Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jquant2.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * jquant2.c
3
 *
4
 * Copyright (C) 1991-1996, Thomas G. Lane.
5
 * Modified 2011 by Guido Vollbeding.
6
 * This file is part of the Independent JPEG Group's software.
7
 * For conditions of distribution and use, see the accompanying README file.
8
 *
9
 * This file contains 2-pass color quantization (color mapping) routines.
10
 * These routines provide selection of a custom color map for an image,
11
 * followed by mapping of the image to that color map, with optional
12
 * Floyd-Steinberg dithering.
13
 * It is also possible to use just the second pass to map to an arbitrary
14
 * externally-given color map.
15
 *
16
 * Note: ordered dithering is not supported, since there isn't any fast
17
 * way to compute intercolor distances; it's unclear that ordered dither's
18
 * fundamental assumptions even hold with an irregularly spaced color map.
19
 */
20
21
#define JPEG_INTERNALS
22
#include "jinclude.h"
23
#include "jpeglib.h"
24
25
#ifdef QUANT_2PASS_SUPPORTED
26
27
28
/*
29
 * This module implements the well-known Heckbert paradigm for color
30
 * quantization.  Most of the ideas used here can be traced back to
31
 * Heckbert's seminal paper
32
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
33
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
34
 *
35
 * In the first pass over the image, we accumulate a histogram showing the
36
 * usage count of each possible color.  To keep the histogram to a reasonable
37
 * size, we reduce the precision of the input; typical practice is to retain
38
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
39
 * in the same histogram cell.
40
 *
41
 * Next, the color-selection step begins with a box representing the whole
42
 * color space, and repeatedly splits the "largest" remaining box until we
43
 * have as many boxes as desired colors.  Then the mean color in each
44
 * remaining box becomes one of the possible output colors.
45
 * 
46
 * The second pass over the image maps each input pixel to the closest output
47
 * color (optionally after applying a Floyd-Steinberg dithering correction).
48
 * This mapping is logically trivial, but making it go fast enough requires
49
 * considerable care.
50
 *
51
 * Heckbert-style quantizers vary a good deal in their policies for choosing
52
 * the "largest" box and deciding where to cut it.  The particular policies
53
 * used here have proved out well in experimental comparisons, but better ones
54
 * may yet be found.
55
 *
56
 * In earlier versions of the IJG code, this module quantized in YCbCr color
57
 * space, processing the raw upsampled data without a color conversion step.
58
 * This allowed the color conversion math to be done only once per colormap
59
 * entry, not once per pixel.  However, that optimization precluded other
60
 * useful optimizations (such as merging color conversion with upsampling)
61
 * and it also interfered with desired capabilities such as quantizing to an
62
 * externally-supplied colormap.  We have therefore abandoned that approach.
63
 * The present code works in the post-conversion color space, typically RGB.
64
 *
65
 * To improve the visual quality of the results, we actually work in scaled
66
 * RGB space, giving G distances more weight than R, and R in turn more than
67
 * B.  To do everything in integer math, we must use integer scale factors.
68
 * The 2/3/1 scale factors used here correspond loosely to the relative
69
 * weights of the colors in the NTSC grayscale equation.
70
 * If you want to use this code to quantize a non-RGB color space, you'll
71
 * probably need to change these scale factors.
72
 */
73
74
0
#define R_SCALE 2    /* scale R distances by this much */
75
0
#define G_SCALE 3    /* scale G distances by this much */
76
0
#define B_SCALE 1    /* and B by this much */
77
78
/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
79
 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
80
 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
81
 * you'll get compile errors until you extend this logic.  In that case
82
 * you'll probably want to tweak the histogram sizes too.
83
 */
84
85
#if RGB_RED == 0
86
0
#define C0_SCALE R_SCALE
87
#endif
88
#if RGB_BLUE == 0
89
#define C0_SCALE B_SCALE
90
#endif
91
#if RGB_GREEN == 1
92
0
#define C1_SCALE G_SCALE
93
#endif
94
#if RGB_RED == 2
95
#define C2_SCALE R_SCALE
96
#endif
97
#if RGB_BLUE == 2
98
0
#define C2_SCALE B_SCALE
99
#endif
100
101
102
/*
103
 * First we have the histogram data structure and routines for creating it.
104
 *
105
 * The number of bits of precision can be adjusted by changing these symbols.
106
 * We recommend keeping 6 bits for G and 5 each for R and B.
107
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
108
 * better results; if you are short of memory, 5 bits all around will save
109
 * some space but degrade the results.
110
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
111
 * (preferably unsigned long) for each cell.  In practice this is overkill;
112
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
113
 * and clamping those that do overflow to the maximum value will give close-
114
 * enough results.  This reduces the recommended histogram size from 256Kb
115
 * to 128Kb, which is a useful savings on PC-class machines.
116
 * (In the second pass the histogram space is re-used for pixel mapping data;
117
 * in that capacity, each cell must be able to store zero to the number of
118
 * desired colors.  16 bits/cell is plenty for that too.)
119
 * Since the JPEG code is intended to run in small memory model on 80x86
120
 * machines, we can't just allocate the histogram in one chunk.  Instead
121
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
122
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
123
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
124
 * on 80x86 machines, the pointer row is in near memory but the actual
125
 * arrays are in far memory (same arrangement as we use for image arrays).
126
 */
127
128
0
#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
129
130
/* These will do the right thing for either R,G,B or B,G,R color order,
131
 * but you may not like the results for other color orders.
132
 */
133
0
#define HIST_C0_BITS  5    /* bits of precision in R/B histogram */
134
0
#define HIST_C1_BITS  6    /* bits of precision in G histogram */
135
0
#define HIST_C2_BITS  5    /* bits of precision in B/R histogram */
136
137
/* Number of elements along histogram axes. */
138
0
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
139
0
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
140
0
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
141
142
/* These are the amounts to shift an input value to get a histogram index. */
143
0
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
144
0
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
145
0
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
146
147
148
typedef UINT16 histcell;  /* histogram cell; prefer an unsigned type */
149
150
typedef histcell FAR * histptr; /* for pointers to histogram cells */
151
152
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
153
typedef hist1d FAR * hist2d;  /* type for the 2nd-level pointers */
154
typedef hist2d * hist3d;  /* type for top-level pointer */
155
156
157
/* Declarations for Floyd-Steinberg dithering.
158
 *
159
 * Errors are accumulated into the array fserrors[], at a resolution of
160
 * 1/16th of a pixel count.  The error at a given pixel is propagated
161
 * to its not-yet-processed neighbors using the standard F-S fractions,
162
 *    ... (here)  7/16
163
 *    3/16  5/16  1/16
164
 * We work left-to-right on even rows, right-to-left on odd rows.
165
 *
166
 * We can get away with a single array (holding one row's worth of errors)
167
 * by using it to store the current row's errors at pixel columns not yet
168
 * processed, but the next row's errors at columns already processed.  We
169
 * need only a few extra variables to hold the errors immediately around the
170
 * current column.  (If we are lucky, those variables are in registers, but
171
 * even if not, they're probably cheaper to access than array elements are.)
172
 *
173
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
174
 * each end saves us from special-casing the first and last pixels.
175
 * Each entry is three values long, one value for each color component.
176
 *
177
 * Note: on a wide image, we might not have enough room in a PC's near data
178
 * segment to hold the error array; so it is allocated with alloc_large.
179
 */
180
181
#if BITS_IN_JSAMPLE == 8
182
typedef INT16 FSERROR;    /* 16 bits should be enough */
183
typedef int LOCFSERROR;   /* use 'int' for calculation temps */
184
#else
185
typedef INT32 FSERROR;    /* may need more than 16 bits */
186
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
187
#endif
188
189
typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
190
191
192
/* Private subobject */
193
194
typedef struct {
195
  struct jpeg_color_quantizer pub; /* public fields */
196
197
  /* Space for the eventually created colormap is stashed here */
198
  JSAMPARRAY sv_colormap; /* colormap allocated at init time */
199
  int desired;      /* desired # of colors = size of colormap */
200
201
  /* Variables for accumulating image statistics */
202
  hist3d histogram;   /* pointer to the histogram */
203
204
  boolean needs_zeroed;   /* TRUE if next pass must zero histogram */
205
206
  /* Variables for Floyd-Steinberg dithering */
207
  FSERRPTR fserrors;    /* accumulated errors */
208
  boolean on_odd_row;   /* flag to remember which row we are on */
209
  int * error_limiter;    /* table for clamping the applied error */
210
} my_cquantizer;
211
212
typedef my_cquantizer * my_cquantize_ptr;
213
214
215
/*
216
 * Prescan some rows of pixels.
217
 * In this module the prescan simply updates the histogram, which has been
218
 * initialized to zeroes by start_pass.
219
 * An output_buf parameter is required by the method signature, but no data
220
 * is actually output (in fact the buffer controller is probably passing a
221
 * NULL pointer).
222
 */
223
224
METHODDEF(void)
225
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
226
      JSAMPARRAY output_buf, int num_rows)
227
0
{
228
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
229
0
  register JSAMPROW ptr;
230
0
  register histptr histp;
231
0
  register hist3d histogram = cquantize->histogram;
232
0
  int row;
233
0
  JDIMENSION col;
234
0
  JDIMENSION width = cinfo->output_width;
235
236
0
  for (row = 0; row < num_rows; row++) {
237
0
    ptr = input_buf[row];
238
0
    for (col = width; col > 0; col--) {
239
      /* get pixel value and index into the histogram */
240
0
      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
241
0
       [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
242
0
       [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
243
      /* increment, check for overflow and undo increment if so. */
244
0
      if (++(*histp) <= 0)
245
0
  (*histp)--;
246
0
      ptr += 3;
247
0
    }
248
0
  }
249
0
}
250
251
252
/*
253
 * Next we have the really interesting routines: selection of a colormap
254
 * given the completed histogram.
255
 * These routines work with a list of "boxes", each representing a rectangular
256
 * subset of the input color space (to histogram precision).
257
 */
258
259
typedef struct {
260
  /* The bounds of the box (inclusive); expressed as histogram indexes */
261
  int c0min, c0max;
262
  int c1min, c1max;
263
  int c2min, c2max;
264
  /* The volume (actually 2-norm) of the box */
265
  INT32 volume;
266
  /* The number of nonzero histogram cells within this box */
267
  long colorcount;
268
} box;
269
270
typedef box * boxptr;
271
272
273
LOCAL(boxptr)
274
find_biggest_color_pop (boxptr boxlist, int numboxes)
275
/* Find the splittable box with the largest color population */
276
/* Returns NULL if no splittable boxes remain */
277
0
{
278
0
  register boxptr boxp;
279
0
  register int i;
280
0
  register long maxc = 0;
281
0
  boxptr which = NULL;
282
  
283
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
284
0
    if (boxp->colorcount > maxc && boxp->volume > 0) {
285
0
      which = boxp;
286
0
      maxc = boxp->colorcount;
287
0
    }
288
0
  }
289
0
  return which;
290
0
}
291
292
293
LOCAL(boxptr)
294
find_biggest_volume (boxptr boxlist, int numboxes)
295
/* Find the splittable box with the largest (scaled) volume */
296
/* Returns NULL if no splittable boxes remain */
297
0
{
298
0
  register boxptr boxp;
299
0
  register int i;
300
0
  register INT32 maxv = 0;
301
0
  boxptr which = NULL;
302
  
303
0
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
304
0
    if (boxp->volume > maxv) {
305
0
      which = boxp;
306
0
      maxv = boxp->volume;
307
0
    }
308
0
  }
309
0
  return which;
310
0
}
311
312
313
LOCAL(void)
314
update_box (j_decompress_ptr cinfo, boxptr boxp)
315
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
316
/* and recompute its volume and population */
317
0
{
318
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
319
0
  hist3d histogram = cquantize->histogram;
320
0
  histptr histp;
321
0
  int c0,c1,c2;
322
0
  int c0min,c0max,c1min,c1max,c2min,c2max;
323
0
  INT32 dist0,dist1,dist2;
324
0
  long ccount;
325
  
326
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
327
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
328
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
329
  
330
0
  if (c0max > c0min)
331
0
    for (c0 = c0min; c0 <= c0max; c0++)
332
0
      for (c1 = c1min; c1 <= c1max; c1++) {
333
0
  histp = & histogram[c0][c1][c2min];
334
0
  for (c2 = c2min; c2 <= c2max; c2++)
335
0
    if (*histp++ != 0) {
336
0
      boxp->c0min = c0min = c0;
337
0
      goto have_c0min;
338
0
    }
339
0
      }
340
0
 have_c0min:
341
0
  if (c0max > c0min)
342
0
    for (c0 = c0max; c0 >= c0min; c0--)
343
0
      for (c1 = c1min; c1 <= c1max; c1++) {
344
0
  histp = & histogram[c0][c1][c2min];
345
0
  for (c2 = c2min; c2 <= c2max; c2++)
346
0
    if (*histp++ != 0) {
347
0
      boxp->c0max = c0max = c0;
348
0
      goto have_c0max;
349
0
    }
350
0
      }
351
0
 have_c0max:
352
0
  if (c1max > c1min)
353
0
    for (c1 = c1min; c1 <= c1max; c1++)
354
0
      for (c0 = c0min; c0 <= c0max; c0++) {
355
0
  histp = & histogram[c0][c1][c2min];
356
0
  for (c2 = c2min; c2 <= c2max; c2++)
357
0
    if (*histp++ != 0) {
358
0
      boxp->c1min = c1min = c1;
359
0
      goto have_c1min;
360
0
    }
361
0
      }
362
0
 have_c1min:
363
0
  if (c1max > c1min)
364
0
    for (c1 = c1max; c1 >= c1min; c1--)
365
0
      for (c0 = c0min; c0 <= c0max; c0++) {
366
0
  histp = & histogram[c0][c1][c2min];
367
0
  for (c2 = c2min; c2 <= c2max; c2++)
368
0
    if (*histp++ != 0) {
369
0
      boxp->c1max = c1max = c1;
370
0
      goto have_c1max;
371
0
    }
372
0
      }
373
0
 have_c1max:
374
0
  if (c2max > c2min)
375
0
    for (c2 = c2min; c2 <= c2max; c2++)
376
0
      for (c0 = c0min; c0 <= c0max; c0++) {
377
0
  histp = & histogram[c0][c1min][c2];
378
0
  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
379
0
    if (*histp != 0) {
380
0
      boxp->c2min = c2min = c2;
381
0
      goto have_c2min;
382
0
    }
383
0
      }
384
0
 have_c2min:
385
0
  if (c2max > c2min)
386
0
    for (c2 = c2max; c2 >= c2min; c2--)
387
0
      for (c0 = c0min; c0 <= c0max; c0++) {
388
0
  histp = & histogram[c0][c1min][c2];
389
0
  for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
390
0
    if (*histp != 0) {
391
0
      boxp->c2max = c2max = c2;
392
0
      goto have_c2max;
393
0
    }
394
0
      }
395
0
 have_c2max:
396
397
  /* Update box volume.
398
   * We use 2-norm rather than real volume here; this biases the method
399
   * against making long narrow boxes, and it has the side benefit that
400
   * a box is splittable iff norm > 0.
401
   * Since the differences are expressed in histogram-cell units,
402
   * we have to shift back to JSAMPLE units to get consistent distances;
403
   * after which, we scale according to the selected distance scale factors.
404
   */
405
0
  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
406
0
  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
407
0
  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
408
0
  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
409
  
410
  /* Now scan remaining volume of box and compute population */
411
0
  ccount = 0;
412
0
  for (c0 = c0min; c0 <= c0max; c0++)
413
0
    for (c1 = c1min; c1 <= c1max; c1++) {
414
0
      histp = & histogram[c0][c1][c2min];
415
0
      for (c2 = c2min; c2 <= c2max; c2++, histp++)
416
0
  if (*histp != 0) {
417
0
    ccount++;
418
0
  }
419
0
    }
420
0
  boxp->colorcount = ccount;
421
0
}
422
423
424
LOCAL(int)
425
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
426
      int desired_colors)
427
/* Repeatedly select and split the largest box until we have enough boxes */
428
0
{
429
0
  int n,lb;
430
0
  int c0,c1,c2,cmax;
431
0
  register boxptr b1,b2;
432
433
0
  while (numboxes < desired_colors) {
434
    /* Select box to split.
435
     * Current algorithm: by population for first half, then by volume.
436
     */
437
0
    if (numboxes*2 <= desired_colors) {
438
0
      b1 = find_biggest_color_pop(boxlist, numboxes);
439
0
    } else {
440
0
      b1 = find_biggest_volume(boxlist, numboxes);
441
0
    }
442
0
    if (b1 == NULL)   /* no splittable boxes left! */
443
0
      break;
444
0
    b2 = &boxlist[numboxes];  /* where new box will go */
445
    /* Copy the color bounds to the new box. */
446
0
    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
447
0
    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
448
    /* Choose which axis to split the box on.
449
     * Current algorithm: longest scaled axis.
450
     * See notes in update_box about scaling distances.
451
     */
452
0
    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
453
0
    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
454
0
    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
455
    /* We want to break any ties in favor of green, then red, blue last.
456
     * This code does the right thing for R,G,B or B,G,R color orders only.
457
     */
458
0
#if RGB_RED == 0
459
0
    cmax = c1; n = 1;
460
0
    if (c0 > cmax) { cmax = c0; n = 0; }
461
0
    if (c2 > cmax) { n = 2; }
462
#else
463
    cmax = c1; n = 1;
464
    if (c2 > cmax) { cmax = c2; n = 2; }
465
    if (c0 > cmax) { n = 0; }
466
#endif
467
    /* Choose split point along selected axis, and update box bounds.
468
     * Current algorithm: split at halfway point.
469
     * (Since the box has been shrunk to minimum volume,
470
     * any split will produce two nonempty subboxes.)
471
     * Note that lb value is max for lower box, so must be < old max.
472
     */
473
0
    switch (n) {
474
0
    case 0:
475
0
      lb = (b1->c0max + b1->c0min) / 2;
476
0
      b1->c0max = lb;
477
0
      b2->c0min = lb+1;
478
0
      break;
479
0
    case 1:
480
0
      lb = (b1->c1max + b1->c1min) / 2;
481
0
      b1->c1max = lb;
482
0
      b2->c1min = lb+1;
483
0
      break;
484
0
    case 2:
485
0
      lb = (b1->c2max + b1->c2min) / 2;
486
0
      b1->c2max = lb;
487
0
      b2->c2min = lb+1;
488
0
      break;
489
0
    }
490
    /* Update stats for boxes */
491
0
    update_box(cinfo, b1);
492
0
    update_box(cinfo, b2);
493
0
    numboxes++;
494
0
  }
495
0
  return numboxes;
496
0
}
497
498
499
LOCAL(void)
500
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
501
/* Compute representative color for a box, put it in colormap[icolor] */
502
0
{
503
  /* Current algorithm: mean weighted by pixels (not colors) */
504
  /* Note it is important to get the rounding correct! */
505
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
506
0
  hist3d histogram = cquantize->histogram;
507
0
  histptr histp;
508
0
  int c0,c1,c2;
509
0
  int c0min,c0max,c1min,c1max,c2min,c2max;
510
0
  long count;
511
0
  long total = 0;
512
0
  long c0total = 0;
513
0
  long c1total = 0;
514
0
  long c2total = 0;
515
  
516
0
  c0min = boxp->c0min;  c0max = boxp->c0max;
517
0
  c1min = boxp->c1min;  c1max = boxp->c1max;
518
0
  c2min = boxp->c2min;  c2max = boxp->c2max;
519
  
520
0
  for (c0 = c0min; c0 <= c0max; c0++)
521
0
    for (c1 = c1min; c1 <= c1max; c1++) {
522
0
      histp = & histogram[c0][c1][c2min];
523
0
      for (c2 = c2min; c2 <= c2max; c2++) {
524
0
  if ((count = *histp++) != 0) {
525
0
    total += count;
526
0
    c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
527
0
    c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
528
0
    c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
529
0
  }
530
0
      }
531
0
    }
532
  
533
0
  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
534
0
  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
535
0
  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
536
0
}
537
538
539
LOCAL(void)
540
select_colors (j_decompress_ptr cinfo, int desired_colors)
541
/* Master routine for color selection */
542
0
{
543
0
  boxptr boxlist;
544
0
  int numboxes;
545
0
  int i;
546
547
  /* Allocate workspace for box list */
548
0
  boxlist = (boxptr) (*cinfo->mem->alloc_small)
549
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
550
  /* Initialize one box containing whole space */
551
0
  numboxes = 1;
552
0
  boxlist[0].c0min = 0;
553
0
  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
554
0
  boxlist[0].c1min = 0;
555
0
  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
556
0
  boxlist[0].c2min = 0;
557
0
  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
558
  /* Shrink it to actually-used volume and set its statistics */
559
0
  update_box(cinfo, & boxlist[0]);
560
  /* Perform median-cut to produce final box list */
561
0
  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
562
  /* Compute the representative color for each box, fill colormap */
563
0
  for (i = 0; i < numboxes; i++)
564
0
    compute_color(cinfo, & boxlist[i], i);
565
0
  cinfo->actual_number_of_colors = numboxes;
566
0
  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
567
0
}
568
569
570
/*
571
 * These routines are concerned with the time-critical task of mapping input
572
 * colors to the nearest color in the selected colormap.
573
 *
574
 * We re-use the histogram space as an "inverse color map", essentially a
575
 * cache for the results of nearest-color searches.  All colors within a
576
 * histogram cell will be mapped to the same colormap entry, namely the one
577
 * closest to the cell's center.  This may not be quite the closest entry to
578
 * the actual input color, but it's almost as good.  A zero in the cache
579
 * indicates we haven't found the nearest color for that cell yet; the array
580
 * is cleared to zeroes before starting the mapping pass.  When we find the
581
 * nearest color for a cell, its colormap index plus one is recorded in the
582
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
583
 * when they need to use an unfilled entry in the cache.
584
 *
585
 * Our method of efficiently finding nearest colors is based on the "locally
586
 * sorted search" idea described by Heckbert and on the incremental distance
587
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
588
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
589
 * the distances from a given colormap entry to each cell of the histogram can
590
 * be computed quickly using an incremental method: the differences between
591
 * distances to adjacent cells themselves differ by a constant.  This allows a
592
 * fairly fast implementation of the "brute force" approach of computing the
593
 * distance from every colormap entry to every histogram cell.  Unfortunately,
594
 * it needs a work array to hold the best-distance-so-far for each histogram
595
 * cell (because the inner loop has to be over cells, not colormap entries).
596
 * The work array elements have to be INT32s, so the work array would need
597
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
598
 *
599
 * To get around these problems, we apply Thomas' method to compute the
600
 * nearest colors for only the cells within a small subbox of the histogram.
601
 * The work array need be only as big as the subbox, so the memory usage
602
 * problem is solved.  Furthermore, we need not fill subboxes that are never
603
 * referenced in pass2; many images use only part of the color gamut, so a
604
 * fair amount of work is saved.  An additional advantage of this
605
 * approach is that we can apply Heckbert's locality criterion to quickly
606
 * eliminate colormap entries that are far away from the subbox; typically
607
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
608
 * and we need not compute their distances to individual cells in the subbox.
609
 * The speed of this approach is heavily influenced by the subbox size: too
610
 * small means too much overhead, too big loses because Heckbert's criterion
611
 * can't eliminate as many colormap entries.  Empirically the best subbox
612
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
613
 *
614
 * Thomas' article also describes a refined method which is asymptotically
615
 * faster than the brute-force method, but it is also far more complex and
616
 * cannot efficiently be applied to small subboxes.  It is therefore not
617
 * useful for programs intended to be portable to DOS machines.  On machines
618
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
619
 * refined method might be faster than the present code --- but then again,
620
 * it might not be any faster, and it's certainly more complicated.
621
 */
622
623
624
/* log2(histogram cells in update box) for each axis; this can be adjusted */
625
0
#define BOX_C0_LOG  (HIST_C0_BITS-3)
626
0
#define BOX_C1_LOG  (HIST_C1_BITS-3)
627
0
#define BOX_C2_LOG  (HIST_C2_BITS-3)
628
629
0
#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
630
0
#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
631
0
#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
632
633
0
#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
634
0
#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
635
0
#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
636
637
638
/*
639
 * The next three routines implement inverse colormap filling.  They could
640
 * all be folded into one big routine, but splitting them up this way saves
641
 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
642
 * and may allow some compilers to produce better code by registerizing more
643
 * inner-loop variables.
644
 */
645
646
LOCAL(int)
647
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
648
        JSAMPLE colorlist[])
649
/* Locate the colormap entries close enough to an update box to be candidates
650
 * for the nearest entry to some cell(s) in the update box.  The update box
651
 * is specified by the center coordinates of its first cell.  The number of
652
 * candidate colormap entries is returned, and their colormap indexes are
653
 * placed in colorlist[].
654
 * This routine uses Heckbert's "locally sorted search" criterion to select
655
 * the colors that need further consideration.
656
 */
657
0
{
658
0
  int numcolors = cinfo->actual_number_of_colors;
659
0
  int maxc0, maxc1, maxc2;
660
0
  int centerc0, centerc1, centerc2;
661
0
  int i, x, ncolors;
662
0
  INT32 minmaxdist, min_dist, max_dist, tdist;
663
0
  INT32 mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
664
665
  /* Compute true coordinates of update box's upper corner and center.
666
   * Actually we compute the coordinates of the center of the upper-corner
667
   * histogram cell, which are the upper bounds of the volume we care about.
668
   * Note that since ">>" rounds down, the "center" values may be closer to
669
   * min than to max; hence comparisons to them must be "<=", not "<".
670
   */
671
0
  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
672
0
  centerc0 = (minc0 + maxc0) >> 1;
673
0
  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
674
0
  centerc1 = (minc1 + maxc1) >> 1;
675
0
  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
676
0
  centerc2 = (minc2 + maxc2) >> 1;
677
678
  /* For each color in colormap, find:
679
   *  1. its minimum squared-distance to any point in the update box
680
   *     (zero if color is within update box);
681
   *  2. its maximum squared-distance to any point in the update box.
682
   * Both of these can be found by considering only the corners of the box.
683
   * We save the minimum distance for each color in mindist[];
684
   * only the smallest maximum distance is of interest.
685
   */
686
0
  minmaxdist = 0x7FFFFFFFL;
687
688
0
  for (i = 0; i < numcolors; i++) {
689
    /* We compute the squared-c0-distance term, then add in the other two. */
690
0
    x = GETJSAMPLE(cinfo->colormap[0][i]);
691
0
    if (x < minc0) {
692
0
      tdist = (x - minc0) * C0_SCALE;
693
0
      min_dist = tdist*tdist;
694
0
      tdist = (x - maxc0) * C0_SCALE;
695
0
      max_dist = tdist*tdist;
696
0
    } else if (x > maxc0) {
697
0
      tdist = (x - maxc0) * C0_SCALE;
698
0
      min_dist = tdist*tdist;
699
0
      tdist = (x - minc0) * C0_SCALE;
700
0
      max_dist = tdist*tdist;
701
0
    } else {
702
      /* within cell range so no contribution to min_dist */
703
0
      min_dist = 0;
704
0
      if (x <= centerc0) {
705
0
  tdist = (x - maxc0) * C0_SCALE;
706
0
  max_dist = tdist*tdist;
707
0
      } else {
708
0
  tdist = (x - minc0) * C0_SCALE;
709
0
  max_dist = tdist*tdist;
710
0
      }
711
0
    }
712
713
0
    x = GETJSAMPLE(cinfo->colormap[1][i]);
714
0
    if (x < minc1) {
715
0
      tdist = (x - minc1) * C1_SCALE;
716
0
      min_dist += tdist*tdist;
717
0
      tdist = (x - maxc1) * C1_SCALE;
718
0
      max_dist += tdist*tdist;
719
0
    } else if (x > maxc1) {
720
0
      tdist = (x - maxc1) * C1_SCALE;
721
0
      min_dist += tdist*tdist;
722
0
      tdist = (x - minc1) * C1_SCALE;
723
0
      max_dist += tdist*tdist;
724
0
    } else {
725
      /* within cell range so no contribution to min_dist */
726
0
      if (x <= centerc1) {
727
0
  tdist = (x - maxc1) * C1_SCALE;
728
0
  max_dist += tdist*tdist;
729
0
      } else {
730
0
  tdist = (x - minc1) * C1_SCALE;
731
0
  max_dist += tdist*tdist;
732
0
      }
733
0
    }
734
735
0
    x = GETJSAMPLE(cinfo->colormap[2][i]);
736
0
    if (x < minc2) {
737
0
      tdist = (x - minc2) * C2_SCALE;
738
0
      min_dist += tdist*tdist;
739
0
      tdist = (x - maxc2) * C2_SCALE;
740
0
      max_dist += tdist*tdist;
741
0
    } else if (x > maxc2) {
742
0
      tdist = (x - maxc2) * C2_SCALE;
743
0
      min_dist += tdist*tdist;
744
0
      tdist = (x - minc2) * C2_SCALE;
745
0
      max_dist += tdist*tdist;
746
0
    } else {
747
      /* within cell range so no contribution to min_dist */
748
0
      if (x <= centerc2) {
749
0
  tdist = (x - maxc2) * C2_SCALE;
750
0
  max_dist += tdist*tdist;
751
0
      } else {
752
0
  tdist = (x - minc2) * C2_SCALE;
753
0
  max_dist += tdist*tdist;
754
0
      }
755
0
    }
756
757
0
    mindist[i] = min_dist;  /* save away the results */
758
0
    if (max_dist < minmaxdist)
759
0
      minmaxdist = max_dist;
760
0
  }
761
762
  /* Now we know that no cell in the update box is more than minmaxdist
763
   * away from some colormap entry.  Therefore, only colors that are
764
   * within minmaxdist of some part of the box need be considered.
765
   */
766
0
  ncolors = 0;
767
0
  for (i = 0; i < numcolors; i++) {
768
0
    if (mindist[i] <= minmaxdist)
769
0
      colorlist[ncolors++] = (JSAMPLE) i;
770
0
  }
771
0
  return ncolors;
772
0
}
773
774
775
LOCAL(void)
776
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
777
      int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
778
/* Find the closest colormap entry for each cell in the update box,
779
 * given the list of candidate colors prepared by find_nearby_colors.
780
 * Return the indexes of the closest entries in the bestcolor[] array.
781
 * This routine uses Thomas' incremental distance calculation method to
782
 * find the distance from a colormap entry to successive cells in the box.
783
 */
784
0
{
785
0
  int ic0, ic1, ic2;
786
0
  int i, icolor;
787
0
  register INT32 * bptr;  /* pointer into bestdist[] array */
788
0
  JSAMPLE * cptr;   /* pointer into bestcolor[] array */
789
0
  INT32 dist0, dist1;   /* initial distance values */
790
0
  register INT32 dist2;   /* current distance in inner loop */
791
0
  INT32 xx0, xx1;   /* distance increments */
792
0
  register INT32 xx2;
793
0
  INT32 inc0, inc1, inc2; /* initial values for increments */
794
  /* This array holds the distance to the nearest-so-far color for each cell */
795
0
  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
796
797
  /* Initialize best-distance for each cell of the update box */
798
0
  bptr = bestdist;
799
0
  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
800
0
    *bptr++ = 0x7FFFFFFFL;
801
  
802
  /* For each color selected by find_nearby_colors,
803
   * compute its distance to the center of each cell in the box.
804
   * If that's less than best-so-far, update best distance and color number.
805
   */
806
  
807
  /* Nominal steps between cell centers ("x" in Thomas article) */
808
0
#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
809
0
#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
810
0
#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
811
  
812
0
  for (i = 0; i < numcolors; i++) {
813
0
    icolor = GETJSAMPLE(colorlist[i]);
814
    /* Compute (square of) distance from minc0/c1/c2 to this color */
815
0
    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
816
0
    dist0 = inc0*inc0;
817
0
    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
818
0
    dist0 += inc1*inc1;
819
0
    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
820
0
    dist0 += inc2*inc2;
821
    /* Form the initial difference increments */
822
0
    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
823
0
    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
824
0
    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
825
    /* Now loop over all cells in box, updating distance per Thomas method */
826
0
    bptr = bestdist;
827
0
    cptr = bestcolor;
828
0
    xx0 = inc0;
829
0
    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
830
0
      dist1 = dist0;
831
0
      xx1 = inc1;
832
0
      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
833
0
  dist2 = dist1;
834
0
  xx2 = inc2;
835
0
  for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
836
0
    if (dist2 < *bptr) {
837
0
      *bptr = dist2;
838
0
      *cptr = (JSAMPLE) icolor;
839
0
    }
840
0
    dist2 += xx2;
841
0
    xx2 += 2 * STEP_C2 * STEP_C2;
842
0
    bptr++;
843
0
    cptr++;
844
0
  }
845
0
  dist1 += xx1;
846
0
  xx1 += 2 * STEP_C1 * STEP_C1;
847
0
      }
848
0
      dist0 += xx0;
849
0
      xx0 += 2 * STEP_C0 * STEP_C0;
850
0
    }
851
0
  }
852
0
}
853
854
855
LOCAL(void)
856
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
857
/* Fill the inverse-colormap entries in the update box that contains */
858
/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
859
/* we can fill as many others as we wish.) */
860
0
{
861
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
862
0
  hist3d histogram = cquantize->histogram;
863
0
  int minc0, minc1, minc2;  /* lower left corner of update box */
864
0
  int ic0, ic1, ic2;
865
0
  register JSAMPLE * cptr;  /* pointer into bestcolor[] array */
866
0
  register histptr cachep;  /* pointer into main cache array */
867
  /* This array lists the candidate colormap indexes. */
868
0
  JSAMPLE colorlist[MAXNUMCOLORS];
869
0
  int numcolors;    /* number of candidate colors */
870
  /* This array holds the actually closest colormap index for each cell. */
871
0
  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
872
873
  /* Convert cell coordinates to update box ID */
874
0
  c0 >>= BOX_C0_LOG;
875
0
  c1 >>= BOX_C1_LOG;
876
0
  c2 >>= BOX_C2_LOG;
877
878
  /* Compute true coordinates of update box's origin corner.
879
   * Actually we compute the coordinates of the center of the corner
880
   * histogram cell, which are the lower bounds of the volume we care about.
881
   */
882
0
  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
883
0
  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
884
0
  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
885
  
886
  /* Determine which colormap entries are close enough to be candidates
887
   * for the nearest entry to some cell in the update box.
888
   */
889
0
  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
890
891
  /* Determine the actually nearest colors. */
892
0
  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
893
0
       bestcolor);
894
895
  /* Save the best color numbers (plus 1) in the main cache array */
896
0
  c0 <<= BOX_C0_LOG;   /* convert ID back to base cell indexes */
897
0
  c1 <<= BOX_C1_LOG;
898
0
  c2 <<= BOX_C2_LOG;
899
0
  cptr = bestcolor;
900
0
  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
901
0
    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
902
0
      cachep = & histogram[c0+ic0][c1+ic1][c2];
903
0
      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
904
0
  *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
905
0
      }
906
0
    }
907
0
  }
908
0
}
909
910
911
/*
912
 * Map some rows of pixels to the output colormapped representation.
913
 */
914
915
METHODDEF(void)
916
pass2_no_dither (j_decompress_ptr cinfo,
917
     JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
918
/* This version performs no dithering */
919
0
{
920
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
921
0
  hist3d histogram = cquantize->histogram;
922
0
  register JSAMPROW inptr, outptr;
923
0
  register histptr cachep;
924
0
  register int c0, c1, c2;
925
0
  int row;
926
0
  JDIMENSION col;
927
0
  JDIMENSION width = cinfo->output_width;
928
929
0
  for (row = 0; row < num_rows; row++) {
930
0
    inptr = input_buf[row];
931
0
    outptr = output_buf[row];
932
0
    for (col = width; col > 0; col--) {
933
      /* get pixel value and index into the cache */
934
0
      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
935
0
      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
936
0
      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
937
0
      cachep = & histogram[c0][c1][c2];
938
      /* If we have not seen this color before, find nearest colormap entry */
939
      /* and update the cache */
940
0
      if (*cachep == 0)
941
0
  fill_inverse_cmap(cinfo, c0,c1,c2);
942
      /* Now emit the colormap index for this cell */
943
0
      *outptr++ = (JSAMPLE) (*cachep - 1);
944
0
    }
945
0
  }
946
0
}
947
948
949
METHODDEF(void)
950
pass2_fs_dither (j_decompress_ptr cinfo,
951
     JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
952
/* This version performs Floyd-Steinberg dithering */
953
0
{
954
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
955
0
  hist3d histogram = cquantize->histogram;
956
0
  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
957
0
  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
958
0
  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
959
0
  register FSERRPTR errorptr; /* => fserrors[] at column before current */
960
0
  JSAMPROW inptr;   /* => current input pixel */
961
0
  JSAMPROW outptr;    /* => current output pixel */
962
0
  histptr cachep;
963
0
  int dir;      /* +1 or -1 depending on direction */
964
0
  int dir3;     /* 3*dir, for advancing inptr & errorptr */
965
0
  int row;
966
0
  JDIMENSION col;
967
0
  JDIMENSION width = cinfo->output_width;
968
0
  JSAMPLE *range_limit = cinfo->sample_range_limit;
969
0
  int *error_limit = cquantize->error_limiter;
970
0
  JSAMPROW colormap0 = cinfo->colormap[0];
971
0
  JSAMPROW colormap1 = cinfo->colormap[1];
972
0
  JSAMPROW colormap2 = cinfo->colormap[2];
973
0
  SHIFT_TEMPS
974
975
0
  for (row = 0; row < num_rows; row++) {
976
0
    inptr = input_buf[row];
977
0
    outptr = output_buf[row];
978
0
    if (cquantize->on_odd_row) {
979
      /* work right to left in this row */
980
0
      inptr += (width-1) * 3; /* so point to rightmost pixel */
981
0
      outptr += width-1;
982
0
      dir = -1;
983
0
      dir3 = -3;
984
0
      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
985
0
      cquantize->on_odd_row = FALSE; /* flip for next time */
986
0
    } else {
987
      /* work left to right in this row */
988
0
      dir = 1;
989
0
      dir3 = 3;
990
0
      errorptr = cquantize->fserrors; /* => entry before first real column */
991
0
      cquantize->on_odd_row = TRUE; /* flip for next time */
992
0
    }
993
    /* Preset error values: no error propagated to first pixel from left */
994
0
    cur0 = cur1 = cur2 = 0;
995
    /* and no error propagated to row below yet */
996
0
    belowerr0 = belowerr1 = belowerr2 = 0;
997
0
    bpreverr0 = bpreverr1 = bpreverr2 = 0;
998
999
0
    for (col = width; col > 0; col--) {
1000
      /* curN holds the error propagated from the previous pixel on the
1001
       * current line.  Add the error propagated from the previous line
1002
       * to form the complete error correction term for this pixel, and
1003
       * round the error term (which is expressed * 16) to an integer.
1004
       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1005
       * for either sign of the error value.
1006
       * Note: errorptr points to *previous* column's array entry.
1007
       */
1008
0
      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1009
0
      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1010
0
      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1011
      /* Limit the error using transfer function set by init_error_limit.
1012
       * See comments with init_error_limit for rationale.
1013
       */
1014
0
      cur0 = error_limit[cur0];
1015
0
      cur1 = error_limit[cur1];
1016
0
      cur2 = error_limit[cur2];
1017
      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1018
       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1019
       * this sets the required size of the range_limit array.
1020
       */
1021
0
      cur0 += GETJSAMPLE(inptr[0]);
1022
0
      cur1 += GETJSAMPLE(inptr[1]);
1023
0
      cur2 += GETJSAMPLE(inptr[2]);
1024
0
      cur0 = GETJSAMPLE(range_limit[cur0]);
1025
0
      cur1 = GETJSAMPLE(range_limit[cur1]);
1026
0
      cur2 = GETJSAMPLE(range_limit[cur2]);
1027
      /* Index into the cache with adjusted pixel value */
1028
0
      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1029
      /* If we have not seen this color before, find nearest colormap */
1030
      /* entry and update the cache */
1031
0
      if (*cachep == 0)
1032
0
  fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1033
      /* Now emit the colormap index for this cell */
1034
0
      { register int pixcode = *cachep - 1;
1035
0
  *outptr = (JSAMPLE) pixcode;
1036
  /* Compute representation error for this pixel */
1037
0
  cur0 -= GETJSAMPLE(colormap0[pixcode]);
1038
0
  cur1 -= GETJSAMPLE(colormap1[pixcode]);
1039
0
  cur2 -= GETJSAMPLE(colormap2[pixcode]);
1040
0
      }
1041
      /* Compute error fractions to be propagated to adjacent pixels.
1042
       * Add these into the running sums, and simultaneously shift the
1043
       * next-line error sums left by 1 column.
1044
       */
1045
0
      { register LOCFSERROR bnexterr, delta;
1046
1047
0
  bnexterr = cur0;  /* Process component 0 */
1048
0
  delta = cur0 * 2;
1049
0
  cur0 += delta;    /* form error * 3 */
1050
0
  errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1051
0
  cur0 += delta;    /* form error * 5 */
1052
0
  bpreverr0 = belowerr0 + cur0;
1053
0
  belowerr0 = bnexterr;
1054
0
  cur0 += delta;    /* form error * 7 */
1055
0
  bnexterr = cur1;  /* Process component 1 */
1056
0
  delta = cur1 * 2;
1057
0
  cur1 += delta;    /* form error * 3 */
1058
0
  errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1059
0
  cur1 += delta;    /* form error * 5 */
1060
0
  bpreverr1 = belowerr1 + cur1;
1061
0
  belowerr1 = bnexterr;
1062
0
  cur1 += delta;    /* form error * 7 */
1063
0
  bnexterr = cur2;  /* Process component 2 */
1064
0
  delta = cur2 * 2;
1065
0
  cur2 += delta;    /* form error * 3 */
1066
0
  errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1067
0
  cur2 += delta;    /* form error * 5 */
1068
0
  bpreverr2 = belowerr2 + cur2;
1069
0
  belowerr2 = bnexterr;
1070
0
  cur2 += delta;    /* form error * 7 */
1071
0
      }
1072
      /* At this point curN contains the 7/16 error value to be propagated
1073
       * to the next pixel on the current line, and all the errors for the
1074
       * next line have been shifted over.  We are therefore ready to move on.
1075
       */
1076
0
      inptr += dir3;    /* Advance pixel pointers to next column */
1077
0
      outptr += dir;
1078
0
      errorptr += dir3;   /* advance errorptr to current column */
1079
0
    }
1080
    /* Post-loop cleanup: we must unload the final error values into the
1081
     * final fserrors[] entry.  Note we need not unload belowerrN because
1082
     * it is for the dummy column before or after the actual array.
1083
     */
1084
0
    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1085
0
    errorptr[1] = (FSERROR) bpreverr1;
1086
0
    errorptr[2] = (FSERROR) bpreverr2;
1087
0
  }
1088
0
}
1089
1090
1091
/*
1092
 * Initialize the error-limiting transfer function (lookup table).
1093
 * The raw F-S error computation can potentially compute error values of up to
1094
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1095
 * much less, otherwise obviously wrong pixels will be created.  (Typical
1096
 * effects include weird fringes at color-area boundaries, isolated bright
1097
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1098
 * is to ensure that the "corners" of the color cube are allocated as output
1099
 * colors; then repeated errors in the same direction cannot cause cascading
1100
 * error buildup.  However, that only prevents the error from getting
1101
 * completely out of hand; Aaron Giles reports that error limiting improves
1102
 * the results even with corner colors allocated.
1103
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1104
 * well, but the smoother transfer function used below is even better.  Thanks
1105
 * to Aaron Giles for this idea.
1106
 */
1107
1108
LOCAL(void)
1109
init_error_limit (j_decompress_ptr cinfo)
1110
/* Allocate and fill in the error_limiter table */
1111
0
{
1112
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1113
0
  int * table;
1114
0
  int in, out;
1115
1116
0
  table = (int *) (*cinfo->mem->alloc_small)
1117
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1118
0
  table += MAXJSAMPLE;   /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1119
0
  cquantize->error_limiter = table;
1120
1121
0
#define STEPSIZE ((MAXJSAMPLE+1)/16)
1122
  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1123
0
  out = 0;
1124
0
  for (in = 0; in < STEPSIZE; in++, out++) {
1125
0
    table[in] = out; table[-in] = -out;
1126
0
  }
1127
  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1128
0
  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1129
0
    table[in] = out; table[-in] = -out;
1130
0
  }
1131
  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1132
0
  for (; in <= MAXJSAMPLE; in++) {
1133
0
    table[in] = out; table[-in] = -out;
1134
0
  }
1135
0
#undef STEPSIZE
1136
0
}
1137
1138
1139
/*
1140
 * Finish up at the end of each pass.
1141
 */
1142
1143
METHODDEF(void)
1144
finish_pass1 (j_decompress_ptr cinfo)
1145
0
{
1146
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1147
1148
  /* Select the representative colors and fill in cinfo->colormap */
1149
0
  cinfo->colormap = cquantize->sv_colormap;
1150
0
  select_colors(cinfo, cquantize->desired);
1151
  /* Force next pass to zero the color index table */
1152
0
  cquantize->needs_zeroed = TRUE;
1153
0
}
1154
1155
1156
METHODDEF(void)
1157
finish_pass2 (j_decompress_ptr cinfo)
1158
0
{
1159
  /* no work */
1160
0
}
1161
1162
1163
/*
1164
 * Initialize for each processing pass.
1165
 */
1166
1167
METHODDEF(void)
1168
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1169
0
{
1170
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1171
0
  hist3d histogram = cquantize->histogram;
1172
0
  int i;
1173
1174
  /* Only F-S dithering or no dithering is supported. */
1175
  /* If user asks for ordered dither, give him F-S. */
1176
0
  if (cinfo->dither_mode != JDITHER_NONE)
1177
0
    cinfo->dither_mode = JDITHER_FS;
1178
1179
0
  if (is_pre_scan) {
1180
    /* Set up method pointers */
1181
0
    cquantize->pub.color_quantize = prescan_quantize;
1182
0
    cquantize->pub.finish_pass = finish_pass1;
1183
0
    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1184
0
  } else {
1185
    /* Set up method pointers */
1186
0
    if (cinfo->dither_mode == JDITHER_FS)
1187
0
      cquantize->pub.color_quantize = pass2_fs_dither;
1188
0
    else
1189
0
      cquantize->pub.color_quantize = pass2_no_dither;
1190
0
    cquantize->pub.finish_pass = finish_pass2;
1191
1192
    /* Make sure color count is acceptable */
1193
0
    i = cinfo->actual_number_of_colors;
1194
0
    if (i < 1)
1195
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1196
0
    if (i > MAXNUMCOLORS)
1197
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1198
1199
0
    if (cinfo->dither_mode == JDITHER_FS) {
1200
0
      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1201
0
           (3 * SIZEOF(FSERROR)));
1202
      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1203
0
      if (cquantize->fserrors == NULL)
1204
0
  cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1205
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1206
      /* Initialize the propagated errors to zero. */
1207
0
      FMEMZERO((void FAR *) cquantize->fserrors, arraysize);
1208
      /* Make the error-limit table if we didn't already. */
1209
0
      if (cquantize->error_limiter == NULL)
1210
0
  init_error_limit(cinfo);
1211
0
      cquantize->on_odd_row = FALSE;
1212
0
    }
1213
1214
0
  }
1215
  /* Zero the histogram or inverse color map, if necessary */
1216
0
  if (cquantize->needs_zeroed) {
1217
0
    for (i = 0; i < HIST_C0_ELEMS; i++) {
1218
0
      FMEMZERO((void FAR *) histogram[i],
1219
0
         HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1220
0
    }
1221
0
    cquantize->needs_zeroed = FALSE;
1222
0
  }
1223
0
}
1224
1225
1226
/*
1227
 * Switch to a new external colormap between output passes.
1228
 */
1229
1230
METHODDEF(void)
1231
new_color_map_2_quant (j_decompress_ptr cinfo)
1232
0
{
1233
0
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1234
1235
  /* Reset the inverse color map */
1236
0
  cquantize->needs_zeroed = TRUE;
1237
0
}
1238
1239
1240
/*
1241
 * Module initialization routine for 2-pass color quantization.
1242
 */
1243
1244
GLOBAL(void)
1245
jinit_2pass_quantizer (j_decompress_ptr cinfo)
1246
0
{
1247
0
  my_cquantize_ptr cquantize;
1248
0
  int i;
1249
1250
0
  cquantize = (my_cquantize_ptr)
1251
0
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1252
0
        SIZEOF(my_cquantizer));
1253
0
  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1254
0
  cquantize->pub.start_pass = start_pass_2_quant;
1255
0
  cquantize->pub.new_color_map = new_color_map_2_quant;
1256
0
  cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1257
0
  cquantize->error_limiter = NULL;
1258
1259
  /* Make sure jdmaster didn't give me a case I can't handle */
1260
0
  if (cinfo->out_color_components != 3)
1261
0
    ERREXIT(cinfo, JERR_NOTIMPL);
1262
1263
  /* Allocate the histogram/inverse colormap storage */
1264
0
  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1265
0
    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1266
0
  for (i = 0; i < HIST_C0_ELEMS; i++) {
1267
0
    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1268
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1269
0
       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1270
0
  }
1271
0
  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1272
1273
  /* Allocate storage for the completed colormap, if required.
1274
   * We do this now since it is FAR storage and may affect
1275
   * the memory manager's space calculations.
1276
   */
1277
0
  if (cinfo->enable_2pass_quant) {
1278
    /* Make sure color count is acceptable */
1279
0
    int desired = cinfo->desired_number_of_colors;
1280
    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1281
0
    if (desired < 8)
1282
0
      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1283
    /* Make sure colormap indexes can be represented by JSAMPLEs */
1284
0
    if (desired > MAXNUMCOLORS)
1285
0
      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1286
0
    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1287
0
      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
1288
0
    cquantize->desired = desired;
1289
0
  } else
1290
0
    cquantize->sv_colormap = NULL;
1291
1292
  /* Only F-S dithering or no dithering is supported. */
1293
  /* If user asks for ordered dither, give him F-S. */
1294
0
  if (cinfo->dither_mode != JDITHER_NONE)
1295
0
    cinfo->dither_mode = JDITHER_FS;
1296
1297
  /* Allocate Floyd-Steinberg workspace if necessary.
1298
   * This isn't really needed until pass 2, but again it is FAR storage.
1299
   * Although we will cope with a later change in dither_mode,
1300
   * we do not promise to honor max_memory_to_use if dither_mode changes.
1301
   */
1302
0
  if (cinfo->dither_mode == JDITHER_FS) {
1303
0
    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1304
0
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
1305
0
       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
1306
    /* Might as well create the error-limiting table too. */
1307
0
    init_error_limit(cinfo);
1308
0
  }
1309
0
}
1310
1311
#endif /* QUANT_2PASS_SUPPORTED */