Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jmemmgr.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jmemmgr.c
3
 *
4
 * Copyright (C) 1991-1997, Thomas G. Lane.
5
 * Modified 2011-2019 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains the JPEG system-independent memory management
10
 * routines.  This code is usable across a wide variety of machines; most
11
 * of the system dependencies have been isolated in a separate file.
12
 * The major functions provided here are:
13
 *   * pool-based allocation and freeing of memory;
14
 *   * policy decisions about how to divide available memory among the
15
 *     virtual arrays;
16
 *   * control logic for swapping virtual arrays between main memory and
17
 *     backing storage.
18
 * The separate system-dependent file provides the actual backing-storage
19
 * access code, and it contains the policy decision about how much total
20
 * main memory to use.
21
 * This file is system-dependent in the sense that some of its functions
22
 * are unnecessary in some systems.  For example, if there is enough virtual
23
 * memory so that backing storage will never be used, much of the virtual
24
 * array control logic could be removed.  (Of course, if you have that much
25
 * memory then you shouldn't care about a little bit of unused code...)
26
 */
27
28
#define JPEG_INTERNALS
29
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
30
#include "jinclude.h"
31
#include "jpeglib.h"
32
#include "jmemsys.h"    /* import the system-dependent declarations */
33
34
#ifndef NO_GETENV
35
#ifndef HAVE_STDLIB_H   /* <stdlib.h> should declare getenv() */
36
extern char * getenv JPP((const char * name));
37
#endif
38
#endif
39
40
41
/*
42
 * Some important notes:
43
 *   The allocation routines provided here must never return NULL.
44
 *   They should exit to error_exit if unsuccessful.
45
 *
46
 *   It's not a good idea to try to merge the sarray and barray routines,
47
 *   even though they are textually almost the same, because samples are
48
 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
49
 *   in machines where byte pointers have a different representation from
50
 *   word pointers, the resulting machine code could not be the same.
51
 */
52
53
54
/*
55
 * Many machines require storage alignment: longs must start on 4-byte
56
 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
57
 * always returns pointers that are multiples of the worst-case alignment
58
 * requirement, and we had better do so too.
59
 * There isn't any really portable way to determine the worst-case alignment
60
 * requirement.  This module assumes that the alignment requirement is
61
 * multiples of sizeof(ALIGN_TYPE).
62
 * By default, we define ALIGN_TYPE as double.  This is necessary on some
63
 * workstations (where doubles really do need 8-byte alignment) and will work
64
 * fine on nearly everything.  If your machine has lesser alignment needs,
65
 * you can save a few bytes by making ALIGN_TYPE smaller.
66
 * The only place I know of where this will NOT work is certain Macintosh
67
 * 680x0 compilers that define double as a 10-byte IEEE extended float.
68
 * Doing 10-byte alignment is counterproductive because longwords won't be
69
 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
70
 * such a compiler.
71
 */
72
73
#ifndef ALIGN_TYPE    /* so can override from jconfig.h */
74
#define ALIGN_TYPE  double
75
#endif
76
77
78
/*
79
 * We allocate objects from "pools", where each pool is gotten with a single
80
 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
81
 * overhead within a pool, except for alignment padding.  Each pool has a
82
 * header with a link to the next pool of the same class.
83
 * Small and large pool headers are identical except that the latter's
84
 * link pointer must be FAR on 80x86 machines.
85
 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86
 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87
 * of the alignment requirement of ALIGN_TYPE.
88
 */
89
90
typedef union small_pool_struct * small_pool_ptr;
91
92
typedef union small_pool_struct {
93
  struct {
94
    small_pool_ptr next;  /* next in list of pools */
95
    size_t bytes_used;    /* how many bytes already used within pool */
96
    size_t bytes_left;    /* bytes still available in this pool */
97
  } hdr;
98
  ALIGN_TYPE dummy;   /* included in union to ensure alignment */
99
} small_pool_hdr;
100
101
typedef union large_pool_struct FAR * large_pool_ptr;
102
103
typedef union large_pool_struct {
104
  struct {
105
    large_pool_ptr next;  /* next in list of pools */
106
    size_t bytes_used;    /* how many bytes already used within pool */
107
    size_t bytes_left;    /* bytes still available in this pool */
108
  } hdr;
109
  ALIGN_TYPE dummy;   /* included in union to ensure alignment */
110
} large_pool_hdr;
111
112
113
/*
114
 * Here is the full definition of a memory manager object.
115
 */
116
117
typedef struct {
118
  struct jpeg_memory_mgr pub; /* public fields */
119
120
  /* Each pool identifier (lifetime class) names a linked list of pools. */
121
  small_pool_ptr small_list[JPOOL_NUMPOOLS];
122
  large_pool_ptr large_list[JPOOL_NUMPOOLS];
123
124
  /* Since we only have one lifetime class of virtual arrays, only one
125
   * linked list is necessary (for each datatype).  Note that the virtual
126
   * array control blocks being linked together are actually stored somewhere
127
   * in the small-pool list.
128
   */
129
  jvirt_sarray_ptr virt_sarray_list;
130
  jvirt_barray_ptr virt_barray_list;
131
132
  /* This counts total space obtained from jpeg_get_small/large */
133
  size_t total_space_allocated;
134
135
  /* alloc_sarray and alloc_barray set this value for use by virtual
136
   * array routines.
137
   */
138
  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139
} my_memory_mgr;
140
141
typedef my_memory_mgr * my_mem_ptr;
142
143
144
/*
145
 * The control blocks for virtual arrays.
146
 * Note that these blocks are allocated in the "small" pool area.
147
 * System-dependent info for the associated backing store (if any) is hidden
148
 * inside the backing_store_info struct.
149
 */
150
151
struct jvirt_sarray_control {
152
  JSAMPARRAY mem_buffer;  /* => the in-memory buffer */
153
  JDIMENSION rows_in_array; /* total virtual array height */
154
  JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
155
  JDIMENSION maxaccess;   /* max rows accessed by access_virt_sarray */
156
  JDIMENSION rows_in_mem; /* height of memory buffer */
157
  JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */
158
  JDIMENSION cur_start_row; /* first logical row # in the buffer */
159
  JDIMENSION first_undef_row; /* row # of first uninitialized row */
160
  boolean pre_zero;   /* pre-zero mode requested? */
161
  boolean dirty;    /* do current buffer contents need written? */
162
  boolean b_s_open;   /* is backing-store data valid? */
163
  jvirt_sarray_ptr next;  /* link to next virtual sarray control block */
164
  backing_store_info b_s_info;  /* System-dependent control info */
165
};
166
167
struct jvirt_barray_control {
168
  JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
169
  JDIMENSION rows_in_array; /* total virtual array height */
170
  JDIMENSION blocksperrow;  /* width of array (and of memory buffer) */
171
  JDIMENSION maxaccess;   /* max rows accessed by access_virt_barray */
172
  JDIMENSION rows_in_mem; /* height of memory buffer */
173
  JDIMENSION rowsperchunk;  /* allocation chunk size in mem_buffer */
174
  JDIMENSION cur_start_row; /* first logical row # in the buffer */
175
  JDIMENSION first_undef_row; /* row # of first uninitialized row */
176
  boolean pre_zero;   /* pre-zero mode requested? */
177
  boolean dirty;    /* do current buffer contents need written? */
178
  boolean b_s_open;   /* is backing-store data valid? */
179
  jvirt_barray_ptr next;  /* link to next virtual barray control block */
180
  backing_store_info b_s_info;  /* System-dependent control info */
181
};
182
183
184
#ifdef MEM_STATS    /* optional extra stuff for statistics */
185
186
LOCAL(void)
187
print_mem_stats (j_common_ptr cinfo, int pool_id)
188
{
189
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190
  small_pool_ptr shdr_ptr;
191
  large_pool_ptr lhdr_ptr;
192
193
  /* Since this is only a debugging stub, we can cheat a little by using
194
   * fprintf directly rather than going through the trace message code.
195
   * This is helpful because message parm array can't handle longs.
196
   */
197
  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198
    pool_id, (long) mem->total_space_allocated);
199
200
  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201
       lhdr_ptr = lhdr_ptr->hdr.next) {
202
    fprintf(stderr, "  Large chunk used %ld\n",
203
      (long) lhdr_ptr->hdr.bytes_used);
204
  }
205
206
  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207
       shdr_ptr = shdr_ptr->hdr.next) {
208
    fprintf(stderr, "  Small chunk used %ld free %ld\n",
209
      (long) shdr_ptr->hdr.bytes_used,
210
      (long) shdr_ptr->hdr.bytes_left);
211
  }
212
}
213
214
#endif /* MEM_STATS */
215
216
217
LOCAL(noreturn_t)
218
out_of_memory (j_common_ptr cinfo, int which)
219
/* Report an out-of-memory error and stop execution */
220
/* If we compiled MEM_STATS support, report alloc requests before dying */
221
0
{
222
#ifdef MEM_STATS
223
  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
224
#endif
225
0
  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226
0
}
227
228
229
/*
230
 * Allocation of "small" objects.
231
 *
232
 * For these, we use pooled storage.  When a new pool must be created,
233
 * we try to get enough space for the current request plus a "slop" factor,
234
 * where the slop will be the amount of leftover space in the new pool.
235
 * The speed vs. space tradeoff is largely determined by the slop values.
236
 * A different slop value is provided for each pool class (lifetime),
237
 * and we also distinguish the first pool of a class from later ones.
238
 * NOTE: the values given work fairly well on both 16- and 32-bit-int
239
 * machines, but may be too small if longs are 64 bits or more.
240
 */
241
242
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
243
{
244
  1600,     /* first PERMANENT pool */
245
  16000     /* first IMAGE pool */
246
};
247
248
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
249
{
250
  0,      /* additional PERMANENT pools */
251
  5000      /* additional IMAGE pools */
252
};
253
254
0
#define MIN_SLOP  50    /* greater than 0 to avoid futile looping */
255
256
257
METHODDEF(void *)
258
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259
/* Allocate a "small" object */
260
0
{
261
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262
0
  small_pool_ptr hdr_ptr, prev_hdr_ptr;
263
0
  size_t odd_bytes, min_request, slop;
264
0
  char * data_ptr;
265
266
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
267
0
  if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr))
268
0
    out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
269
270
  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271
0
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272
0
  if (odd_bytes > 0)
273
0
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274
275
  /* See if space is available in any existing pool */
276
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278
0
  prev_hdr_ptr = NULL;
279
0
  hdr_ptr = mem->small_list[pool_id];
280
0
  while (hdr_ptr != NULL) {
281
0
    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282
0
      break;     /* found pool with enough space */
283
0
    prev_hdr_ptr = hdr_ptr;
284
0
    hdr_ptr = hdr_ptr->hdr.next;
285
0
  }
286
287
  /* Time to make a new pool? */
288
0
  if (hdr_ptr == NULL) {
289
    /* min_request is what we need now, slop is what will be leftover */
290
0
    min_request = sizeofobject + SIZEOF(small_pool_hdr);
291
0
    if (prev_hdr_ptr == NULL) /* first pool in class? */
292
0
      slop = first_pool_slop[pool_id];
293
0
    else
294
0
      slop = extra_pool_slop[pool_id];
295
    /* Don't ask for more than MAX_ALLOC_CHUNK */
296
0
    if (slop > (size_t) MAX_ALLOC_CHUNK - min_request)
297
0
      slop = (size_t) MAX_ALLOC_CHUNK - min_request;
298
    /* Try to get space, if fail reduce slop and try again */
299
0
    for (;;) {
300
0
      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301
0
      if (hdr_ptr != NULL)
302
0
  break;
303
0
      slop /= 2;
304
0
      if (slop < MIN_SLOP) /* give up when it gets real small */
305
0
  out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306
0
    }
307
0
    mem->total_space_allocated += min_request + slop;
308
    /* Success, initialize the new pool header and add to end of list */
309
0
    hdr_ptr->hdr.next = NULL;
310
0
    hdr_ptr->hdr.bytes_used = 0;
311
0
    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312
0
    if (prev_hdr_ptr == NULL) /* first pool in class? */
313
0
      mem->small_list[pool_id] = hdr_ptr;
314
0
    else
315
0
      prev_hdr_ptr->hdr.next = hdr_ptr;
316
0
  }
317
318
  /* OK, allocate the object from the current pool */
319
0
  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320
0
  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321
0
  hdr_ptr->hdr.bytes_used += sizeofobject;
322
0
  hdr_ptr->hdr.bytes_left -= sizeofobject;
323
324
0
  return (void *) data_ptr;
325
0
}
326
327
328
/*
329
 * Allocation of "large" objects.
330
 *
331
 * The external semantics of these are the same as "small" objects,
332
 * except that FAR pointers are used on 80x86.  However the pool
333
 * management heuristics are quite different.  We assume that each
334
 * request is large enough that it may as well be passed directly to
335
 * jpeg_get_large; the pool management just links everything together
336
 * so that we can free it all on demand.
337
 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338
 * structures.  The routines that create these structures (see below)
339
 * deliberately bunch rows together to ensure a large request size.
340
 */
341
342
METHODDEF(void FAR *)
343
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344
/* Allocate a "large" object */
345
0
{
346
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347
0
  large_pool_ptr hdr_ptr;
348
0
  size_t odd_bytes;
349
350
  /* Check for unsatisfiable request (do now to ensure no overflow below) */
351
0
  if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr))
352
0
    out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
353
354
  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355
0
  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356
0
  if (odd_bytes > 0)
357
0
    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358
359
  /* Always make a new pool */
360
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
362
363
0
  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364
0
              SIZEOF(large_pool_hdr));
365
0
  if (hdr_ptr == NULL)
366
0
    out_of_memory(cinfo, 4); /* jpeg_get_large failed */
367
0
  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
368
369
  /* Success, initialize the new pool header and add to list */
370
0
  hdr_ptr->hdr.next = mem->large_list[pool_id];
371
  /* We maintain space counts in each pool header for statistical purposes,
372
   * even though they are not needed for allocation.
373
   */
374
0
  hdr_ptr->hdr.bytes_used = sizeofobject;
375
0
  hdr_ptr->hdr.bytes_left = 0;
376
0
  mem->large_list[pool_id] = hdr_ptr;
377
378
0
  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379
0
}
380
381
382
/*
383
 * Creation of 2-D sample arrays.
384
 * The pointers are in near heap, the samples themselves in FAR heap.
385
 *
386
 * To minimize allocation overhead and to allow I/O of large contiguous
387
 * blocks, we allocate the sample rows in groups of as many rows as possible
388
 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389
 * NB: the virtual array control routines, later in this file, know about
390
 * this chunking of rows.  The rowsperchunk value is left in the mem manager
391
 * object so that it can be saved away if this sarray is the workspace for
392
 * a virtual array.
393
 */
394
395
METHODDEF(JSAMPARRAY)
396
alloc_sarray (j_common_ptr cinfo, int pool_id,
397
        JDIMENSION samplesperrow, JDIMENSION numrows)
398
/* Allocate a 2-D sample array */
399
0
{
400
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401
0
  JSAMPARRAY result;
402
0
  JSAMPROW workspace;
403
0
  JDIMENSION rowsperchunk, currow, i;
404
0
  long ltemp;
405
406
  /* Calculate max # of rows allowed in one allocation chunk */
407
0
  ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
408
0
    ((long) samplesperrow * SIZEOF(JSAMPLE));
409
0
  if (ltemp <= 0)
410
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411
0
  if (ltemp < (long) numrows)
412
0
    rowsperchunk = (JDIMENSION) ltemp;
413
0
  else
414
0
    rowsperchunk = numrows;
415
0
  mem->last_rowsperchunk = rowsperchunk;
416
417
  /* Get space for row pointers (small object) */
418
0
  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419
0
            (size_t) numrows * SIZEOF(JSAMPROW));
420
421
  /* Get the rows themselves (large objects) */
422
0
  currow = 0;
423
0
  while (currow < numrows) {
424
0
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
425
0
    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426
0
      (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE));
427
0
    for (i = rowsperchunk; i > 0; i--) {
428
0
      result[currow++] = workspace;
429
0
      workspace += samplesperrow;
430
0
    }
431
0
  }
432
433
0
  return result;
434
0
}
435
436
437
/*
438
 * Creation of 2-D coefficient-block arrays.
439
 * This is essentially the same as the code for sample arrays, above.
440
 */
441
442
METHODDEF(JBLOCKARRAY)
443
alloc_barray (j_common_ptr cinfo, int pool_id,
444
        JDIMENSION blocksperrow, JDIMENSION numrows)
445
/* Allocate a 2-D coefficient-block array */
446
0
{
447
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
448
0
  JBLOCKARRAY result;
449
0
  JBLOCKROW workspace;
450
0
  JDIMENSION rowsperchunk, currow, i;
451
0
  long ltemp;
452
453
  /* Calculate max # of rows allowed in one allocation chunk */
454
0
  ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) /
455
0
    ((long) blocksperrow * SIZEOF(JBLOCK));
456
0
  if (ltemp <= 0)
457
0
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
458
0
  if (ltemp < (long) numrows)
459
0
    rowsperchunk = (JDIMENSION) ltemp;
460
0
  else
461
0
    rowsperchunk = numrows;
462
0
  mem->last_rowsperchunk = rowsperchunk;
463
464
  /* Get space for row pointers (small object) */
465
0
  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
466
0
             (size_t) numrows * SIZEOF(JBLOCKROW));
467
468
  /* Get the rows themselves (large objects) */
469
0
  currow = 0;
470
0
  while (currow < numrows) {
471
0
    rowsperchunk = MIN(rowsperchunk, numrows - currow);
472
0
    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
473
0
      (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK));
474
0
    for (i = rowsperchunk; i > 0; i--) {
475
0
      result[currow++] = workspace;
476
0
      workspace += blocksperrow;
477
0
    }
478
0
  }
479
480
0
  return result;
481
0
}
482
483
484
/*
485
 * About virtual array management:
486
 *
487
 * The above "normal" array routines are only used to allocate strip buffers
488
 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
489
 * are handled as "virtual" arrays.  The array is still accessed a strip at a
490
 * time, but the memory manager must save the whole array for repeated
491
 * accesses.  The intended implementation is that there is a strip buffer in
492
 * memory (as high as is possible given the desired memory limit), plus a
493
 * backing file that holds the rest of the array.
494
 *
495
 * The request_virt_array routines are told the total size of the image and
496
 * the maximum number of rows that will be accessed at once.  The in-memory
497
 * buffer must be at least as large as the maxaccess value.
498
 *
499
 * The request routines create control blocks but not the in-memory buffers.
500
 * That is postponed until realize_virt_arrays is called.  At that time the
501
 * total amount of space needed is known (approximately, anyway), so free
502
 * memory can be divided up fairly.
503
 *
504
 * The access_virt_array routines are responsible for making a specific strip
505
 * area accessible (after reading or writing the backing file, if necessary).
506
 * Note that the access routines are told whether the caller intends to modify
507
 * the accessed strip; during a read-only pass this saves having to rewrite
508
 * data to disk.  The access routines are also responsible for pre-zeroing
509
 * any newly accessed rows, if pre-zeroing was requested.
510
 *
511
 * In current usage, the access requests are usually for nonoverlapping
512
 * strips; that is, successive access start_row numbers differ by exactly
513
 * num_rows = maxaccess.  This means we can get good performance with simple
514
 * buffer dump/reload logic, by making the in-memory buffer be a multiple
515
 * of the access height; then there will never be accesses across bufferload
516
 * boundaries.  The code will still work with overlapping access requests,
517
 * but it doesn't handle bufferload overlaps very efficiently.
518
 */
519
520
521
METHODDEF(jvirt_sarray_ptr)
522
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
523
         JDIMENSION samplesperrow, JDIMENSION numrows,
524
         JDIMENSION maxaccess)
525
/* Request a virtual 2-D sample array */
526
0
{
527
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
528
0
  jvirt_sarray_ptr result;
529
530
  /* Only IMAGE-lifetime virtual arrays are currently supported */
531
0
  if (pool_id != JPOOL_IMAGE)
532
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
533
534
  /* get control block */
535
0
  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
536
0
            SIZEOF(struct jvirt_sarray_control));
537
538
0
  result->mem_buffer = NULL;  /* marks array not yet realized */
539
0
  result->rows_in_array = numrows;
540
0
  result->samplesperrow = samplesperrow;
541
0
  result->maxaccess = maxaccess;
542
0
  result->pre_zero = pre_zero;
543
0
  result->b_s_open = FALSE; /* no associated backing-store object */
544
0
  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
545
0
  mem->virt_sarray_list = result;
546
547
0
  return result;
548
0
}
549
550
551
METHODDEF(jvirt_barray_ptr)
552
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
553
         JDIMENSION blocksperrow, JDIMENSION numrows,
554
         JDIMENSION maxaccess)
555
/* Request a virtual 2-D coefficient-block array */
556
0
{
557
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
558
0
  jvirt_barray_ptr result;
559
560
  /* Only IMAGE-lifetime virtual arrays are currently supported */
561
0
  if (pool_id != JPOOL_IMAGE)
562
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
563
564
  /* get control block */
565
0
  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
566
0
            SIZEOF(struct jvirt_barray_control));
567
568
0
  result->mem_buffer = NULL;  /* marks array not yet realized */
569
0
  result->rows_in_array = numrows;
570
0
  result->blocksperrow = blocksperrow;
571
0
  result->maxaccess = maxaccess;
572
0
  result->pre_zero = pre_zero;
573
0
  result->b_s_open = FALSE; /* no associated backing-store object */
574
0
  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
575
0
  mem->virt_barray_list = result;
576
577
0
  return result;
578
0
}
579
580
581
METHODDEF(void)
582
realize_virt_arrays (j_common_ptr cinfo)
583
/* Allocate the in-memory buffers for any unrealized virtual arrays */
584
0
{
585
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586
0
  long bytesperrow, space_per_minheight, maximum_space;
587
0
  long avail_mem, minheights, max_minheights;
588
0
  jvirt_sarray_ptr sptr;
589
0
  jvirt_barray_ptr bptr;
590
591
  /* Compute the minimum space needed (maxaccess rows in each buffer)
592
   * and the maximum space needed (full image height in each buffer).
593
   * These may be of use to the system-dependent jpeg_mem_available routine.
594
   */
595
0
  space_per_minheight = 0;
596
0
  maximum_space = 0;
597
0
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
598
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
599
0
      bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
600
0
      space_per_minheight += (long) sptr->maxaccess * bytesperrow;
601
0
      maximum_space += (long) sptr->rows_in_array * bytesperrow;
602
0
    }
603
0
  }
604
0
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
605
0
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
606
0
      bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK);
607
0
      space_per_minheight += (long) bptr->maxaccess * bytesperrow;
608
0
      maximum_space += (long) bptr->rows_in_array * bytesperrow;
609
0
    }
610
0
  }
611
612
0
  if (space_per_minheight <= 0)
613
0
    return;     /* no unrealized arrays, no work */
614
615
  /* Determine amount of memory to actually use; this is system-dependent. */
616
0
  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
617
0
         (long) mem->total_space_allocated);
618
619
  /* If the maximum space needed is available, make all the buffers full
620
   * height; otherwise parcel it out with the same number of minheights
621
   * in each buffer.
622
   */
623
0
  if (avail_mem >= maximum_space)
624
0
    max_minheights = 1000000000L;
625
0
  else {
626
0
    max_minheights = avail_mem / space_per_minheight;
627
    /* If there doesn't seem to be enough space, try to get the minimum
628
     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
629
     */
630
0
    if (max_minheights <= 0)
631
0
      max_minheights = 1;
632
0
  }
633
634
  /* Allocate the in-memory buffers and initialize backing store as needed. */
635
636
0
  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
637
0
    if (sptr->mem_buffer == NULL) { /* if not realized yet */
638
0
      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
639
0
      if (minheights <= max_minheights) {
640
  /* This buffer fits in memory */
641
0
  sptr->rows_in_mem = sptr->rows_in_array;
642
0
      } else {
643
  /* It doesn't fit in memory, create backing store. */
644
0
  sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
645
0
  jpeg_open_backing_store(cinfo, & sptr->b_s_info,
646
0
        (long) sptr->rows_in_array *
647
0
        (long) sptr->samplesperrow *
648
0
        (long) SIZEOF(JSAMPLE));
649
0
  sptr->b_s_open = TRUE;
650
0
      }
651
0
      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
652
0
              sptr->samplesperrow, sptr->rows_in_mem);
653
0
      sptr->rowsperchunk = mem->last_rowsperchunk;
654
0
      sptr->cur_start_row = 0;
655
0
      sptr->first_undef_row = 0;
656
0
      sptr->dirty = FALSE;
657
0
    }
658
0
  }
659
660
0
  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
661
0
    if (bptr->mem_buffer == NULL) { /* if not realized yet */
662
0
      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
663
0
      if (minheights <= max_minheights) {
664
  /* This buffer fits in memory */
665
0
  bptr->rows_in_mem = bptr->rows_in_array;
666
0
      } else {
667
  /* It doesn't fit in memory, create backing store. */
668
0
  bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
669
0
  jpeg_open_backing_store(cinfo, & bptr->b_s_info,
670
0
        (long) bptr->rows_in_array *
671
0
        (long) bptr->blocksperrow *
672
0
        (long) SIZEOF(JBLOCK));
673
0
  bptr->b_s_open = TRUE;
674
0
      }
675
0
      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
676
0
              bptr->blocksperrow, bptr->rows_in_mem);
677
0
      bptr->rowsperchunk = mem->last_rowsperchunk;
678
0
      bptr->cur_start_row = 0;
679
0
      bptr->first_undef_row = 0;
680
0
      bptr->dirty = FALSE;
681
0
    }
682
0
  }
683
0
}
684
685
686
LOCAL(void)
687
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
688
/* Do backing store read or write of a virtual sample array */
689
0
{
690
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
691
692
0
  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
693
0
  file_offset = (long) ptr->cur_start_row * bytesperrow;
694
  /* Loop to read or write each allocation chunk in mem_buffer */
695
0
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
696
    /* One chunk, but check for short chunk at end of buffer */
697
0
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
698
    /* Transfer no more than is currently defined */
699
0
    thisrow = (long) ptr->cur_start_row + i;
700
0
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
701
    /* Transfer no more than fits in file */
702
0
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
703
0
    if (rows <= 0)   /* this chunk might be past end of file! */
704
0
      break;
705
0
    byte_count = rows * bytesperrow;
706
0
    if (writing)
707
0
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
708
0
              (void FAR *) ptr->mem_buffer[i],
709
0
              file_offset, byte_count);
710
0
    else
711
0
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
712
0
             (void FAR *) ptr->mem_buffer[i],
713
0
             file_offset, byte_count);
714
0
    file_offset += byte_count;
715
0
  }
716
0
}
717
718
719
LOCAL(void)
720
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
721
/* Do backing store read or write of a virtual coefficient-block array */
722
0
{
723
0
  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
724
725
0
  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
726
0
  file_offset = (long) ptr->cur_start_row * bytesperrow;
727
  /* Loop to read or write each allocation chunk in mem_buffer */
728
0
  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
729
    /* One chunk, but check for short chunk at end of buffer */
730
0
    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
731
    /* Transfer no more than is currently defined */
732
0
    thisrow = (long) ptr->cur_start_row + i;
733
0
    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
734
    /* Transfer no more than fits in file */
735
0
    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
736
0
    if (rows <= 0)   /* this chunk might be past end of file! */
737
0
      break;
738
0
    byte_count = rows * bytesperrow;
739
0
    if (writing)
740
0
      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
741
0
              (void FAR *) ptr->mem_buffer[i],
742
0
              file_offset, byte_count);
743
0
    else
744
0
      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
745
0
             (void FAR *) ptr->mem_buffer[i],
746
0
             file_offset, byte_count);
747
0
    file_offset += byte_count;
748
0
  }
749
0
}
750
751
752
METHODDEF(JSAMPARRAY)
753
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
754
        JDIMENSION start_row, JDIMENSION num_rows,
755
        boolean writable)
756
/* Access the part of a virtual sample array starting at start_row */
757
/* and extending for num_rows rows.  writable is true if  */
758
/* caller intends to modify the accessed area. */
759
0
{
760
0
  JDIMENSION end_row = start_row + num_rows;
761
0
  JDIMENSION undef_row;
762
763
  /* debugging check */
764
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
765
0
      ptr->mem_buffer == NULL)
766
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
767
768
  /* Make the desired part of the virtual array accessible */
769
0
  if (start_row < ptr->cur_start_row ||
770
0
      end_row > ptr->cur_start_row + ptr->rows_in_mem) {
771
0
    if (! ptr->b_s_open)
772
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
773
    /* Flush old buffer contents if necessary */
774
0
    if (ptr->dirty) {
775
0
      do_sarray_io(cinfo, ptr, TRUE);
776
0
      ptr->dirty = FALSE;
777
0
    }
778
    /* Decide what part of virtual array to access.
779
     * Algorithm: if target address > current window, assume forward scan,
780
     * load starting at target address.  If target address < current window,
781
     * assume backward scan, load so that target area is top of window.
782
     * Note that when switching from forward write to forward read, will have
783
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
784
     */
785
0
    if (start_row > ptr->cur_start_row) {
786
0
      ptr->cur_start_row = start_row;
787
0
    } else {
788
      /* use long arithmetic here to avoid overflow & unsigned problems */
789
0
      long ltemp;
790
791
0
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
792
0
      if (ltemp < 0)
793
0
  ltemp = 0;   /* don't fall off front end of file */
794
0
      ptr->cur_start_row = (JDIMENSION) ltemp;
795
0
    }
796
    /* Read in the selected part of the array.
797
     * During the initial write pass, we will do no actual read
798
     * because the selected part is all undefined.
799
     */
800
0
    do_sarray_io(cinfo, ptr, FALSE);
801
0
  }
802
  /* Ensure the accessed part of the array is defined; prezero if needed.
803
   * To improve locality of access, we only prezero the part of the array
804
   * that the caller is about to access, not the entire in-memory array.
805
   */
806
0
  if (ptr->first_undef_row < end_row) {
807
0
    if (ptr->first_undef_row < start_row) {
808
0
      if (writable)   /* writer skipped over a section of array */
809
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
810
0
      undef_row = start_row;  /* but reader is allowed to read ahead */
811
0
    } else {
812
0
      undef_row = ptr->first_undef_row;
813
0
    }
814
0
    if (writable)
815
0
      ptr->first_undef_row = end_row;
816
0
    if (ptr->pre_zero) {
817
0
      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
818
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
819
0
      end_row -= ptr->cur_start_row;
820
0
      while (undef_row < end_row) {
821
0
  FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
822
0
  undef_row++;
823
0
      }
824
0
    } else {
825
0
      if (! writable)   /* reader looking at undefined data */
826
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
827
0
    }
828
0
  }
829
  /* Flag the buffer dirty if caller will write in it */
830
0
  if (writable)
831
0
    ptr->dirty = TRUE;
832
  /* Return address of proper part of the buffer */
833
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
834
0
}
835
836
837
METHODDEF(JBLOCKARRAY)
838
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
839
        JDIMENSION start_row, JDIMENSION num_rows,
840
        boolean writable)
841
/* Access the part of a virtual block array starting at start_row */
842
/* and extending for num_rows rows.  writable is true if  */
843
/* caller intends to modify the accessed area. */
844
0
{
845
0
  JDIMENSION end_row = start_row + num_rows;
846
0
  JDIMENSION undef_row;
847
848
  /* debugging check */
849
0
  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
850
0
      ptr->mem_buffer == NULL)
851
0
    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
852
853
  /* Make the desired part of the virtual array accessible */
854
0
  if (start_row < ptr->cur_start_row ||
855
0
      end_row > ptr->cur_start_row + ptr->rows_in_mem) {
856
0
    if (! ptr->b_s_open)
857
0
      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
858
    /* Flush old buffer contents if necessary */
859
0
    if (ptr->dirty) {
860
0
      do_barray_io(cinfo, ptr, TRUE);
861
0
      ptr->dirty = FALSE;
862
0
    }
863
    /* Decide what part of virtual array to access.
864
     * Algorithm: if target address > current window, assume forward scan,
865
     * load starting at target address.  If target address < current window,
866
     * assume backward scan, load so that target area is top of window.
867
     * Note that when switching from forward write to forward read, will have
868
     * start_row = 0, so the limiting case applies and we load from 0 anyway.
869
     */
870
0
    if (start_row > ptr->cur_start_row) {
871
0
      ptr->cur_start_row = start_row;
872
0
    } else {
873
      /* use long arithmetic here to avoid overflow & unsigned problems */
874
0
      long ltemp;
875
876
0
      ltemp = (long) end_row - (long) ptr->rows_in_mem;
877
0
      if (ltemp < 0)
878
0
  ltemp = 0;   /* don't fall off front end of file */
879
0
      ptr->cur_start_row = (JDIMENSION) ltemp;
880
0
    }
881
    /* Read in the selected part of the array.
882
     * During the initial write pass, we will do no actual read
883
     * because the selected part is all undefined.
884
     */
885
0
    do_barray_io(cinfo, ptr, FALSE);
886
0
  }
887
  /* Ensure the accessed part of the array is defined; prezero if needed.
888
   * To improve locality of access, we only prezero the part of the array
889
   * that the caller is about to access, not the entire in-memory array.
890
   */
891
0
  if (ptr->first_undef_row < end_row) {
892
0
    if (ptr->first_undef_row < start_row) {
893
0
      if (writable)   /* writer skipped over a section of array */
894
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
895
0
      undef_row = start_row;  /* but reader is allowed to read ahead */
896
0
    } else {
897
0
      undef_row = ptr->first_undef_row;
898
0
    }
899
0
    if (writable)
900
0
      ptr->first_undef_row = end_row;
901
0
    if (ptr->pre_zero) {
902
0
      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
903
0
      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
904
0
      end_row -= ptr->cur_start_row;
905
0
      while (undef_row < end_row) {
906
0
  FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
907
0
  undef_row++;
908
0
      }
909
0
    } else {
910
0
      if (! writable)   /* reader looking at undefined data */
911
0
  ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
912
0
    }
913
0
  }
914
  /* Flag the buffer dirty if caller will write in it */
915
0
  if (writable)
916
0
    ptr->dirty = TRUE;
917
  /* Return address of proper part of the buffer */
918
0
  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
919
0
}
920
921
922
/*
923
 * Release all objects belonging to a specified pool.
924
 */
925
926
METHODDEF(void)
927
free_pool (j_common_ptr cinfo, int pool_id)
928
0
{
929
0
  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
930
0
  small_pool_ptr shdr_ptr;
931
0
  large_pool_ptr lhdr_ptr;
932
0
  size_t space_freed;
933
934
0
  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
935
0
    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
936
937
#ifdef MEM_STATS
938
  if (cinfo->err->trace_level > 1)
939
    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
940
#endif
941
942
  /* If freeing IMAGE pool, close any virtual arrays first */
943
0
  if (pool_id == JPOOL_IMAGE) {
944
0
    jvirt_sarray_ptr sptr;
945
0
    jvirt_barray_ptr bptr;
946
947
0
    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
948
0
      if (sptr->b_s_open) { /* there may be no backing store */
949
0
  sptr->b_s_open = FALSE; /* prevent recursive close if error */
950
0
  (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
951
0
      }
952
0
    }
953
0
    mem->virt_sarray_list = NULL;
954
0
    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
955
0
      if (bptr->b_s_open) { /* there may be no backing store */
956
0
  bptr->b_s_open = FALSE; /* prevent recursive close if error */
957
0
  (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
958
0
      }
959
0
    }
960
0
    mem->virt_barray_list = NULL;
961
0
  }
962
963
  /* Release large objects */
964
0
  lhdr_ptr = mem->large_list[pool_id];
965
0
  mem->large_list[pool_id] = NULL;
966
967
0
  while (lhdr_ptr != NULL) {
968
0
    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
969
0
    space_freed = lhdr_ptr->hdr.bytes_used +
970
0
      lhdr_ptr->hdr.bytes_left +
971
0
      SIZEOF(large_pool_hdr);
972
0
    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
973
0
    mem->total_space_allocated -= space_freed;
974
0
    lhdr_ptr = next_lhdr_ptr;
975
0
  }
976
977
  /* Release small objects */
978
0
  shdr_ptr = mem->small_list[pool_id];
979
0
  mem->small_list[pool_id] = NULL;
980
981
0
  while (shdr_ptr != NULL) {
982
0
    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
983
0
    space_freed = shdr_ptr->hdr.bytes_used +
984
0
      shdr_ptr->hdr.bytes_left +
985
0
      SIZEOF(small_pool_hdr);
986
0
    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
987
0
    mem->total_space_allocated -= space_freed;
988
0
    shdr_ptr = next_shdr_ptr;
989
0
  }
990
0
}
991
992
993
/*
994
 * Close up shop entirely.
995
 * Note that this cannot be called unless cinfo->mem is non-NULL.
996
 */
997
998
METHODDEF(void)
999
self_destruct (j_common_ptr cinfo)
1000
0
{
1001
0
  int pool;
1002
1003
  /* Close all backing store, release all memory.
1004
   * Releasing pools in reverse order might help avoid fragmentation
1005
   * with some (brain-damaged) malloc libraries.
1006
   */
1007
0
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1008
0
    free_pool(cinfo, pool);
1009
0
  }
1010
1011
  /* Release the memory manager control block too. */
1012
0
  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1013
0
  cinfo->mem = NULL;    /* ensures I will be called only once */
1014
1015
0
  jpeg_mem_term(cinfo);   /* system-dependent cleanup */
1016
0
}
1017
1018
1019
/*
1020
 * Memory manager initialization.
1021
 * When this is called, only the error manager pointer is valid in cinfo!
1022
 */
1023
1024
GLOBAL(void)
1025
jinit_memory_mgr (j_common_ptr cinfo)
1026
0
{
1027
0
  my_mem_ptr mem;
1028
0
  long max_to_use;
1029
0
  int pool;
1030
0
  size_t test_mac;
1031
1032
0
  cinfo->mem = NULL;    /* for safety if init fails */
1033
1034
  /* Check for configuration errors.
1035
   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1036
   * doesn't reflect any real hardware alignment requirement.
1037
   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1038
   * in common if and only if X is a power of 2, ie has only one one-bit.
1039
   * Some compilers may give an "unreachable code" warning here; ignore it.
1040
   */
1041
0
  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1042
0
    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1043
  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1044
   * a multiple of SIZEOF(ALIGN_TYPE).
1045
   * Again, an "unreachable code" warning may be ignored here.
1046
   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1047
   */
1048
0
  test_mac = (size_t) MAX_ALLOC_CHUNK;
1049
0
  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1050
0
      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1051
0
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1052
1053
0
  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1054
1055
  /* Attempt to allocate memory manager's control block */
1056
0
  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1057
1058
0
  if (mem == NULL) {
1059
0
    jpeg_mem_term(cinfo); /* system-dependent cleanup */
1060
0
    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1061
0
  }
1062
1063
  /* OK, fill in the method pointers */
1064
0
  mem->pub.alloc_small = alloc_small;
1065
0
  mem->pub.alloc_large = alloc_large;
1066
0
  mem->pub.alloc_sarray = alloc_sarray;
1067
0
  mem->pub.alloc_barray = alloc_barray;
1068
0
  mem->pub.request_virt_sarray = request_virt_sarray;
1069
0
  mem->pub.request_virt_barray = request_virt_barray;
1070
0
  mem->pub.realize_virt_arrays = realize_virt_arrays;
1071
0
  mem->pub.access_virt_sarray = access_virt_sarray;
1072
0
  mem->pub.access_virt_barray = access_virt_barray;
1073
0
  mem->pub.free_pool = free_pool;
1074
0
  mem->pub.self_destruct = self_destruct;
1075
1076
  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1077
0
  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1078
1079
  /* Initialize working state */
1080
0
  mem->pub.max_memory_to_use = max_to_use;
1081
1082
0
  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1083
0
    mem->small_list[pool] = NULL;
1084
0
    mem->large_list[pool] = NULL;
1085
0
  }
1086
0
  mem->virt_sarray_list = NULL;
1087
0
  mem->virt_barray_list = NULL;
1088
1089
0
  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1090
1091
  /* Declare ourselves open for business */
1092
0
  cinfo->mem = &mem->pub;
1093
1094
  /* Check for an environment variable JPEGMEM; if found, override the
1095
   * default max_memory setting from jpeg_mem_init.  Note that the
1096
   * surrounding application may again override this value.
1097
   * If your system doesn't support getenv(), define NO_GETENV to disable
1098
   * this feature.
1099
   */
1100
0
#ifndef NO_GETENV
1101
0
  { char * memenv;
1102
1103
0
    if ((memenv = getenv("JPEGMEM")) != NULL) {
1104
0
      char ch = 'x';
1105
1106
0
      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1107
0
  if (ch == 'm' || ch == 'M')
1108
0
    max_to_use *= 1000L;
1109
0
  mem->pub.max_memory_to_use = max_to_use * 1000L;
1110
0
      }
1111
0
    }
1112
0
  }
1113
0
#endif
1114
1115
0
}