/src/freeimage-svn/FreeImage/trunk/Source/OpenEXR/Half/half.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | /////////////////////////////////////////////////////////////////////////// |
2 | | // |
3 | | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
4 | | // Digital Ltd. LLC |
5 | | // |
6 | | // All rights reserved. |
7 | | // |
8 | | // Redistribution and use in source and binary forms, with or without |
9 | | // modification, are permitted provided that the following conditions are |
10 | | // met: |
11 | | // * Redistributions of source code must retain the above copyright |
12 | | // notice, this list of conditions and the following disclaimer. |
13 | | // * Redistributions in binary form must reproduce the above |
14 | | // copyright notice, this list of conditions and the following disclaimer |
15 | | // in the documentation and/or other materials provided with the |
16 | | // distribution. |
17 | | // * Neither the name of Industrial Light & Magic nor the names of |
18 | | // its contributors may be used to endorse or promote products derived |
19 | | // from this software without specific prior written permission. |
20 | | // |
21 | | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
22 | | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
23 | | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
24 | | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
25 | | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
26 | | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
27 | | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
28 | | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
29 | | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
30 | | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
31 | | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
32 | | // |
33 | | /////////////////////////////////////////////////////////////////////////// |
34 | | |
35 | | // Primary authors: |
36 | | // Florian Kainz <kainz@ilm.com> |
37 | | // Rod Bogart <rgb@ilm.com> |
38 | | |
39 | | |
40 | | //--------------------------------------------------------------------------- |
41 | | // |
42 | | // class half -- |
43 | | // implementation of non-inline members |
44 | | // |
45 | | //--------------------------------------------------------------------------- |
46 | | |
47 | | #include <assert.h> |
48 | | #include "half.h" |
49 | | |
50 | | using namespace std; |
51 | | |
52 | | //------------------------------------------------------------- |
53 | | // Lookup tables for half-to-float and float-to-half conversion |
54 | | //------------------------------------------------------------- |
55 | | |
56 | | HALF_EXPORT const half::uif half::_toFloat[1 << 16] = |
57 | | #include "toFloat.h" |
58 | | HALF_EXPORT const unsigned short half::_eLut[1 << 9] = |
59 | | #include "eLut.h" |
60 | | |
61 | | //----------------------------------------------- |
62 | | // Overflow handler for float-to-half conversion; |
63 | | // generates a hardware floating-point overflow, |
64 | | // which may be trapped by the operating system. |
65 | | //----------------------------------------------- |
66 | | |
67 | | HALF_EXPORT float |
68 | | half::overflow () |
69 | 0 | { |
70 | 0 | volatile float f = 1e10; |
71 | |
|
72 | 0 | for (int i = 0; i < 10; i++) |
73 | 0 | f *= f; // this will overflow before |
74 | | // the forloop terminates |
75 | 0 | return f; |
76 | 0 | } |
77 | | |
78 | | |
79 | | //----------------------------------------------------- |
80 | | // Float-to-half conversion -- general case, including |
81 | | // zeroes, denormalized numbers and exponent overflows. |
82 | | //----------------------------------------------------- |
83 | | |
84 | | HALF_EXPORT short |
85 | | half::convert (int i) |
86 | 0 | { |
87 | | // |
88 | | // Our floating point number, f, is represented by the bit |
89 | | // pattern in integer i. Disassemble that bit pattern into |
90 | | // the sign, s, the exponent, e, and the significand, m. |
91 | | // Shift s into the position where it will go in in the |
92 | | // resulting half number. |
93 | | // Adjust e, accounting for the different exponent bias |
94 | | // of float and half (127 versus 15). |
95 | | // |
96 | |
|
97 | 0 | register int s = (i >> 16) & 0x00008000; |
98 | 0 | register int e = ((i >> 23) & 0x000000ff) - (127 - 15); |
99 | 0 | register int m = i & 0x007fffff; |
100 | | |
101 | | // |
102 | | // Now reassemble s, e and m into a half: |
103 | | // |
104 | |
|
105 | 0 | if (e <= 0) |
106 | 0 | { |
107 | 0 | if (e < -10) |
108 | 0 | { |
109 | | // |
110 | | // E is less than -10. The absolute value of f is |
111 | | // less than HALF_MIN (f may be a small normalized |
112 | | // float, a denormalized float or a zero). |
113 | | // |
114 | | // We convert f to a half zero with the same sign as f. |
115 | | // |
116 | |
|
117 | 0 | return s; |
118 | 0 | } |
119 | | |
120 | | // |
121 | | // E is between -10 and 0. F is a normalized float |
122 | | // whose magnitude is less than HALF_NRM_MIN. |
123 | | // |
124 | | // We convert f to a denormalized half. |
125 | | // |
126 | | |
127 | | // |
128 | | // Add an explicit leading 1 to the significand. |
129 | | // |
130 | | |
131 | 0 | m = m | 0x00800000; |
132 | | |
133 | | // |
134 | | // Round to m to the nearest (10+e)-bit value (with e between |
135 | | // -10 and 0); in case of a tie, round to the nearest even value. |
136 | | // |
137 | | // Rounding may cause the significand to overflow and make |
138 | | // our number normalized. Because of the way a half's bits |
139 | | // are laid out, we don't have to treat this case separately; |
140 | | // the code below will handle it correctly. |
141 | | // |
142 | |
|
143 | 0 | int t = 14 - e; |
144 | 0 | int a = (1 << (t - 1)) - 1; |
145 | 0 | int b = (m >> t) & 1; |
146 | |
|
147 | 0 | m = (m + a + b) >> t; |
148 | | |
149 | | // |
150 | | // Assemble the half from s, e (zero) and m. |
151 | | // |
152 | |
|
153 | 0 | return s | m; |
154 | 0 | } |
155 | 0 | else if (e == 0xff - (127 - 15)) |
156 | 0 | { |
157 | 0 | if (m == 0) |
158 | 0 | { |
159 | | // |
160 | | // F is an infinity; convert f to a half |
161 | | // infinity with the same sign as f. |
162 | | // |
163 | |
|
164 | 0 | return s | 0x7c00; |
165 | 0 | } |
166 | 0 | else |
167 | 0 | { |
168 | | // |
169 | | // F is a NAN; we produce a half NAN that preserves |
170 | | // the sign bit and the 10 leftmost bits of the |
171 | | // significand of f, with one exception: If the 10 |
172 | | // leftmost bits are all zero, the NAN would turn |
173 | | // into an infinity, so we have to set at least one |
174 | | // bit in the significand. |
175 | | // |
176 | |
|
177 | 0 | m >>= 13; |
178 | 0 | return s | 0x7c00 | m | (m == 0); |
179 | 0 | } |
180 | 0 | } |
181 | 0 | else |
182 | 0 | { |
183 | | // |
184 | | // E is greater than zero. F is a normalized float. |
185 | | // We try to convert f to a normalized half. |
186 | | // |
187 | | |
188 | | // |
189 | | // Round to m to the nearest 10-bit value. In case of |
190 | | // a tie, round to the nearest even value. |
191 | | // |
192 | |
|
193 | 0 | m = m + 0x00000fff + ((m >> 13) & 1); |
194 | |
|
195 | 0 | if (m & 0x00800000) |
196 | 0 | { |
197 | 0 | m = 0; // overflow in significand, |
198 | 0 | e += 1; // adjust exponent |
199 | 0 | } |
200 | | |
201 | | // |
202 | | // Handle exponent overflow |
203 | | // |
204 | |
|
205 | 0 | if (e > 30) |
206 | 0 | { |
207 | 0 | overflow (); // Cause a hardware floating point overflow; |
208 | 0 | return s | 0x7c00; // if this returns, the half becomes an |
209 | 0 | } // infinity with the same sign as f. |
210 | | |
211 | | // |
212 | | // Assemble the half from s, e and m. |
213 | | // |
214 | | |
215 | 0 | return s | (e << 10) | (m >> 13); |
216 | 0 | } |
217 | 0 | } |
218 | | |
219 | | |
220 | | //--------------------- |
221 | | // Stream I/O operators |
222 | | //--------------------- |
223 | | |
224 | | HALF_EXPORT ostream & |
225 | | operator << (ostream &os, half h) |
226 | 0 | { |
227 | 0 | os << float (h); |
228 | 0 | return os; |
229 | 0 | } |
230 | | |
231 | | |
232 | | HALF_EXPORT istream & |
233 | | operator >> (istream &is, half &h) |
234 | 0 | { |
235 | 0 | float f; |
236 | 0 | is >> f; |
237 | 0 | h = half (f); |
238 | 0 | return is; |
239 | 0 | } |
240 | | |
241 | | |
242 | | //--------------------------------------- |
243 | | // Functions to print the bit-layout of |
244 | | // floats and halfs, mostly for debugging |
245 | | //--------------------------------------- |
246 | | |
247 | | HALF_EXPORT void |
248 | | printBits (ostream &os, half h) |
249 | 0 | { |
250 | 0 | unsigned short b = h.bits(); |
251 | |
|
252 | 0 | for (int i = 15; i >= 0; i--) |
253 | 0 | { |
254 | 0 | os << (((b >> i) & 1)? '1': '0'); |
255 | |
|
256 | 0 | if (i == 15 || i == 10) |
257 | 0 | os << ' '; |
258 | 0 | } |
259 | 0 | } |
260 | | |
261 | | |
262 | | HALF_EXPORT void |
263 | | printBits (ostream &os, float f) |
264 | 0 | { |
265 | 0 | half::uif x; |
266 | 0 | x.f = f; |
267 | |
|
268 | 0 | for (int i = 31; i >= 0; i--) |
269 | 0 | { |
270 | 0 | os << (((x.i >> i) & 1)? '1': '0'); |
271 | |
|
272 | 0 | if (i == 31 || i == 23) |
273 | 0 | os << ' '; |
274 | 0 | } |
275 | 0 | } |
276 | | |
277 | | |
278 | | HALF_EXPORT void |
279 | | printBits (char c[19], half h) |
280 | 0 | { |
281 | 0 | unsigned short b = h.bits(); |
282 | |
|
283 | 0 | for (int i = 15, j = 0; i >= 0; i--, j++) |
284 | 0 | { |
285 | 0 | c[j] = (((b >> i) & 1)? '1': '0'); |
286 | |
|
287 | 0 | if (i == 15 || i == 10) |
288 | 0 | c[++j] = ' '; |
289 | 0 | } |
290 | | |
291 | 0 | c[18] = 0; |
292 | 0 | } |
293 | | |
294 | | |
295 | | HALF_EXPORT void |
296 | | printBits (char c[35], float f) |
297 | 0 | { |
298 | 0 | half::uif x; |
299 | 0 | x.f = f; |
300 | |
|
301 | 0 | for (int i = 31, j = 0; i >= 0; i--, j++) |
302 | 0 | { |
303 | 0 | c[j] = (((x.i >> i) & 1)? '1': '0'); |
304 | |
|
305 | 0 | if (i == 31 || i == 23) |
306 | 0 | c[++j] = ' '; |
307 | 0 | } |
308 | |
|
309 | 0 | c[34] = 0; |
310 | 0 | } |