lot of shifts.
68
 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
69
 * so we use a much larger scaling factor to preserve accuracy.
70
 *
71
 * A final compromise is to represent the multiplicative constants to only
72
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
73
 * machines, and may also reduce the cost of multiplication (since there
74
 * are fewer one-bits in the constants).
75
 */
76
77
#if BITS_IN_JSAMPLE == 8
78
#define CONST_BITS  8
79
0
#define PASS1_BITS  2
80
#else
81
#define CONST_BITS  8
82
#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
83
#endif
84
85
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
86
 * causing a lot of useless floating-point operations at run time.
87
 * To get around this we use the following pre-calculated constants.
88
 * If you change CONST_BITS you may want to add appropriate values.
89
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
90
 */
91
92
#if CONST_BITS == 8
93
#define FIX_1_082392200  ((INT32)  277)   /* FIX(1.082392200) */
94
#define FIX_1_414213562  ((INT32)  362)   /* FIX(1.414213562) */
95
#define FIX_1_847759065  ((INT32)  473)   /* FIX(1.847759065) */
96
#define FIX_2_613125930  ((INT32)  669)   /* FIX(2.613125930) */
97
#else
98
#define FIX_1_082392200  FIX(1.082392200)
99
#define FIX_1_414213562  FIX(1.414213562)
100
#define FIX_1_847759065  FIX(1.847759065)
101
#define FIX_2_613125930  FIX(2.613125930)
102
#endif
103
104
105
/* We can gain a little more speed, with a further compromise in accuracy,
106
 * by omitting the addition in a descaling shift.  This yields an incorrectly
107
 * rounded result half the time...
108
 */
109
110
#ifndef USE_ACCURATE_ROUNDING
111
#undef DESCALE
112
0
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
113
#endif
114
115
116
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
117
 * descale to yield a DCTELEM result.
118
 */
119
120
0
#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
121
122
123
/* Dequantize a coefficient by multiplying it by the multiplier-table
124
 * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
125
 * multiplication will do.  For 12-bit data, the multiplier table is
126
 * declared INT32, so a 32-bit multiply will be used.
127
 */
128
129
#if BITS_IN_JSAMPLE == 8
130
0
#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
131
#else
132
#define DEQUANTIZE(coef,quantval)  \
133
  DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
134
#endif
135
136
137
/*
138
 * Perform dequantization and inverse DCT on one block of coefficients.
139
 *
140
 * cK represents cos(K*pi/16).
141
 */
142
143
GLOBAL(void)
144
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
145
     JCOEFPTR coef_block,
146
     JSAMPARRAY output_buf, JDIMENSION output_col)
147
0
{
148
0
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
149
0
  DCTELEM tmp10, tmp11, tmp12, tmp13;
150
0
  DCTELEM z5, z10, z11, z12, z13;
151
0
  JCOEFPTR inptr;
152
0
  IFAST_MULT_TYPE * quantptr;
153
0
  int * wsptr;
154
0
  JSAMPROW outptr;
155
0
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
156
0
  int ctr;
157
0
  int workspace[DCTSIZE2];  /* buffers data between passes */
158
  SHIFT_TEMPS     /* for DESCALE */
159
  ISHIFT_TEMPS      /* for IRIGHT_SHIFT */
160
161
  /* Pass 1: process columns from input, store into work array. */
162
163
0
  inptr = coef_block;
164
0
  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
165
0
  wsptr = workspace;
166
0
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
167
    /* Due to quantization, we will usually find that many of the input
168
     * coefficients are zero, especially the AC terms.  We can exploit this
169
     * by short-circuiting the IDCT calculation for any column in which all
170
     * the AC terms are zero.  In that case each output is equal to the
171
     * DC coefficient (with scale factor as needed).
172
     * With typical images and quantization tables, half or more of the
173
     * column DCT calculations can be simplified this way.
174
     */
175
    
176
0
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
177
0
  inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
178
0
  inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
179
0
  inptr[DCTSIZE*7] == 0) {
180
      /* AC terms all zero */
181
0
      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
182
183
0
      wsptr[DCTSIZE*0] = dcval;
184
0
      wsptr[DCTSIZE*1] = dcval;
185
0
      wsptr[DCTSIZE*2] = dcval;
186
0
      wsptr[DCTSIZE*3] = dcval;
187
0
      wsptr[DCTSIZE*4] = dcval;
188
0
      wsptr[DCTSIZE*5] = dcval;
189
0
      wsptr[DCTSIZE*6] = dcval;
190
0
      wsptr[DCTSIZE*7] = dcval;
191
      
192
0
      inptr++;      /* advance pointers to next column */
193
0
      quantptr++;
194
0
      wsptr++;
195
0
      continue;
196
0
    }
197
    
198
    /* Even part */
199
200
0
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
201
0
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
202
0
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
203
0
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
204
205
0
    tmp10 = tmp0 + tmp2;  /* phase 3 */
206
0
    tmp11 = tmp0 - tmp2;
207
208
0
    tmp13 = tmp1 + tmp3;  /* phases 5-3 */
209
0
    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
210
211
0
    tmp0 = tmp10 + tmp13; /* phase 2 */
212
0
    tmp3 = tmp10 - tmp13;
213
0
    tmp1 = tmp11 + tmp12;
214
0
    tmp2 = tmp11 - tmp12;
215
    
216
    /* Odd part */
217
218
0
    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
219
0
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
220
0
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
221
0
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
222
223
0
    z13 = tmp6 + tmp5;    /* phase 6 */
224
0
    z10 = tmp6 - tmp5;
225
0
    z11 = tmp4 + tmp7;
226
0
    z12 = tmp4 - tmp7;
227
228
0
    tmp7 = z11 + z13;   /* phase 5 */
229
0
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
230
231
0
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
232
0
    tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
233
0
    tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
234
235
0
    tmp6 = tmp12 - tmp7;  /* phase 2 */
236
0
    tmp5 = tmp11 - tmp6;
237
0
    tmp4 = tmp10 - tmp5;
238
239
0
    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
240
0
    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
241
0
    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
242
0
    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
243
0
    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
244
0
    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
245
0
    wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);
246
0
    wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);
247
248
0
    inptr++;      /* advance pointers to next column */
249
0
    quantptr++;
250
0
    wsptr++;
251
0
  }
252
  
253
  /* Pass 2: process rows from work array, store into output array.
254
   * Note that we must descale the results by a factor of 8 == 2**3,
255
   * and also undo the PASS1_BITS scaling.
256
   */
257
258
0
  wsptr = workspace;
259
0
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
260
0
    outptr = output_buf[ctr] + output_col;
261
262
    /* Add range center and fudge factor for final descale and range-limit. */
263
0
    z5 = (DCTELEM) wsptr[0] +
264
0
     ((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) +
265
0
      (1 << (PASS1_BITS+2)));
266
267
    /* Rows of zeroes can be exploited in the same way as we did with columns.
268
     * However, the column calculation has created many nonzero AC terms, so
269
     * the simplification applies less often (typically 5% to 10% of the time).
270
     * On machines with very fast multiplication, it's possible that the
271
     * test takes more time than it's worth.  In that case this section
272
     * may be commented out.
273
     */
274
    
275
0
#ifndef NO_ZERO_ROW_TEST
276
0
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
277
0
  wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
278
      /* AC terms all zero */
279
0
      JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3)
280
0
          & RANGE_MASK];
281
      
282
0
      outptr[0] = dcval;
283
0
      outptr[1] = dcval;
284
0
      outptr[2] = dcval;
285
0
      outptr[3] = dcval;
286
0
      outptr[4] = dcval;
287
0
      outptr[5] = dcval;
288
0
      outptr[6] = dcval;
289
0
      outptr[7] = dcval;
290
291
0
      wsptr += DCTSIZE;   /* advance pointer to next row */
292
0
      continue;
293
0
    }
294
0
#endif
295
    
296
    /* Even part */
297
298
0
    tmp10 = z5 + (DCTELEM) wsptr[4];
299
0
    tmp11 = z5 - (DCTELEM) wsptr[4];
300
301
0
    tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];
302
0
    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],
303
0
         FIX_1_414213562) - tmp13; /* 2*c4 */
304
305
0
    tmp0 = tmp10 + tmp13;
306
0
    tmp3 = tmp10 - tmp13;
307
0
    tmp1 = tmp11 + tmp12;
308
0
    tmp2 = tmp11 - tmp12;
309
310
    /* Odd part */
311
312
0
    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
313
0
    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
314
0
    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
315
0
    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
316
317
0
    tmp7 = z11 + z13;   /* phase 5 */
318
0
    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
319
320
0
    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
321
0
    tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
322
0
    tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
323
324
0
    tmp6 = tmp12 - tmp7;  /* phase 2 */
325
0
    tmp5 = tmp11 - tmp6;
326
0
    tmp4 = tmp10 - tmp5;
327
328
    /* Final output stage: scale down by a factor of 8 and range-limit */
329
330
0
    outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3)
331
0
          & RANGE_MASK];
332
0
    outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3)
333
0
          & RANGE_MASK];
334
0
    outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3)
335
0
          & RANGE_MASK];
336
0
    outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3)
337
0
          & RANGE_MASK];
338
0
    outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3)
339
0
          & RANGE_MASK];
340
0
    outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3)
341
0
          & RANGE_MASK];
342
0
    outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3)
343
0
          & RANGE_MASK];
344
0
    outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3)
345
0
          & RANGE_MASK];
346
347
0
    wsptr += DCTSIZE;   /* advance pointer to next row */
348
0
  }
349
0
}
350
351
#endif /* DCT_IFAST_SUPPORTED */