/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jquant2.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * jquant2.c |
3 | | * |
4 | | * Copyright (C) 1991-1996, Thomas G. Lane. |
5 | | * Modified 2011 by Guido Vollbeding. |
6 | | * This file is part of the Independent JPEG Group's software. |
7 | | * For conditions of distribution and use, see the accompanying README file. |
8 | | * |
9 | | * This file contains 2-pass color quantization (color mapping) routines. |
10 | | * These routines provide selection of a custom color map for an image, |
11 | | * followed by mapping of the image to that color map, with optional |
12 | | * Floyd-Steinberg dithering. |
13 | | * It is also possible to use just the second pass to map to an arbitrary |
14 | | * externally-given color map. |
15 | | * |
16 | | * Note: ordered dithering is not supported, since there isn't any fast |
17 | | * way to compute intercolor distances; it's unclear that ordered dither's |
18 | | * fundamental assumptions even hold with an irregularly spaced color map. |
19 | | */ |
20 | | |
21 | | #define JPEG_INTERNALS |
22 | | #include "jinclude.h" |
23 | | #include "jpeglib.h" |
24 | | |
25 | | #ifdef QUANT_2PASS_SUPPORTED |
26 | | |
27 | | |
28 | | /* |
29 | | * This module implements the well-known Heckbert paradigm for color |
30 | | * quantization. Most of the ideas used here can be traced back to |
31 | | * Heckbert's seminal paper |
32 | | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", |
33 | | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. |
34 | | * |
35 | | * In the first pass over the image, we accumulate a histogram showing the |
36 | | * usage count of each possible color. To keep the histogram to a reasonable |
37 | | * size, we reduce the precision of the input; typical practice is to retain |
38 | | * 5 or 6 bits per color, so that 8 or 4 different input values are counted |
39 | | * in the same histogram cell. |
40 | | * |
41 | | * Next, the color-selection step begins with a box representing the whole |
42 | | * color space, and repeatedly splits the "largest" remaining box until we |
43 | | * have as many boxes as desired colors. Then the mean color in each |
44 | | * remaining box becomes one of the possible output colors. |
45 | | * |
46 | | * The second pass over the image maps each input pixel to the closest output |
47 | | * color (optionally after applying a Floyd-Steinberg dithering correction). |
48 | | * This mapping is logically trivial, but making it go fast enough requires |
49 | | * considerable care. |
50 | | * |
51 | | * Heckbert-style quantizers vary a good deal in their policies for choosing |
52 | | * the "largest" box and deciding where to cut it. The particular policies |
53 | | * used here have proved out well in experimental comparisons, but better ones |
54 | | * may yet be found. |
55 | | * |
56 | | * In earlier versions of the IJG code, this module quantized in YCbCr color |
57 | | * space, processing the raw upsampled data without a color conversion step. |
58 | | * This allowed the color conversion math to be done only once per colormap |
59 | | * entry, not once per pixel. However, that optimization precluded other |
60 | | * useful optimizations (such as merging color conversion with upsampling) |
61 | | * and it also interfered with desired capabilities such as quantizing to an |
62 | | * externally-supplied colormap. We have therefore abandoned that approach. |
63 | | * The present code works in the post-conversion color space, typically RGB. |
64 | | * |
65 | | * To improve the visual quality of the results, we actually work in scaled |
66 | | * RGB space, giving G distances more weight than R, and R in turn more than |
67 | | * B. To do everything in integer math, we must use integer scale factors. |
68 | | * The 2/3/1 scale factors used here correspond loosely to the relative |
69 | | * weights of the colors in the NTSC grayscale equation. |
70 | | * If you want to use this code to quantize a non-RGB color space, you'll |
71 | | * probably need to change these scale factors. |
72 | | */ |
73 | | |
74 | 0 | #define R_SCALE 2 /* scale R distances by this much */ |
75 | 0 | #define G_SCALE 3 /* scale G distances by this much */ |
76 | 0 | #define B_SCALE 1 /* and B by this much */ |
77 | | |
78 | | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined |
79 | | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B |
80 | | * and B,G,R orders. If you define some other weird order in jmorecfg.h, |
81 | | * you'll get compile errors until you extend this logic. In that case |
82 | | * you'll probably want to tweak the histogram sizes too. |
83 | | */ |
84 | | |
85 | | #if RGB_RED == 0 |
86 | 0 | #define C0_SCALE R_SCALE |
87 | | #endif |
88 | | #if RGB_BLUE == 0 |
89 | | #define C0_SCALE B_SCALE |
90 | | #endif |
91 | | #if RGB_GREEN == 1 |
92 | 0 | #define C1_SCALE G_SCALE |
93 | | #endif |
94 | | #if RGB_RED == 2 |
95 | | #define C2_SCALE R_SCALE |
96 | | #endif |
97 | | #if RGB_BLUE == 2 |
98 | 0 | #define C2_SCALE B_SCALE |
99 | | #endif |
100 | | |
101 | | |
102 | | /* |
103 | | * First we have the histogram data structure and routines for creating it. |
104 | | * |
105 | | * The number of bits of precision can be adjusted by changing these symbols. |
106 | | * We recommend keeping 6 bits for G and 5 each for R and B. |
107 | | * If you have plenty of memory and cycles, 6 bits all around gives marginally |
108 | | * better results; if you are short of memory, 5 bits all around will save |
109 | | * some space but degrade the results. |
110 | | * To maintain a fully accurate histogram, we'd need to allocate a "long" |
111 | | * (preferably unsigned long) for each cell. In practice this is overkill; |
112 | | * we can get by with 16 bits per cell. Few of the cell counts will overflow, |
113 | | * and clamping those that do overflow to the maximum value will give close- |
114 | | * enough results. This reduces the recommended histogram size from 256Kb |
115 | | * to 128Kb, which is a useful savings on PC-class machines. |
116 | | * (In the second pass the histogram space is re-used for pixel mapping data; |
117 | | * in that capacity, each cell must be able to store zero to the number of |
118 | | * desired colors. 16 bits/cell is plenty for that too.) |
119 | | * Since the JPEG code is intended to run in small memory model on 80x86 |
120 | | * machines, we can't just allocate the histogram in one chunk. Instead |
121 | | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
122 | | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
123 | | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that |
124 | | * on 80x86 machines, the pointer row is in near memory but the actual |
125 | | * arrays are in far memory (same arrangement as we use for image arrays). |
126 | | */ |
127 | | |
128 | 0 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ |
129 | | |
130 | | /* These will do the right thing for either R,G,B or B,G,R color order, |
131 | | * but you may not like the results for other color orders. |
132 | | */ |
133 | 0 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
134 | 0 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
135 | 0 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
136 | | |
137 | | /* Number of elements along histogram axes. */ |
138 | 0 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS) |
139 | 0 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS) |
140 | 0 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS) |
141 | | |
142 | | /* These are the amounts to shift an input value to get a histogram index. */ |
143 | 0 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) |
144 | 0 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) |
145 | 0 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) |
146 | | |
147 | | |
148 | | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
149 | | |
150 | | typedef histcell FAR * histptr; /* for pointers to histogram cells */ |
151 | | |
152 | | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
153 | | typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ |
154 | | typedef hist2d * hist3d; /* type for top-level pointer */ |
155 | | |
156 | | |
157 | | /* Declarations for Floyd-Steinberg dithering. |
158 | | * |
159 | | * Errors are accumulated into the array fserrors[], at a resolution of |
160 | | * 1/16th of a pixel count. The error at a given pixel is propagated |
161 | | * to its not-yet-processed neighbors using the standard F-S fractions, |
162 | | * ... (here) 7/16 |
163 | | * 3/16 5/16 1/16 |
164 | | * We work left-to-right on even rows, right-to-left on odd rows. |
165 | | * |
166 | | * We can get away with a single array (holding one row's worth of errors) |
167 | | * by using it to store the current row's errors at pixel columns not yet |
168 | | * processed, but the next row's errors at columns already processed. We |
169 | | * need only a few extra variables to hold the errors immediately around the |
170 | | * current column. (If we are lucky, those variables are in registers, but |
171 | | * even if not, they're probably cheaper to access than array elements are.) |
172 | | * |
173 | | * The fserrors[] array has (#columns + 2) entries; the extra entry at |
174 | | * each end saves us from special-casing the first and last pixels. |
175 | | * Each entry is three values long, one value for each color component. |
176 | | * |
177 | | * Note: on a wide image, we might not have enough room in a PC's near data |
178 | | * segment to hold the error array; so it is allocated with alloc_large. |
179 | | */ |
180 | | |
181 | | #if BITS_IN_JSAMPLE == 8 |
182 | | typedef INT16 FSERROR; /* 16 bits should be enough */ |
183 | | typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
184 | | #else |
185 | | typedef INT32 FSERROR; /* may need more than 16 bits */ |
186 | | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
187 | | #endif |
188 | | |
189 | | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
190 | | |
191 | | |
192 | | /* Private subobject */ |
193 | | |
194 | | typedef struct { |
195 | | struct jpeg_color_quantizer pub; /* public fields */ |
196 | | |
197 | | /* Space for the eventually created colormap is stashed here */ |
198 | | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
199 | | int desired; /* desired # of colors = size of colormap */ |
200 | | |
201 | | /* Variables for accumulating image statistics */ |
202 | | hist3d histogram; /* pointer to the histogram */ |
203 | | |
204 | | boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
205 | | |
206 | | /* Variables for Floyd-Steinberg dithering */ |
207 | | FSERRPTR fserrors; /* accumulated errors */ |
208 | | boolean on_odd_row; /* flag to remember which row we are on */ |
209 | | int * error_limiter; /* table for clamping the applied error */ |
210 | | } my_cquantizer; |
211 | | |
212 | | typedef my_cquantizer * my_cquantize_ptr; |
213 | | |
214 | | |
215 | | /* |
216 | | * Prescan some rows of pixels. |
217 | | * In this module the prescan simply updates the histogram, which has been |
218 | | * initialized to zeroes by start_pass. |
219 | | * An output_buf parameter is required by the method signature, but no data |
220 | | * is actually output (in fact the buffer controller is probably passing a |
221 | | * NULL pointer). |
222 | | */ |
223 | | |
224 | | METHODDEF(void) |
225 | | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
226 | | JSAMPARRAY output_buf, int num_rows) |
227 | 0 | { |
228 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
229 | 0 | register JSAMPROW ptr; |
230 | 0 | register histptr histp; |
231 | 0 | register hist3d histogram = cquantize->histogram; |
232 | 0 | int row; |
233 | 0 | JDIMENSION col; |
234 | 0 | JDIMENSION width = cinfo->output_width; |
235 | |
|
236 | 0 | for (row = 0; row < num_rows; row++) { |
237 | 0 | ptr = input_buf[row]; |
238 | 0 | for (col = width; col > 0; col--) { |
239 | | /* get pixel value and index into the histogram */ |
240 | 0 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] |
241 | 0 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
242 | 0 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
243 | | /* increment, check for overflow and undo increment if so. */ |
244 | 0 | if (++(*histp) <= 0) |
245 | 0 | (*histp)--; |
246 | 0 | ptr += 3; |
247 | 0 | } |
248 | 0 | } |
249 | 0 | } |
250 | | |
251 | | |
252 | | /* |
253 | | * Next we have the really interesting routines: selection of a colormap |
254 | | * given the completed histogram. |
255 | | * These routines work with a list of "boxes", each representing a rectangular |
256 | | * subset of the input color space (to histogram precision). |
257 | | */ |
258 | | |
259 | | typedef struct { |
260 | | /* The bounds of the box (inclusive); expressed as histogram indexes */ |
261 | | int c0min, c0max; |
262 | | int c1min, c1max; |
263 | | int c2min, c2max; |
264 | | /* The volume (actually 2-norm) of the box */ |
265 | | INT32 volume; |
266 | | /* The number of nonzero histogram cells within this box */ |
267 | | long colorcount; |
268 | | } box; |
269 | | |
270 | | typedef box * boxptr; |
271 | | |
272 | | |
273 | | LOCAL(boxptr) |
274 | | find_biggest_color_pop (boxptr boxlist, int numboxes) |
275 | | /* Find the splittable box with the largest color population */ |
276 | | /* Returns NULL if no splittable boxes remain */ |
277 | 0 | { |
278 | 0 | register boxptr boxp; |
279 | 0 | register int i; |
280 | 0 | register long maxc = 0; |
281 | 0 | boxptr which = NULL; |
282 | | |
283 | 0 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
284 | 0 | if (boxp->colorcount > maxc && boxp->volume > 0) { |
285 | 0 | which = boxp; |
286 | 0 | maxc = boxp->colorcount; |
287 | 0 | } |
288 | 0 | } |
289 | 0 | return which; |
290 | 0 | } |
291 | | |
292 | | |
293 | | LOCAL(boxptr) |
294 | | find_biggest_volume (boxptr boxlist, int numboxes) |
295 | | /* Find the splittable box with the largest (scaled) volume */ |
296 | | /* Returns NULL if no splittable boxes remain */ |
297 | 0 | { |
298 | 0 | register boxptr boxp; |
299 | 0 | register int i; |
300 | 0 | register INT32 maxv = 0; |
301 | 0 | boxptr which = NULL; |
302 | | |
303 | 0 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
304 | 0 | if (boxp->volume > maxv) { |
305 | 0 | which = boxp; |
306 | 0 | maxv = boxp->volume; |
307 | 0 | } |
308 | 0 | } |
309 | 0 | return which; |
310 | 0 | } |
311 | | |
312 | | |
313 | | LOCAL(void) |
314 | | update_box (j_decompress_ptr cinfo, boxptr boxp) |
315 | | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ |
316 | | /* and recompute its volume and population */ |
317 | 0 | { |
318 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
319 | 0 | hist3d histogram = cquantize->histogram; |
320 | 0 | histptr histp; |
321 | 0 | int c0,c1,c2; |
322 | 0 | int c0min,c0max,c1min,c1max,c2min,c2max; |
323 | 0 | INT32 dist0,dist1,dist2; |
324 | 0 | long ccount; |
325 | | |
326 | 0 | c0min = boxp->c0min; c0max = boxp->c0max; |
327 | 0 | c1min = boxp->c1min; c1max = boxp->c1max; |
328 | 0 | c2min = boxp->c2min; c2max = boxp->c2max; |
329 | | |
330 | 0 | if (c0max > c0min) |
331 | 0 | for (c0 = c0min; c0 <= c0max; c0++) |
332 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
333 | 0 | histp = & histogram[c0][c1][c2min]; |
334 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
335 | 0 | if (*histp++ != 0) { |
336 | 0 | boxp->c0min = c0min = c0; |
337 | 0 | goto have_c0min; |
338 | 0 | } |
339 | 0 | } |
340 | 0 | have_c0min: |
341 | 0 | if (c0max > c0min) |
342 | 0 | for (c0 = c0max; c0 >= c0min; c0--) |
343 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
344 | 0 | histp = & histogram[c0][c1][c2min]; |
345 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
346 | 0 | if (*histp++ != 0) { |
347 | 0 | boxp->c0max = c0max = c0; |
348 | 0 | goto have_c0max; |
349 | 0 | } |
350 | 0 | } |
351 | 0 | have_c0max: |
352 | 0 | if (c1max > c1min) |
353 | 0 | for (c1 = c1min; c1 <= c1max; c1++) |
354 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
355 | 0 | histp = & histogram[c0][c1][c2min]; |
356 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
357 | 0 | if (*histp++ != 0) { |
358 | 0 | boxp->c1min = c1min = c1; |
359 | 0 | goto have_c1min; |
360 | 0 | } |
361 | 0 | } |
362 | 0 | have_c1min: |
363 | 0 | if (c1max > c1min) |
364 | 0 | for (c1 = c1max; c1 >= c1min; c1--) |
365 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
366 | 0 | histp = & histogram[c0][c1][c2min]; |
367 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
368 | 0 | if (*histp++ != 0) { |
369 | 0 | boxp->c1max = c1max = c1; |
370 | 0 | goto have_c1max; |
371 | 0 | } |
372 | 0 | } |
373 | 0 | have_c1max: |
374 | 0 | if (c2max > c2min) |
375 | 0 | for (c2 = c2min; c2 <= c2max; c2++) |
376 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
377 | 0 | histp = & histogram[c0][c1min][c2]; |
378 | 0 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
379 | 0 | if (*histp != 0) { |
380 | 0 | boxp->c2min = c2min = c2; |
381 | 0 | goto have_c2min; |
382 | 0 | } |
383 | 0 | } |
384 | 0 | have_c2min: |
385 | 0 | if (c2max > c2min) |
386 | 0 | for (c2 = c2max; c2 >= c2min; c2--) |
387 | 0 | for (c0 = c0min; c0 <= c0max; c0++) { |
388 | 0 | histp = & histogram[c0][c1min][c2]; |
389 | 0 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
390 | 0 | if (*histp != 0) { |
391 | 0 | boxp->c2max = c2max = c2; |
392 | 0 | goto have_c2max; |
393 | 0 | } |
394 | 0 | } |
395 | 0 | have_c2max: |
396 | | |
397 | | /* Update box volume. |
398 | | * We use 2-norm rather than real volume here; this biases the method |
399 | | * against making long narrow boxes, and it has the side benefit that |
400 | | * a box is splittable iff norm > 0. |
401 | | * Since the differences are expressed in histogram-cell units, |
402 | | * we have to shift back to JSAMPLE units to get consistent distances; |
403 | | * after which, we scale according to the selected distance scale factors. |
404 | | */ |
405 | 0 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; |
406 | 0 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
407 | 0 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
408 | 0 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; |
409 | | |
410 | | /* Now scan remaining volume of box and compute population */ |
411 | 0 | ccount = 0; |
412 | 0 | for (c0 = c0min; c0 <= c0max; c0++) |
413 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
414 | 0 | histp = & histogram[c0][c1][c2min]; |
415 | 0 | for (c2 = c2min; c2 <= c2max; c2++, histp++) |
416 | 0 | if (*histp != 0) { |
417 | 0 | ccount++; |
418 | 0 | } |
419 | 0 | } |
420 | 0 | boxp->colorcount = ccount; |
421 | 0 | } |
422 | | |
423 | | |
424 | | LOCAL(int) |
425 | | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
426 | | int desired_colors) |
427 | | /* Repeatedly select and split the largest box until we have enough boxes */ |
428 | 0 | { |
429 | 0 | int n,lb; |
430 | 0 | int c0,c1,c2,cmax; |
431 | 0 | register boxptr b1,b2; |
432 | |
|
433 | 0 | while (numboxes < desired_colors) { |
434 | | /* Select box to split. |
435 | | * Current algorithm: by population for first half, then by volume. |
436 | | */ |
437 | 0 | if (numboxes*2 <= desired_colors) { |
438 | 0 | b1 = find_biggest_color_pop(boxlist, numboxes); |
439 | 0 | } else { |
440 | 0 | b1 = find_biggest_volume(boxlist, numboxes); |
441 | 0 | } |
442 | 0 | if (b1 == NULL) /* no splittable boxes left! */ |
443 | 0 | break; |
444 | 0 | b2 = &boxlist[numboxes]; /* where new box will go */ |
445 | | /* Copy the color bounds to the new box. */ |
446 | 0 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
447 | 0 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
448 | | /* Choose which axis to split the box on. |
449 | | * Current algorithm: longest scaled axis. |
450 | | * See notes in update_box about scaling distances. |
451 | | */ |
452 | 0 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; |
453 | 0 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; |
454 | 0 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; |
455 | | /* We want to break any ties in favor of green, then red, blue last. |
456 | | * This code does the right thing for R,G,B or B,G,R color orders only. |
457 | | */ |
458 | 0 | #if RGB_RED == 0 |
459 | 0 | cmax = c1; n = 1; |
460 | 0 | if (c0 > cmax) { cmax = c0; n = 0; } |
461 | 0 | if (c2 > cmax) { n = 2; } |
462 | | #else |
463 | | cmax = c1; n = 1; |
464 | | if (c2 > cmax) { cmax = c2; n = 2; } |
465 | | if (c0 > cmax) { n = 0; } |
466 | | #endif |
467 | | /* Choose split point along selected axis, and update box bounds. |
468 | | * Current algorithm: split at halfway point. |
469 | | * (Since the box has been shrunk to minimum volume, |
470 | | * any split will produce two nonempty subboxes.) |
471 | | * Note that lb value is max for lower box, so must be < old max. |
472 | | */ |
473 | 0 | switch (n) { |
474 | 0 | case 0: |
475 | 0 | lb = (b1->c0max + b1->c0min) / 2; |
476 | 0 | b1->c0max = lb; |
477 | 0 | b2->c0min = lb+1; |
478 | 0 | break; |
479 | 0 | case 1: |
480 | 0 | lb = (b1->c1max + b1->c1min) / 2; |
481 | 0 | b1->c1max = lb; |
482 | 0 | b2->c1min = lb+1; |
483 | 0 | break; |
484 | 0 | case 2: |
485 | 0 | lb = (b1->c2max + b1->c2min) / 2; |
486 | 0 | b1->c2max = lb; |
487 | 0 | b2->c2min = lb+1; |
488 | 0 | break; |
489 | 0 | } |
490 | | /* Update stats for boxes */ |
491 | 0 | update_box(cinfo, b1); |
492 | 0 | update_box(cinfo, b2); |
493 | 0 | numboxes++; |
494 | 0 | } |
495 | 0 | return numboxes; |
496 | 0 | } |
497 | | |
498 | | |
499 | | LOCAL(void) |
500 | | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) |
501 | | /* Compute representative color for a box, put it in colormap[icolor] */ |
502 | 0 | { |
503 | | /* Current algorithm: mean weighted by pixels (not colors) */ |
504 | | /* Note it is important to get the rounding correct! */ |
505 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
506 | 0 | hist3d histogram = cquantize->histogram; |
507 | 0 | histptr histp; |
508 | 0 | int c0,c1,c2; |
509 | 0 | int c0min,c0max,c1min,c1max,c2min,c2max; |
510 | 0 | long count; |
511 | 0 | long total = 0; |
512 | 0 | long c0total = 0; |
513 | 0 | long c1total = 0; |
514 | 0 | long c2total = 0; |
515 | | |
516 | 0 | c0min = boxp->c0min; c0max = boxp->c0max; |
517 | 0 | c1min = boxp->c1min; c1max = boxp->c1max; |
518 | 0 | c2min = boxp->c2min; c2max = boxp->c2max; |
519 | | |
520 | 0 | for (c0 = c0min; c0 <= c0max; c0++) |
521 | 0 | for (c1 = c1min; c1 <= c1max; c1++) { |
522 | 0 | histp = & histogram[c0][c1][c2min]; |
523 | 0 | for (c2 = c2min; c2 <= c2max; c2++) { |
524 | 0 | if ((count = *histp++) != 0) { |
525 | 0 | total += count; |
526 | 0 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
527 | 0 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
528 | 0 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
529 | 0 | } |
530 | 0 | } |
531 | 0 | } |
532 | | |
533 | 0 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); |
534 | 0 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); |
535 | 0 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); |
536 | 0 | } |
537 | | |
538 | | |
539 | | LOCAL(void) |
540 | | select_colors (j_decompress_ptr cinfo, int desired_colors) |
541 | | /* Master routine for color selection */ |
542 | 0 | { |
543 | 0 | boxptr boxlist; |
544 | 0 | int numboxes; |
545 | 0 | int i; |
546 | | |
547 | | /* Allocate workspace for box list */ |
548 | 0 | boxlist = (boxptr) (*cinfo->mem->alloc_small) |
549 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); |
550 | | /* Initialize one box containing whole space */ |
551 | 0 | numboxes = 1; |
552 | 0 | boxlist[0].c0min = 0; |
553 | 0 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; |
554 | 0 | boxlist[0].c1min = 0; |
555 | 0 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; |
556 | 0 | boxlist[0].c2min = 0; |
557 | 0 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; |
558 | | /* Shrink it to actually-used volume and set its statistics */ |
559 | 0 | update_box(cinfo, & boxlist[0]); |
560 | | /* Perform median-cut to produce final box list */ |
561 | 0 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); |
562 | | /* Compute the representative color for each box, fill colormap */ |
563 | 0 | for (i = 0; i < numboxes; i++) |
564 | 0 | compute_color(cinfo, & boxlist[i], i); |
565 | 0 | cinfo->actual_number_of_colors = numboxes; |
566 | 0 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); |
567 | 0 | } |
568 | | |
569 | | |
570 | | /* |
571 | | * These routines are concerned with the time-critical task of mapping input |
572 | | * colors to the nearest color in the selected colormap. |
573 | | * |
574 | | * We re-use the histogram space as an "inverse color map", essentially a |
575 | | * cache for the results of nearest-color searches. All colors within a |
576 | | * histogram cell will be mapped to the same colormap entry, namely the one |
577 | | * closest to the cell's center. This may not be quite the closest entry to |
578 | | * the actual input color, but it's almost as good. A zero in the cache |
579 | | * indicates we haven't found the nearest color for that cell yet; the array |
580 | | * is cleared to zeroes before starting the mapping pass. When we find the |
581 | | * nearest color for a cell, its colormap index plus one is recorded in the |
582 | | * cache for future use. The pass2 scanning routines call fill_inverse_cmap |
583 | | * when they need to use an unfilled entry in the cache. |
584 | | * |
585 | | * Our method of efficiently finding nearest colors is based on the "locally |
586 | | * sorted search" idea described by Heckbert and on the incremental distance |
587 | | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics |
588 | | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that |
589 | | * the distances from a given colormap entry to each cell of the histogram can |
590 | | * be computed quickly using an incremental method: the differences between |
591 | | * distances to adjacent cells themselves differ by a constant. This allows a |
592 | | * fairly fast implementation of the "brute force" approach of computing the |
593 | | * distance from every colormap entry to every histogram cell. Unfortunately, |
594 | | * it needs a work array to hold the best-distance-so-far for each histogram |
595 | | * cell (because the inner loop has to be over cells, not colormap entries). |
596 | | * The work array elements have to be INT32s, so the work array would need |
597 | | * 256Kb at our recommended precision. This is not feasible in DOS machines. |
598 | | * |
599 | | * To get around these problems, we apply Thomas' method to compute the |
600 | | * nearest colors for only the cells within a small subbox of the histogram. |
601 | | * The work array need be only as big as the subbox, so the memory usage |
602 | | * problem is solved. Furthermore, we need not fill subboxes that are never |
603 | | * referenced in pass2; many images use only part of the color gamut, so a |
604 | | * fair amount of work is saved. An additional advantage of this |
605 | | * approach is that we can apply Heckbert's locality criterion to quickly |
606 | | * eliminate colormap entries that are far away from the subbox; typically |
607 | | * three-fourths of the colormap entries are rejected by Heckbert's criterion, |
608 | | * and we need not compute their distances to individual cells in the subbox. |
609 | | * The speed of this approach is heavily influenced by the subbox size: too |
610 | | * small means too much overhead, too big loses because Heckbert's criterion |
611 | | * can't eliminate as many colormap entries. Empirically the best subbox |
612 | | * size seems to be about 1/512th of the histogram (1/8th in each direction). |
613 | | * |
614 | | * Thomas' article also describes a refined method which is asymptotically |
615 | | * faster than the brute-force method, but it is also far more complex and |
616 | | * cannot efficiently be applied to small subboxes. It is therefore not |
617 | | * useful for programs intended to be portable to DOS machines. On machines |
618 | | * with plenty of memory, filling the whole histogram in one shot with Thomas' |
619 | | * refined method might be faster than the present code --- but then again, |
620 | | * it might not be any faster, and it's certainly more complicated. |
621 | | */ |
622 | | |
623 | | |
624 | | /* log2(histogram cells in update box) for each axis; this can be adjusted */ |
625 | 0 | #define BOX_C0_LOG (HIST_C0_BITS-3) |
626 | 0 | #define BOX_C1_LOG (HIST_C1_BITS-3) |
627 | 0 | #define BOX_C2_LOG (HIST_C2_BITS-3) |
628 | | |
629 | 0 | #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ |
630 | 0 | #define BOX_C1_ELEMS (1<<BOX_C1_LOG) |
631 | 0 | #define BOX_C2_ELEMS (1<<BOX_C2_LOG) |
632 | | |
633 | 0 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) |
634 | 0 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) |
635 | 0 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) |
636 | | |
637 | | |
638 | | /* |
639 | | * The next three routines implement inverse colormap filling. They could |
640 | | * all be folded into one big routine, but splitting them up this way saves |
641 | | * some stack space (the mindist[] and bestdist[] arrays need not coexist) |
642 | | * and may allow some compilers to produce better code by registerizing more |
643 | | * inner-loop variables. |
644 | | */ |
645 | | |
646 | | LOCAL(int) |
647 | | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
648 | | JSAMPLE colorlist[]) |
649 | | /* Locate the colormap entries close enough to an update box to be candidates |
650 | | * for the nearest entry to some cell(s) in the update box. The update box |
651 | | * is specified by the center coordinates of its first cell. The number of |
652 | | * candidate colormap entries is returned, and their colormap indexes are |
653 | | * placed in colorlist[]. |
654 | | * This routine uses Heckbert's "locally sorted search" criterion to select |
655 | | * the colors that need further consideration. |
656 | | */ |
657 | 0 | { |
658 | 0 | int numcolors = cinfo->actual_number_of_colors; |
659 | 0 | int maxc0, maxc1, maxc2; |
660 | 0 | int centerc0, centerc1, centerc2; |
661 | 0 | int i, x, ncolors; |
662 | 0 | INT32 minmaxdist, min_dist, max_dist, tdist; |
663 | 0 | INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
664 | | |
665 | | /* Compute true coordinates of update box's upper corner and center. |
666 | | * Actually we compute the coordinates of the center of the upper-corner |
667 | | * histogram cell, which are the upper bounds of the volume we care about. |
668 | | * Note that since ">>" rounds down, the "center" values may be closer to |
669 | | * min than to max; hence comparisons to them must be "<=", not "<". |
670 | | */ |
671 | 0 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); |
672 | 0 | centerc0 = (minc0 + maxc0) >> 1; |
673 | 0 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); |
674 | 0 | centerc1 = (minc1 + maxc1) >> 1; |
675 | 0 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); |
676 | 0 | centerc2 = (minc2 + maxc2) >> 1; |
677 | | |
678 | | /* For each color in colormap, find: |
679 | | * 1. its minimum squared-distance to any point in the update box |
680 | | * (zero if color is within update box); |
681 | | * 2. its maximum squared-distance to any point in the update box. |
682 | | * Both of these can be found by considering only the corners of the box. |
683 | | * We save the minimum distance for each color in mindist[]; |
684 | | * only the smallest maximum distance is of interest. |
685 | | */ |
686 | 0 | minmaxdist = 0x7FFFFFFFL; |
687 | |
|
688 | 0 | for (i = 0; i < numcolors; i++) { |
689 | | /* We compute the squared-c0-distance term, then add in the other two. */ |
690 | 0 | x = GETJSAMPLE(cinfo->colormap[0][i]); |
691 | 0 | if (x < minc0) { |
692 | 0 | tdist = (x - minc0) * C0_SCALE; |
693 | 0 | min_dist = tdist*tdist; |
694 | 0 | tdist = (x - maxc0) * C0_SCALE; |
695 | 0 | max_dist = tdist*tdist; |
696 | 0 | } else if (x > maxc0) { |
697 | 0 | tdist = (x - maxc0) * C0_SCALE; |
698 | 0 | min_dist = tdist*tdist; |
699 | 0 | tdist = (x - minc0) * C0_SCALE; |
700 | 0 | max_dist = tdist*tdist; |
701 | 0 | } else { |
702 | | /* within cell range so no contribution to min_dist */ |
703 | 0 | min_dist = 0; |
704 | 0 | if (x <= centerc0) { |
705 | 0 | tdist = (x - maxc0) * C0_SCALE; |
706 | 0 | max_dist = tdist*tdist; |
707 | 0 | } else { |
708 | 0 | tdist = (x - minc0) * C0_SCALE; |
709 | 0 | max_dist = tdist*tdist; |
710 | 0 | } |
711 | 0 | } |
712 | |
|
713 | 0 | x = GETJSAMPLE(cinfo->colormap[1][i]); |
714 | 0 | if (x < minc1) { |
715 | 0 | tdist = (x - minc1) * C1_SCALE; |
716 | 0 | min_dist += tdist*tdist; |
717 | 0 | tdist = (x - maxc1) * C1_SCALE; |
718 | 0 | max_dist += tdist*tdist; |
719 | 0 | } else if (x > maxc1) { |
720 | 0 | tdist = (x - maxc1) * C1_SCALE; |
721 | 0 | min_dist += tdist*tdist; |
722 | 0 | tdist = (x - minc1) * C1_SCALE; |
723 | 0 | max_dist += tdist*tdist; |
724 | 0 | } else { |
725 | | /* within cell range so no contribution to min_dist */ |
726 | 0 | if (x <= centerc1) { |
727 | 0 | tdist = (x - maxc1) * C1_SCALE; |
728 | 0 | max_dist += tdist*tdist; |
729 | 0 | } else { |
730 | 0 | tdist = (x - minc1) * C1_SCALE; |
731 | 0 | max_dist += tdist*tdist; |
732 | 0 | } |
733 | 0 | } |
734 | |
|
735 | 0 | x = GETJSAMPLE(cinfo->colormap[2][i]); |
736 | 0 | if (x < minc2) { |
737 | 0 | tdist = (x - minc2) * C2_SCALE; |
738 | 0 | min_dist += tdist*tdist; |
739 | 0 | tdist = (x - maxc2) * C2_SCALE; |
740 | 0 | max_dist += tdist*tdist; |
741 | 0 | } else if (x > maxc2) { |
742 | 0 | tdist = (x - maxc2) * C2_SCALE; |
743 | 0 | min_dist += tdist*tdist; |
744 | 0 | tdist = (x - minc2) * C2_SCALE; |
745 | 0 | max_dist += tdist*tdist; |
746 | 0 | } else { |
747 | | /* within cell range so no contribution to min_dist */ |
748 | 0 | if (x <= centerc2) { |
749 | 0 | tdist = (x - maxc2) * C2_SCALE; |
750 | 0 | max_dist += tdist*tdist; |
751 | 0 | } else { |
752 | 0 | tdist = (x - minc2) * C2_SCALE; |
753 | 0 | max_dist += tdist*tdist; |
754 | 0 | } |
755 | 0 | } |
756 | |
|
757 | 0 | mindist[i] = min_dist; /* save away the results */ |
758 | 0 | if (max_dist < minmaxdist) |
759 | 0 | minmaxdist = max_dist; |
760 | 0 | } |
761 | | |
762 | | /* Now we know that no cell in the update box is more than minmaxdist |
763 | | * away from some colormap entry. Therefore, only colors that are |
764 | | * within minmaxdist of some part of the box need be considered. |
765 | | */ |
766 | 0 | ncolors = 0; |
767 | 0 | for (i = 0; i < numcolors; i++) { |
768 | 0 | if (mindist[i] <= minmaxdist) |
769 | 0 | colorlist[ncolors++] = (JSAMPLE) i; |
770 | 0 | } |
771 | 0 | return ncolors; |
772 | 0 | } |
773 | | |
774 | | |
775 | | LOCAL(void) |
776 | | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
777 | | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
778 | | /* Find the closest colormap entry for each cell in the update box, |
779 | | * given the list of candidate colors prepared by find_nearby_colors. |
780 | | * Return the indexes of the closest entries in the bestcolor[] array. |
781 | | * This routine uses Thomas' incremental distance calculation method to |
782 | | * find the distance from a colormap entry to successive cells in the box. |
783 | | */ |
784 | 0 | { |
785 | 0 | int ic0, ic1, ic2; |
786 | 0 | int i, icolor; |
787 | 0 | register INT32 * bptr; /* pointer into bestdist[] array */ |
788 | 0 | JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
789 | 0 | INT32 dist0, dist1; /* initial distance values */ |
790 | 0 | register INT32 dist2; /* current distance in inner loop */ |
791 | 0 | INT32 xx0, xx1; /* distance increments */ |
792 | 0 | register INT32 xx2; |
793 | 0 | INT32 inc0, inc1, inc2; /* initial values for increments */ |
794 | | /* This array holds the distance to the nearest-so-far color for each cell */ |
795 | 0 | INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
796 | | |
797 | | /* Initialize best-distance for each cell of the update box */ |
798 | 0 | bptr = bestdist; |
799 | 0 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) |
800 | 0 | *bptr++ = 0x7FFFFFFFL; |
801 | | |
802 | | /* For each color selected by find_nearby_colors, |
803 | | * compute its distance to the center of each cell in the box. |
804 | | * If that's less than best-so-far, update best distance and color number. |
805 | | */ |
806 | | |
807 | | /* Nominal steps between cell centers ("x" in Thomas article) */ |
808 | 0 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
809 | 0 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
810 | 0 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
811 | | |
812 | 0 | for (i = 0; i < numcolors; i++) { |
813 | 0 | icolor = GETJSAMPLE(colorlist[i]); |
814 | | /* Compute (square of) distance from minc0/c1/c2 to this color */ |
815 | 0 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; |
816 | 0 | dist0 = inc0*inc0; |
817 | 0 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; |
818 | 0 | dist0 += inc1*inc1; |
819 | 0 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; |
820 | 0 | dist0 += inc2*inc2; |
821 | | /* Form the initial difference increments */ |
822 | 0 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; |
823 | 0 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; |
824 | 0 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; |
825 | | /* Now loop over all cells in box, updating distance per Thomas method */ |
826 | 0 | bptr = bestdist; |
827 | 0 | cptr = bestcolor; |
828 | 0 | xx0 = inc0; |
829 | 0 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { |
830 | 0 | dist1 = dist0; |
831 | 0 | xx1 = inc1; |
832 | 0 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { |
833 | 0 | dist2 = dist1; |
834 | 0 | xx2 = inc2; |
835 | 0 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
836 | 0 | if (dist2 < *bptr) { |
837 | 0 | *bptr = dist2; |
838 | 0 | *cptr = (JSAMPLE) icolor; |
839 | 0 | } |
840 | 0 | dist2 += xx2; |
841 | 0 | xx2 += 2 * STEP_C2 * STEP_C2; |
842 | 0 | bptr++; |
843 | 0 | cptr++; |
844 | 0 | } |
845 | 0 | dist1 += xx1; |
846 | 0 | xx1 += 2 * STEP_C1 * STEP_C1; |
847 | 0 | } |
848 | 0 | dist0 += xx0; |
849 | 0 | xx0 += 2 * STEP_C0 * STEP_C0; |
850 | 0 | } |
851 | 0 | } |
852 | 0 | } |
853 | | |
854 | | |
855 | | LOCAL(void) |
856 | | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
857 | | /* Fill the inverse-colormap entries in the update box that contains */ |
858 | | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ |
859 | | /* we can fill as many others as we wish.) */ |
860 | 0 | { |
861 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
862 | 0 | hist3d histogram = cquantize->histogram; |
863 | 0 | int minc0, minc1, minc2; /* lower left corner of update box */ |
864 | 0 | int ic0, ic1, ic2; |
865 | 0 | register JSAMPLE * cptr; /* pointer into bestcolor[] array */ |
866 | 0 | register histptr cachep; /* pointer into main cache array */ |
867 | | /* This array lists the candidate colormap indexes. */ |
868 | 0 | JSAMPLE colorlist[MAXNUMCOLORS]; |
869 | 0 | int numcolors; /* number of candidate colors */ |
870 | | /* This array holds the actually closest colormap index for each cell. */ |
871 | 0 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
872 | | |
873 | | /* Convert cell coordinates to update box ID */ |
874 | 0 | c0 >>= BOX_C0_LOG; |
875 | 0 | c1 >>= BOX_C1_LOG; |
876 | 0 | c2 >>= BOX_C2_LOG; |
877 | | |
878 | | /* Compute true coordinates of update box's origin corner. |
879 | | * Actually we compute the coordinates of the center of the corner |
880 | | * histogram cell, which are the lower bounds of the volume we care about. |
881 | | */ |
882 | 0 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
883 | 0 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
884 | 0 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
885 | | |
886 | | /* Determine which colormap entries are close enough to be candidates |
887 | | * for the nearest entry to some cell in the update box. |
888 | | */ |
889 | 0 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); |
890 | | |
891 | | /* Determine the actually nearest colors. */ |
892 | 0 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
893 | 0 | bestcolor); |
894 | | |
895 | | /* Save the best color numbers (plus 1) in the main cache array */ |
896 | 0 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
897 | 0 | c1 <<= BOX_C1_LOG; |
898 | 0 | c2 <<= BOX_C2_LOG; |
899 | 0 | cptr = bestcolor; |
900 | 0 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { |
901 | 0 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
902 | 0 | cachep = & histogram[c0+ic0][c1+ic1][c2]; |
903 | 0 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
904 | 0 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
905 | 0 | } |
906 | 0 | } |
907 | 0 | } |
908 | 0 | } |
909 | | |
910 | | |
911 | | /* |
912 | | * Map some rows of pixels to the output colormapped representation. |
913 | | */ |
914 | | |
915 | | METHODDEF(void) |
916 | | pass2_no_dither (j_decompress_ptr cinfo, |
917 | | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
918 | | /* This version performs no dithering */ |
919 | 0 | { |
920 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
921 | 0 | hist3d histogram = cquantize->histogram; |
922 | 0 | register JSAMPROW inptr, outptr; |
923 | 0 | register histptr cachep; |
924 | 0 | register int c0, c1, c2; |
925 | 0 | int row; |
926 | 0 | JDIMENSION col; |
927 | 0 | JDIMENSION width = cinfo->output_width; |
928 | |
|
929 | 0 | for (row = 0; row < num_rows; row++) { |
930 | 0 | inptr = input_buf[row]; |
931 | 0 | outptr = output_buf[row]; |
932 | 0 | for (col = width; col > 0; col--) { |
933 | | /* get pixel value and index into the cache */ |
934 | 0 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; |
935 | 0 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; |
936 | 0 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; |
937 | 0 | cachep = & histogram[c0][c1][c2]; |
938 | | /* If we have not seen this color before, find nearest colormap entry */ |
939 | | /* and update the cache */ |
940 | 0 | if (*cachep == 0) |
941 | 0 | fill_inverse_cmap(cinfo, c0,c1,c2); |
942 | | /* Now emit the colormap index for this cell */ |
943 | 0 | *outptr++ = (JSAMPLE) (*cachep - 1); |
944 | 0 | } |
945 | 0 | } |
946 | 0 | } |
947 | | |
948 | | |
949 | | METHODDEF(void) |
950 | | pass2_fs_dither (j_decompress_ptr cinfo, |
951 | | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
952 | | /* This version performs Floyd-Steinberg dithering */ |
953 | 0 | { |
954 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
955 | 0 | hist3d histogram = cquantize->histogram; |
956 | 0 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
957 | 0 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
958 | 0 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
959 | 0 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
960 | 0 | JSAMPROW inptr; /* => current input pixel */ |
961 | 0 | JSAMPROW outptr; /* => current output pixel */ |
962 | 0 | histptr cachep; |
963 | 0 | int dir; /* +1 or -1 depending on direction */ |
964 | 0 | int dir3; /* 3*dir, for advancing inptr & errorptr */ |
965 | 0 | int row; |
966 | 0 | JDIMENSION col; |
967 | 0 | JDIMENSION width = cinfo->output_width; |
968 | 0 | JSAMPLE *range_limit = cinfo->sample_range_limit; |
969 | 0 | int *error_limit = cquantize->error_limiter; |
970 | 0 | JSAMPROW colormap0 = cinfo->colormap[0]; |
971 | 0 | JSAMPROW colormap1 = cinfo->colormap[1]; |
972 | 0 | JSAMPROW colormap2 = cinfo->colormap[2]; |
973 | 0 | SHIFT_TEMPS |
974 | |
|
975 | 0 | for (row = 0; row < num_rows; row++) { |
976 | 0 | inptr = input_buf[row]; |
977 | 0 | outptr = output_buf[row]; |
978 | 0 | if (cquantize->on_odd_row) { |
979 | | /* work right to left in this row */ |
980 | 0 | inptr += (width-1) * 3; /* so point to rightmost pixel */ |
981 | 0 | outptr += width-1; |
982 | 0 | dir = -1; |
983 | 0 | dir3 = -3; |
984 | 0 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ |
985 | 0 | cquantize->on_odd_row = FALSE; /* flip for next time */ |
986 | 0 | } else { |
987 | | /* work left to right in this row */ |
988 | 0 | dir = 1; |
989 | 0 | dir3 = 3; |
990 | 0 | errorptr = cquantize->fserrors; /* => entry before first real column */ |
991 | 0 | cquantize->on_odd_row = TRUE; /* flip for next time */ |
992 | 0 | } |
993 | | /* Preset error values: no error propagated to first pixel from left */ |
994 | 0 | cur0 = cur1 = cur2 = 0; |
995 | | /* and no error propagated to row below yet */ |
996 | 0 | belowerr0 = belowerr1 = belowerr2 = 0; |
997 | 0 | bpreverr0 = bpreverr1 = bpreverr2 = 0; |
998 | |
|
999 | 0 | for (col = width; col > 0; col--) { |
1000 | | /* curN holds the error propagated from the previous pixel on the |
1001 | | * current line. Add the error propagated from the previous line |
1002 | | * to form the complete error correction term for this pixel, and |
1003 | | * round the error term (which is expressed * 16) to an integer. |
1004 | | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
1005 | | * for either sign of the error value. |
1006 | | * Note: errorptr points to *previous* column's array entry. |
1007 | | */ |
1008 | 0 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); |
1009 | 0 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); |
1010 | 0 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); |
1011 | | /* Limit the error using transfer function set by init_error_limit. |
1012 | | * See comments with init_error_limit for rationale. |
1013 | | */ |
1014 | 0 | cur0 = error_limit[cur0]; |
1015 | 0 | cur1 = error_limit[cur1]; |
1016 | 0 | cur2 = error_limit[cur2]; |
1017 | | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
1018 | | * The maximum error is +- MAXJSAMPLE (or less with error limiting); |
1019 | | * this sets the required size of the range_limit array. |
1020 | | */ |
1021 | 0 | cur0 += GETJSAMPLE(inptr[0]); |
1022 | 0 | cur1 += GETJSAMPLE(inptr[1]); |
1023 | 0 | cur2 += GETJSAMPLE(inptr[2]); |
1024 | 0 | cur0 = GETJSAMPLE(range_limit[cur0]); |
1025 | 0 | cur1 = GETJSAMPLE(range_limit[cur1]); |
1026 | 0 | cur2 = GETJSAMPLE(range_limit[cur2]); |
1027 | | /* Index into the cache with adjusted pixel value */ |
1028 | 0 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; |
1029 | | /* If we have not seen this color before, find nearest colormap */ |
1030 | | /* entry and update the cache */ |
1031 | 0 | if (*cachep == 0) |
1032 | 0 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
1033 | | /* Now emit the colormap index for this cell */ |
1034 | 0 | { register int pixcode = *cachep - 1; |
1035 | 0 | *outptr = (JSAMPLE) pixcode; |
1036 | | /* Compute representation error for this pixel */ |
1037 | 0 | cur0 -= GETJSAMPLE(colormap0[pixcode]); |
1038 | 0 | cur1 -= GETJSAMPLE(colormap1[pixcode]); |
1039 | 0 | cur2 -= GETJSAMPLE(colormap2[pixcode]); |
1040 | 0 | } |
1041 | | /* Compute error fractions to be propagated to adjacent pixels. |
1042 | | * Add these into the running sums, and simultaneously shift the |
1043 | | * next-line error sums left by 1 column. |
1044 | | */ |
1045 | 0 | { register LOCFSERROR bnexterr, delta; |
1046 | |
|
1047 | 0 | bnexterr = cur0; /* Process component 0 */ |
1048 | 0 | delta = cur0 * 2; |
1049 | 0 | cur0 += delta; /* form error * 3 */ |
1050 | 0 | errorptr[0] = (FSERROR) (bpreverr0 + cur0); |
1051 | 0 | cur0 += delta; /* form error * 5 */ |
1052 | 0 | bpreverr0 = belowerr0 + cur0; |
1053 | 0 | belowerr0 = bnexterr; |
1054 | 0 | cur0 += delta; /* form error * 7 */ |
1055 | 0 | bnexterr = cur1; /* Process component 1 */ |
1056 | 0 | delta = cur1 * 2; |
1057 | 0 | cur1 += delta; /* form error * 3 */ |
1058 | 0 | errorptr[1] = (FSERROR) (bpreverr1 + cur1); |
1059 | 0 | cur1 += delta; /* form error * 5 */ |
1060 | 0 | bpreverr1 = belowerr1 + cur1; |
1061 | 0 | belowerr1 = bnexterr; |
1062 | 0 | cur1 += delta; /* form error * 7 */ |
1063 | 0 | bnexterr = cur2; /* Process component 2 */ |
1064 | 0 | delta = cur2 * 2; |
1065 | 0 | cur2 += delta; /* form error * 3 */ |
1066 | 0 | errorptr[2] = (FSERROR) (bpreverr2 + cur2); |
1067 | 0 | cur2 += delta; /* form error * 5 */ |
1068 | 0 | bpreverr2 = belowerr2 + cur2; |
1069 | 0 | belowerr2 = bnexterr; |
1070 | 0 | cur2 += delta; /* form error * 7 */ |
1071 | 0 | } |
1072 | | /* At this point curN contains the 7/16 error value to be propagated |
1073 | | * to the next pixel on the current line, and all the errors for the |
1074 | | * next line have been shifted over. We are therefore ready to move on. |
1075 | | */ |
1076 | 0 | inptr += dir3; /* Advance pixel pointers to next column */ |
1077 | 0 | outptr += dir; |
1078 | 0 | errorptr += dir3; /* advance errorptr to current column */ |
1079 | 0 | } |
1080 | | /* Post-loop cleanup: we must unload the final error values into the |
1081 | | * final fserrors[] entry. Note we need not unload belowerrN because |
1082 | | * it is for the dummy column before or after the actual array. |
1083 | | */ |
1084 | 0 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ |
1085 | 0 | errorptr[1] = (FSERROR) bpreverr1; |
1086 | 0 | errorptr[2] = (FSERROR) bpreverr2; |
1087 | 0 | } |
1088 | 0 | } |
1089 | | |
1090 | | |
1091 | | /* |
1092 | | * Initialize the error-limiting transfer function (lookup table). |
1093 | | * The raw F-S error computation can potentially compute error values of up to |
1094 | | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be |
1095 | | * much less, otherwise obviously wrong pixels will be created. (Typical |
1096 | | * effects include weird fringes at color-area boundaries, isolated bright |
1097 | | * pixels in a dark area, etc.) The standard advice for avoiding this problem |
1098 | | * is to ensure that the "corners" of the color cube are allocated as output |
1099 | | * colors; then repeated errors in the same direction cannot cause cascading |
1100 | | * error buildup. However, that only prevents the error from getting |
1101 | | * completely out of hand; Aaron Giles reports that error limiting improves |
1102 | | * the results even with corner colors allocated. |
1103 | | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty |
1104 | | * well, but the smoother transfer function used below is even better. Thanks |
1105 | | * to Aaron Giles for this idea. |
1106 | | */ |
1107 | | |
1108 | | LOCAL(void) |
1109 | | init_error_limit (j_decompress_ptr cinfo) |
1110 | | /* Allocate and fill in the error_limiter table */ |
1111 | 0 | { |
1112 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1113 | 0 | int * table; |
1114 | 0 | int in, out; |
1115 | |
|
1116 | 0 | table = (int *) (*cinfo->mem->alloc_small) |
1117 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); |
1118 | 0 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
1119 | 0 | cquantize->error_limiter = table; |
1120 | |
|
1121 | 0 | #define STEPSIZE ((MAXJSAMPLE+1)/16) |
1122 | | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ |
1123 | 0 | out = 0; |
1124 | 0 | for (in = 0; in < STEPSIZE; in++, out++) { |
1125 | 0 | table[in] = out; table[-in] = -out; |
1126 | 0 | } |
1127 | | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ |
1128 | 0 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { |
1129 | 0 | table[in] = out; table[-in] = -out; |
1130 | 0 | } |
1131 | | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ |
1132 | 0 | for (; in <= MAXJSAMPLE; in++) { |
1133 | 0 | table[in] = out; table[-in] = -out; |
1134 | 0 | } |
1135 | 0 | #undef STEPSIZE |
1136 | 0 | } |
1137 | | |
1138 | | |
1139 | | /* |
1140 | | * Finish up at the end of each pass. |
1141 | | */ |
1142 | | |
1143 | | METHODDEF(void) |
1144 | | finish_pass1 (j_decompress_ptr cinfo) |
1145 | 0 | { |
1146 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1147 | | |
1148 | | /* Select the representative colors and fill in cinfo->colormap */ |
1149 | 0 | cinfo->colormap = cquantize->sv_colormap; |
1150 | 0 | select_colors(cinfo, cquantize->desired); |
1151 | | /* Force next pass to zero the color index table */ |
1152 | 0 | cquantize->needs_zeroed = TRUE; |
1153 | 0 | } |
1154 | | |
1155 | | |
1156 | | METHODDEF(void) |
1157 | | finish_pass2 (j_decompress_ptr cinfo) |
1158 | 0 | { |
1159 | | /* no work */ |
1160 | 0 | } |
1161 | | |
1162 | | |
1163 | | /* |
1164 | | * Initialize for each processing pass. |
1165 | | */ |
1166 | | |
1167 | | METHODDEF(void) |
1168 | | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
1169 | 0 | { |
1170 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1171 | 0 | hist3d histogram = cquantize->histogram; |
1172 | 0 | int i; |
1173 | | |
1174 | | /* Only F-S dithering or no dithering is supported. */ |
1175 | | /* If user asks for ordered dither, give him F-S. */ |
1176 | 0 | if (cinfo->dither_mode != JDITHER_NONE) |
1177 | 0 | cinfo->dither_mode = JDITHER_FS; |
1178 | |
|
1179 | 0 | if (is_pre_scan) { |
1180 | | /* Set up method pointers */ |
1181 | 0 | cquantize->pub.color_quantize = prescan_quantize; |
1182 | 0 | cquantize->pub.finish_pass = finish_pass1; |
1183 | 0 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */ |
1184 | 0 | } else { |
1185 | | /* Set up method pointers */ |
1186 | 0 | if (cinfo->dither_mode == JDITHER_FS) |
1187 | 0 | cquantize->pub.color_quantize = pass2_fs_dither; |
1188 | 0 | else |
1189 | 0 | cquantize->pub.color_quantize = pass2_no_dither; |
1190 | 0 | cquantize->pub.finish_pass = finish_pass2; |
1191 | | |
1192 | | /* Make sure color count is acceptable */ |
1193 | 0 | i = cinfo->actual_number_of_colors; |
1194 | 0 | if (i < 1) |
1195 | 0 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); |
1196 | 0 | if (i > MAXNUMCOLORS) |
1197 | 0 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1198 | |
|
1199 | 0 | if (cinfo->dither_mode == JDITHER_FS) { |
1200 | 0 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * |
1201 | 0 | (3 * SIZEOF(FSERROR))); |
1202 | | /* Allocate Floyd-Steinberg workspace if we didn't already. */ |
1203 | 0 | if (cquantize->fserrors == NULL) |
1204 | 0 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
1205 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
1206 | | /* Initialize the propagated errors to zero. */ |
1207 | 0 | FMEMZERO((void FAR *) cquantize->fserrors, arraysize); |
1208 | | /* Make the error-limit table if we didn't already. */ |
1209 | 0 | if (cquantize->error_limiter == NULL) |
1210 | 0 | init_error_limit(cinfo); |
1211 | 0 | cquantize->on_odd_row = FALSE; |
1212 | 0 | } |
1213 | |
|
1214 | 0 | } |
1215 | | /* Zero the histogram or inverse color map, if necessary */ |
1216 | 0 | if (cquantize->needs_zeroed) { |
1217 | 0 | for (i = 0; i < HIST_C0_ELEMS; i++) { |
1218 | 0 | FMEMZERO((void FAR *) histogram[i], |
1219 | 0 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
1220 | 0 | } |
1221 | 0 | cquantize->needs_zeroed = FALSE; |
1222 | 0 | } |
1223 | 0 | } |
1224 | | |
1225 | | |
1226 | | /* |
1227 | | * Switch to a new external colormap between output passes. |
1228 | | */ |
1229 | | |
1230 | | METHODDEF(void) |
1231 | | new_color_map_2_quant (j_decompress_ptr cinfo) |
1232 | 0 | { |
1233 | 0 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1234 | | |
1235 | | /* Reset the inverse color map */ |
1236 | 0 | cquantize->needs_zeroed = TRUE; |
1237 | 0 | } |
1238 | | |
1239 | | |
1240 | | /* |
1241 | | * Module initialization routine for 2-pass color quantization. |
1242 | | */ |
1243 | | |
1244 | | GLOBAL(void) |
1245 | | jinit_2pass_quantizer (j_decompress_ptr cinfo) |
1246 | 0 | { |
1247 | 0 | my_cquantize_ptr cquantize; |
1248 | 0 | int i; |
1249 | |
|
1250 | 0 | cquantize = (my_cquantize_ptr) |
1251 | 0 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1252 | 0 | SIZEOF(my_cquantizer)); |
1253 | 0 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
1254 | 0 | cquantize->pub.start_pass = start_pass_2_quant; |
1255 | 0 | cquantize->pub.new_color_map = new_color_map_2_quant; |
1256 | 0 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
1257 | 0 | cquantize->error_limiter = NULL; |
1258 | | |
1259 | | /* Make sure jdmaster didn't give me a case I can't handle */ |
1260 | 0 | if (cinfo->out_color_components != 3) |
1261 | 0 | ERREXIT(cinfo, JERR_NOTIMPL); |
1262 | | |
1263 | | /* Allocate the histogram/inverse colormap storage */ |
1264 | 0 | cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) |
1265 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); |
1266 | 0 | for (i = 0; i < HIST_C0_ELEMS; i++) { |
1267 | 0 | cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) |
1268 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1269 | 0 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); |
1270 | 0 | } |
1271 | 0 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
1272 | | |
1273 | | /* Allocate storage for the completed colormap, if required. |
1274 | | * We do this now since it is FAR storage and may affect |
1275 | | * the memory manager's space calculations. |
1276 | | */ |
1277 | 0 | if (cinfo->enable_2pass_quant) { |
1278 | | /* Make sure color count is acceptable */ |
1279 | 0 | int desired = cinfo->desired_number_of_colors; |
1280 | | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ |
1281 | 0 | if (desired < 8) |
1282 | 0 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); |
1283 | | /* Make sure colormap indexes can be represented by JSAMPLEs */ |
1284 | 0 | if (desired > MAXNUMCOLORS) |
1285 | 0 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1286 | 0 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) |
1287 | 0 | ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); |
1288 | 0 | cquantize->desired = desired; |
1289 | 0 | } else |
1290 | 0 | cquantize->sv_colormap = NULL; |
1291 | | |
1292 | | /* Only F-S dithering or no dithering is supported. */ |
1293 | | /* If user asks for ordered dither, give him F-S. */ |
1294 | 0 | if (cinfo->dither_mode != JDITHER_NONE) |
1295 | 0 | cinfo->dither_mode = JDITHER_FS; |
1296 | | |
1297 | | /* Allocate Floyd-Steinberg workspace if necessary. |
1298 | | * This isn't really needed until pass 2, but again it is FAR storage. |
1299 | | * Although we will cope with a later change in dither_mode, |
1300 | | * we do not promise to honor max_memory_to_use if dither_mode changes. |
1301 | | */ |
1302 | 0 | if (cinfo->dither_mode == JDITHER_FS) { |
1303 | 0 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
1304 | 0 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1305 | 0 | (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); |
1306 | | /* Might as well create the error-limiting table too. */ |
1307 | 0 | init_error_limit(cinfo); |
1308 | 0 | } |
1309 | 0 | } |
1310 | | |
1311 | | #endif /* QUANT_2PASS_SUPPORTED */ |