/src/freeimage-svn/FreeImage/trunk/Source/LibOpenJPEG/invert.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2008, Jerome Fimes, Communications & Systemes <jerome.fimes@c-s.fr> |
3 | | * All rights reserved. |
4 | | * |
5 | | * Redistribution and use in source and binary forms, with or without |
6 | | * modification, are permitted provided that the following conditions |
7 | | * are met: |
8 | | * 1. Redistributions of source code must retain the above copyright |
9 | | * notice, this list of conditions and the following disclaimer. |
10 | | * 2. Redistributions in binary form must reproduce the above copyright |
11 | | * notice, this list of conditions and the following disclaimer in the |
12 | | * documentation and/or other materials provided with the distribution. |
13 | | * |
14 | | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
15 | | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
17 | | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
18 | | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
19 | | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
20 | | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
21 | | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
22 | | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
23 | | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
24 | | * POSSIBILITY OF SUCH DAMAGE. |
25 | | */ |
26 | | |
27 | | #include "opj_includes.h" |
28 | | |
29 | | /** |
30 | | * LUP decomposition |
31 | | */ |
32 | | static OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix, |
33 | | OPJ_UINT32 * permutations, |
34 | | OPJ_FLOAT32 * p_swap_area, |
35 | | OPJ_UINT32 nb_compo); |
36 | | /** |
37 | | * LUP solving |
38 | | */ |
39 | | static void opj_lupSolve(OPJ_FLOAT32 * pResult, |
40 | | OPJ_FLOAT32* pMatrix, |
41 | | OPJ_FLOAT32* pVector, |
42 | | OPJ_UINT32* pPermutations, |
43 | | OPJ_UINT32 nb_compo, |
44 | | OPJ_FLOAT32 * p_intermediate_data); |
45 | | |
46 | | /** |
47 | | *LUP inversion (call with the result of lupDecompose) |
48 | | */ |
49 | | static void opj_lupInvert ( OPJ_FLOAT32 * pSrcMatrix, |
50 | | OPJ_FLOAT32 * pDestMatrix, |
51 | | OPJ_UINT32 nb_compo, |
52 | | OPJ_UINT32 * pPermutations, |
53 | | OPJ_FLOAT32 * p_src_temp, |
54 | | OPJ_FLOAT32 * p_dest_temp, |
55 | | OPJ_FLOAT32 * p_swap_area); |
56 | | |
57 | | /* |
58 | | ========================================================== |
59 | | Matric inversion interface |
60 | | ========================================================== |
61 | | */ |
62 | | /** |
63 | | * Matrix inversion. |
64 | | */ |
65 | | OPJ_BOOL opj_matrix_inversion_f(OPJ_FLOAT32 * pSrcMatrix, |
66 | | OPJ_FLOAT32 * pDestMatrix, |
67 | | OPJ_UINT32 nb_compo) |
68 | 0 | { |
69 | 0 | OPJ_BYTE * l_data = 00; |
70 | 0 | OPJ_UINT32 l_permutation_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_UINT32); |
71 | 0 | OPJ_UINT32 l_swap_size = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
72 | 0 | OPJ_UINT32 l_total_size = l_permutation_size + 3 * l_swap_size; |
73 | 0 | OPJ_UINT32 * lPermutations = 00; |
74 | 0 | OPJ_FLOAT32 * l_double_data = 00; |
75 | |
|
76 | 0 | l_data = (OPJ_BYTE *) opj_malloc(l_total_size); |
77 | 0 | if (l_data == 0) { |
78 | 0 | return OPJ_FALSE; |
79 | 0 | } |
80 | 0 | lPermutations = (OPJ_UINT32 *) l_data; |
81 | 0 | l_double_data = (OPJ_FLOAT32 *) (l_data + l_permutation_size); |
82 | 0 | memset(lPermutations,0,l_permutation_size); |
83 | |
|
84 | 0 | if(! opj_lupDecompose(pSrcMatrix,lPermutations,l_double_data,nb_compo)) { |
85 | 0 | opj_free(l_data); |
86 | 0 | return OPJ_FALSE; |
87 | 0 | } |
88 | | |
89 | 0 | opj_lupInvert(pSrcMatrix,pDestMatrix,nb_compo,lPermutations,l_double_data,l_double_data + nb_compo,l_double_data + 2*nb_compo); |
90 | 0 | opj_free(l_data); |
91 | | |
92 | 0 | return OPJ_TRUE; |
93 | 0 | } |
94 | | |
95 | | |
96 | | /* |
97 | | ========================================================== |
98 | | Local functions |
99 | | ========================================================== |
100 | | */ |
101 | | OPJ_BOOL opj_lupDecompose(OPJ_FLOAT32 * matrix,OPJ_UINT32 * permutations, |
102 | | OPJ_FLOAT32 * p_swap_area, |
103 | | OPJ_UINT32 nb_compo) |
104 | 0 | { |
105 | 0 | OPJ_UINT32 * tmpPermutations = permutations; |
106 | 0 | OPJ_UINT32 * dstPermutations; |
107 | 0 | OPJ_UINT32 k2=0,t; |
108 | 0 | OPJ_FLOAT32 temp; |
109 | 0 | OPJ_UINT32 i,j,k; |
110 | 0 | OPJ_FLOAT32 p; |
111 | 0 | OPJ_UINT32 lLastColum = nb_compo - 1; |
112 | 0 | OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
113 | 0 | OPJ_FLOAT32 * lTmpMatrix = matrix; |
114 | 0 | OPJ_FLOAT32 * lColumnMatrix,* lDestMatrix; |
115 | 0 | OPJ_UINT32 offset = 1; |
116 | 0 | OPJ_UINT32 lStride = nb_compo-1; |
117 | | |
118 | | /*initialize permutations */ |
119 | 0 | for (i = 0; i < nb_compo; ++i) |
120 | 0 | { |
121 | 0 | *tmpPermutations++ = i; |
122 | 0 | } |
123 | | /* now make a pivot with colum switch */ |
124 | 0 | tmpPermutations = permutations; |
125 | 0 | for (k = 0; k < lLastColum; ++k) { |
126 | 0 | p = 0.0; |
127 | | |
128 | | /* take the middle element */ |
129 | 0 | lColumnMatrix = lTmpMatrix + k; |
130 | | |
131 | | /* make permutation with the biggest value in the column */ |
132 | 0 | for (i = k; i < nb_compo; ++i) { |
133 | 0 | temp = ((*lColumnMatrix > 0) ? *lColumnMatrix : -(*lColumnMatrix)); |
134 | 0 | if (temp > p) { |
135 | 0 | p = temp; |
136 | 0 | k2 = i; |
137 | 0 | } |
138 | | /* next line */ |
139 | 0 | lColumnMatrix += nb_compo; |
140 | 0 | } |
141 | | |
142 | | /* a whole rest of 0 -> non singular */ |
143 | 0 | if (p == 0.0) { |
144 | 0 | return OPJ_FALSE; |
145 | 0 | } |
146 | | |
147 | | /* should we permute ? */ |
148 | 0 | if (k2 != k) { |
149 | | /*exchange of line */ |
150 | | /* k2 > k */ |
151 | 0 | dstPermutations = tmpPermutations + k2 - k; |
152 | | /* swap indices */ |
153 | 0 | t = *tmpPermutations; |
154 | 0 | *tmpPermutations = *dstPermutations; |
155 | 0 | *dstPermutations = t; |
156 | | |
157 | | /* and swap entire line. */ |
158 | 0 | lColumnMatrix = lTmpMatrix + (k2 - k) * nb_compo; |
159 | 0 | memcpy(p_swap_area,lColumnMatrix,lSwapSize); |
160 | 0 | memcpy(lColumnMatrix,lTmpMatrix,lSwapSize); |
161 | 0 | memcpy(lTmpMatrix,p_swap_area,lSwapSize); |
162 | 0 | } |
163 | | |
164 | | /* now update data in the rest of the line and line after */ |
165 | 0 | lDestMatrix = lTmpMatrix + k; |
166 | 0 | lColumnMatrix = lDestMatrix + nb_compo; |
167 | | /* take the middle element */ |
168 | 0 | temp = *(lDestMatrix++); |
169 | | |
170 | | /* now compute up data (i.e. coeff up of the diagonal). */ |
171 | 0 | for (i = offset; i < nb_compo; ++i) { |
172 | | /*lColumnMatrix; */ |
173 | | /* divide the lower column elements by the diagonal value */ |
174 | | |
175 | | /* matrix[i][k] /= matrix[k][k]; */ |
176 | | /* p = matrix[i][k] */ |
177 | 0 | p = *lColumnMatrix / temp; |
178 | 0 | *(lColumnMatrix++) = p; |
179 | | |
180 | 0 | for (j = /* k + 1 */ offset; j < nb_compo; ++j) { |
181 | | /* matrix[i][j] -= matrix[i][k] * matrix[k][j]; */ |
182 | 0 | *(lColumnMatrix++) -= p * (*(lDestMatrix++)); |
183 | 0 | } |
184 | | /* come back to the k+1th element */ |
185 | 0 | lDestMatrix -= lStride; |
186 | | /* go to kth element of the next line */ |
187 | 0 | lColumnMatrix += k; |
188 | 0 | } |
189 | | |
190 | | /* offset is now k+2 */ |
191 | 0 | ++offset; |
192 | | /* 1 element less for stride */ |
193 | 0 | --lStride; |
194 | | /* next line */ |
195 | 0 | lTmpMatrix+=nb_compo; |
196 | | /* next permutation element */ |
197 | 0 | ++tmpPermutations; |
198 | 0 | } |
199 | 0 | return OPJ_TRUE; |
200 | 0 | } |
201 | | |
202 | | void opj_lupSolve (OPJ_FLOAT32 * pResult, |
203 | | OPJ_FLOAT32 * pMatrix, |
204 | | OPJ_FLOAT32 * pVector, |
205 | | OPJ_UINT32* pPermutations, |
206 | | OPJ_UINT32 nb_compo,OPJ_FLOAT32 * p_intermediate_data) |
207 | 0 | { |
208 | 0 | OPJ_INT32 k; |
209 | 0 | OPJ_UINT32 i,j; |
210 | 0 | OPJ_FLOAT32 sum; |
211 | 0 | OPJ_FLOAT32 u; |
212 | 0 | OPJ_UINT32 lStride = nb_compo+1; |
213 | 0 | OPJ_FLOAT32 * lCurrentPtr; |
214 | 0 | OPJ_FLOAT32 * lIntermediatePtr; |
215 | 0 | OPJ_FLOAT32 * lDestPtr; |
216 | 0 | OPJ_FLOAT32 * lTmpMatrix; |
217 | 0 | OPJ_FLOAT32 * lLineMatrix = pMatrix; |
218 | 0 | OPJ_FLOAT32 * lBeginPtr = pResult + nb_compo - 1; |
219 | 0 | OPJ_FLOAT32 * lGeneratedData; |
220 | 0 | OPJ_UINT32 * lCurrentPermutationPtr = pPermutations; |
221 | | |
222 | | |
223 | 0 | lIntermediatePtr = p_intermediate_data; |
224 | 0 | lGeneratedData = p_intermediate_data + nb_compo - 1; |
225 | | |
226 | 0 | for (i = 0; i < nb_compo; ++i) { |
227 | 0 | sum = 0.0; |
228 | 0 | lCurrentPtr = p_intermediate_data; |
229 | 0 | lTmpMatrix = lLineMatrix; |
230 | 0 | for (j = 1; j <= i; ++j) |
231 | 0 | { |
232 | | /* sum += matrix[i][j-1] * y[j-1]; */ |
233 | 0 | sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++)); |
234 | 0 | } |
235 | | /*y[i] = pVector[pPermutations[i]] - sum; */ |
236 | 0 | *(lIntermediatePtr++) = pVector[*(lCurrentPermutationPtr++)] - sum; |
237 | 0 | lLineMatrix += nb_compo; |
238 | 0 | } |
239 | | |
240 | | /* we take the last point of the matrix */ |
241 | 0 | lLineMatrix = pMatrix + nb_compo*nb_compo - 1; |
242 | | |
243 | | /* and we take after the last point of the destination vector */ |
244 | 0 | lDestPtr = pResult + nb_compo; |
245 | | |
246 | |
|
247 | 0 | assert(nb_compo != 0); |
248 | 0 | for (k = (OPJ_INT32)nb_compo - 1; k != -1 ; --k) { |
249 | 0 | sum = 0.0; |
250 | 0 | lTmpMatrix = lLineMatrix; |
251 | 0 | u = *(lTmpMatrix++); |
252 | 0 | lCurrentPtr = lDestPtr--; |
253 | 0 | for (j = (OPJ_UINT32)(k + 1); j < nb_compo; ++j) { |
254 | | /* sum += matrix[k][j] * x[j] */ |
255 | 0 | sum += (*(lTmpMatrix++)) * (*(lCurrentPtr++)); |
256 | 0 | } |
257 | | /*x[k] = (y[k] - sum) / u; */ |
258 | 0 | *(lBeginPtr--) = (*(lGeneratedData--) - sum) / u; |
259 | 0 | lLineMatrix -= lStride; |
260 | 0 | } |
261 | 0 | } |
262 | | |
263 | | |
264 | | void opj_lupInvert (OPJ_FLOAT32 * pSrcMatrix, |
265 | | OPJ_FLOAT32 * pDestMatrix, |
266 | | OPJ_UINT32 nb_compo, |
267 | | OPJ_UINT32 * pPermutations, |
268 | | OPJ_FLOAT32 * p_src_temp, |
269 | | OPJ_FLOAT32 * p_dest_temp, |
270 | | OPJ_FLOAT32 * p_swap_area ) |
271 | 0 | { |
272 | 0 | OPJ_UINT32 j,i; |
273 | 0 | OPJ_FLOAT32 * lCurrentPtr; |
274 | 0 | OPJ_FLOAT32 * lLineMatrix = pDestMatrix; |
275 | 0 | OPJ_UINT32 lSwapSize = nb_compo * (OPJ_UINT32)sizeof(OPJ_FLOAT32); |
276 | |
|
277 | 0 | for (j = 0; j < nb_compo; ++j) { |
278 | 0 | lCurrentPtr = lLineMatrix++; |
279 | 0 | memset(p_src_temp,0,lSwapSize); |
280 | 0 | p_src_temp[j] = 1.0; |
281 | 0 | opj_lupSolve(p_dest_temp,pSrcMatrix,p_src_temp, pPermutations, nb_compo , p_swap_area); |
282 | |
|
283 | 0 | for (i = 0; i < nb_compo; ++i) { |
284 | 0 | *(lCurrentPtr) = p_dest_temp[i]; |
285 | 0 | lCurrentPtr+=nb_compo; |
286 | 0 | } |
287 | 0 | } |
288 | 0 | } |
289 | | |