Coverage Report

Created: 2023-12-08 06:53

/src/freeimage-svn/FreeImage/trunk/Source/OpenEXR/Half/half.h
Line
Count
Source (jump to first uncovered line)
1
///////////////////////////////////////////////////////////////////////////
2
//
3
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
4
// Digital Ltd. LLC
5
// 
6
// All rights reserved.
7
// 
8
// Redistribution and use in source and binary forms, with or without
9
// modification, are permitted provided that the following conditions are
10
// met:
11
// *       Redistributions of source code must retain the above copyright
12
// notice, this list of conditions and the following disclaimer.
13
// *       Redistributions in binary form must reproduce the above
14
// copyright notice, this list of conditions and the following disclaimer
15
// in the documentation and/or other materials provided with the
16
// distribution.
17
// *       Neither the name of Industrial Light & Magic nor the names of
18
// its contributors may be used to endorse or promote products derived
19
// from this software without specific prior written permission. 
20
// 
21
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
//
33
///////////////////////////////////////////////////////////////////////////
34
35
// Primary authors:
36
//     Florian Kainz <kainz@ilm.com>
37
//     Rod Bogart <rgb@ilm.com>
38
39
//---------------------------------------------------------------------------
40
//
41
//  half -- a 16-bit floating point number class:
42
//
43
//  Type half can represent positive and negative numbers whose
44
//  magnitude is between roughly 6.1e-5 and 6.5e+4 with a relative
45
//  error of 9.8e-4; numbers smaller than 6.1e-5 can be represented
46
//  with an absolute error of 6.0e-8.  All integers from -2048 to
47
//  +2048 can be represented exactly.
48
//
49
//  Type half behaves (almost) like the built-in C++ floating point
50
//  types.  In arithmetic expressions, half, float and double can be
51
//  mixed freely.  Here are a few examples:
52
//
53
//      half a (3.5);
54
//      float b (a + sqrt (a));
55
//      a += b;
56
//      b += a;
57
//      b = a + 7;
58
//
59
//  Conversions from half to float are lossless; all half numbers
60
//  are exactly representable as floats.
61
//
62
//  Conversions from float to half may not preserve a float's value
63
//  exactly.  If a float is not representable as a half, then the
64
//  float value is rounded to the nearest representable half.  If a
65
//  float value is exactly in the middle between the two closest
66
//  representable half values, then the float value is rounded to
67
//  the closest half whose least significant bit is zero.
68
//
69
//  Overflows during float-to-half conversions cause arithmetic
70
//  exceptions.  An overflow occurs when the float value to be
71
//  converted is too large to be represented as a half, or if the
72
//  float value is an infinity or a NAN.
73
//
74
//  The implementation of type half makes the following assumptions
75
//  about the implementation of the built-in C++ types:
76
//
77
//      float is an IEEE 754 single-precision number
78
//      sizeof (float) == 4
79
//      sizeof (unsigned int) == sizeof (float)
80
//      alignof (unsigned int) == alignof (float)
81
//      sizeof (unsigned short) == 2
82
//
83
//---------------------------------------------------------------------------
84
85
#ifndef _HALF_H_
86
#define _HALF_H_
87
88
#include "halfExport.h"    // for definition of HALF_EXPORT
89
#include <iostream>
90
91
class half
92
{
93
  public:
94
95
    //-------------
96
    // Constructors
97
    //-------------
98
99
    half ();      // no initialization
100
    half (float f);
101
102
103
    //--------------------
104
    // Conversion to float
105
    //--------------------
106
107
    operator    float () const;
108
109
110
    //------------
111
    // Unary minus
112
    //------------
113
114
    half    operator - () const;
115
116
117
    //-----------
118
    // Assignment
119
    //-----------
120
121
    half &    operator = (half  h);
122
    half &    operator = (float f);
123
124
    half &    operator += (half  h);
125
    half &    operator += (float f);
126
127
    half &    operator -= (half  h);
128
    half &    operator -= (float f);
129
130
    half &    operator *= (half  h);
131
    half &    operator *= (float f);
132
133
    half &    operator /= (half  h);
134
    half &    operator /= (float f);
135
136
137
    //---------------------------------------------------------
138
    // Round to n-bit precision (n should be between 0 and 10).
139
    // After rounding, the significand's 10-n least significant
140
    // bits will be zero.
141
    //---------------------------------------------------------
142
143
    half    round (unsigned int n) const;
144
145
146
    //--------------------------------------------------------------------
147
    // Classification:
148
    //
149
    //  h.isFinite()    returns true if h is a normalized number,
150
    //        a denormalized number or zero
151
    //
152
    //  h.isNormalized()  returns true if h is a normalized number
153
    //
154
    //  h.isDenormalized()  returns true if h is a denormalized number
155
    //
156
    //  h.isZero()    returns true if h is zero
157
    //
158
    //  h.isNan()   returns true if h is a NAN
159
    //
160
    //  h.isInfinity()    returns true if h is a positive
161
    //        or a negative infinity
162
    //
163
    //  h.isNegative()    returns true if the sign bit of h
164
    //        is set (negative)
165
    //--------------------------------------------------------------------
166
167
    bool    isFinite () const;
168
    bool    isNormalized () const;
169
    bool    isDenormalized () const;
170
    bool    isZero () const;
171
    bool    isNan () const;
172
    bool    isInfinity () const;
173
    bool    isNegative () const;
174
175
176
    //--------------------------------------------
177
    // Special values
178
    //
179
    //  posInf()  returns +infinity
180
    //
181
    //  negInf()  returns -infinity
182
    //
183
    //  qNan()    returns a NAN with the bit
184
    //      pattern 0111111111111111
185
    //
186
    //  sNan()    returns a NAN with the bit
187
    //      pattern 0111110111111111
188
    //--------------------------------------------
189
190
    static half   posInf ();
191
    static half   negInf ();
192
    static half   qNan ();
193
    static half   sNan ();
194
195
196
    //--------------------------------------
197
    // Access to the internal representation
198
    //--------------------------------------
199
200
    HALF_EXPORT unsigned short  bits () const;
201
    HALF_EXPORT void    setBits (unsigned short bits);
202
203
204
  public:
205
206
    union uif
207
    {
208
  unsigned int  i;
209
  float   f;
210
    };
211
212
  private:
213
214
    HALF_EXPORT static short                  convert (int i);
215
    HALF_EXPORT static float                  overflow ();
216
217
    unsigned short                            _h;
218
219
    HALF_EXPORT static const uif              _toFloat[1 << 16];
220
    HALF_EXPORT static const unsigned short   _eLut[1 << 9];
221
};
222
223
224
225
//-----------
226
// Stream I/O
227
//-----------
228
229
HALF_EXPORT std::ostream &      operator << (std::ostream &os, half  h);
230
HALF_EXPORT std::istream &      operator >> (std::istream &is, half &h);
231
232
233
//----------
234
// Debugging
235
//----------
236
237
HALF_EXPORT void        printBits   (std::ostream &os, half  h);
238
HALF_EXPORT void        printBits   (std::ostream &os, float f);
239
HALF_EXPORT void        printBits   (char  c[19], half  h);
240
HALF_EXPORT void        printBits   (char  c[35], float f);
241
242
243
//-------------------------------------------------------------------------
244
// Limits
245
//
246
// Visual C++ will complain if HALF_MIN, HALF_NRM_MIN etc. are not float
247
// constants, but at least one other compiler (gcc 2.96) produces incorrect
248
// results if they are.
249
//-------------------------------------------------------------------------
250
251
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
252
253
  #define HALF_MIN  5.96046448e-08f // Smallest positive half
254
255
  #define HALF_NRM_MIN  6.10351562e-05f // Smallest positive normalized half
256
257
  #define HALF_MAX  65504.0f  // Largest positive half
258
259
  #define HALF_EPSILON  0.00097656f // Smallest positive e for which
260
          // half (1.0 + e) != half (1.0)
261
#else
262
263
  #define HALF_MIN  5.96046448e-08  // Smallest positive half
264
265
  #define HALF_NRM_MIN  6.10351562e-05  // Smallest positive normalized half
266
267
0
  #define HALF_MAX  65504.0    // Largest positive half
268
269
  #define HALF_EPSILON  0.00097656  // Smallest positive e for which
270
          // half (1.0 + e) != half (1.0)
271
#endif
272
273
274
#define HALF_MANT_DIG 11    // Number of digits in mantissa
275
          // (significand + hidden leading 1)
276
277
#define HALF_DIG  2   // Number of base 10 digits that
278
          // can be represented without change
279
280
#define HALF_RADIX  2   // Base of the exponent
281
282
#define HALF_MIN_EXP  -13   // Minimum negative integer such that
283
          // HALF_RADIX raised to the power of
284
          // one less than that integer is a
285
          // normalized half
286
287
#define HALF_MAX_EXP  16    // Maximum positive integer such that
288
          // HALF_RADIX raised to the power of
289
          // one less than that integer is a
290
          // normalized half
291
292
#define HALF_MIN_10_EXP -4    // Minimum positive integer such
293
          // that 10 raised to that power is
294
          // a normalized half
295
296
#define HALF_MAX_10_EXP 4   // Maximum positive integer such
297
          // that 10 raised to that power is
298
          // a normalized half
299
300
301
//---------------------------------------------------------------------------
302
//
303
// Implementation --
304
//
305
// Representation of a float:
306
//
307
//  We assume that a float, f, is an IEEE 754 single-precision
308
//  floating point number, whose bits are arranged as follows:
309
//
310
//      31 (msb)
311
//      | 
312
//      | 30     23
313
//      | |      | 
314
//      | |      | 22                    0 (lsb)
315
//      | |      | |                     |
316
//      X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX
317
//
318
//      s e        m
319
//
320
//  S is the sign-bit, e is the exponent and m is the significand.
321
//
322
//  If e is between 1 and 254, f is a normalized number:
323
//
324
//              s    e-127
325
//      f = (-1)  * 2      * 1.m
326
//
327
//  If e is 0, and m is not zero, f is a denormalized number:
328
//
329
//              s    -126
330
//      f = (-1)  * 2      * 0.m
331
//
332
//  If e and m are both zero, f is zero:
333
//
334
//      f = 0.0
335
//
336
//  If e is 255, f is an "infinity" or "not a number" (NAN),
337
//  depending on whether m is zero or not.
338
//
339
//  Examples:
340
//
341
//      0 00000000 00000000000000000000000 = 0.0
342
//      0 01111110 00000000000000000000000 = 0.5
343
//      0 01111111 00000000000000000000000 = 1.0
344
//      0 10000000 00000000000000000000000 = 2.0
345
//      0 10000000 10000000000000000000000 = 3.0
346
//      1 10000101 11110000010000000000000 = -124.0625
347
//      0 11111111 00000000000000000000000 = +infinity
348
//      1 11111111 00000000000000000000000 = -infinity
349
//      0 11111111 10000000000000000000000 = NAN
350
//      1 11111111 11111111111111111111111 = NAN
351
//
352
// Representation of a half:
353
//
354
//  Here is the bit-layout for a half number, h:
355
//
356
//      15 (msb)
357
//      | 
358
//      | 14  10
359
//      | |   |
360
//      | |   | 9        0 (lsb)
361
//      | |   | |        |
362
//      X XXXXX XXXXXXXXXX
363
//
364
//      s e     m
365
//
366
//  S is the sign-bit, e is the exponent and m is the significand.
367
//
368
//  If e is between 1 and 30, h is a normalized number:
369
//
370
//              s    e-15
371
//      h = (-1)  * 2     * 1.m
372
//
373
//  If e is 0, and m is not zero, h is a denormalized number:
374
//
375
//              S    -14
376
//      h = (-1)  * 2     * 0.m
377
//
378
//  If e and m are both zero, h is zero:
379
//
380
//      h = 0.0
381
//
382
//  If e is 31, h is an "infinity" or "not a number" (NAN),
383
//  depending on whether m is zero or not.
384
//
385
//  Examples:
386
//
387
//      0 00000 0000000000 = 0.0
388
//      0 01110 0000000000 = 0.5
389
//      0 01111 0000000000 = 1.0
390
//      0 10000 0000000000 = 2.0
391
//      0 10000 1000000000 = 3.0
392
//      1 10101 1111000001 = -124.0625
393
//      0 11111 0000000000 = +infinity
394
//      1 11111 0000000000 = -infinity
395
//      0 11111 1000000000 = NAN
396
//      1 11111 1111111111 = NAN
397
//
398
// Conversion:
399
//
400
//  Converting from a float to a half requires some non-trivial bit
401
//  manipulations.  In some cases, this makes conversion relatively
402
//  slow, but the most common case is accelerated via table lookups.
403
//
404
//  Converting back from a half to a float is easier because we don't
405
//  have to do any rounding.  In addition, there are only 65536
406
//  different half numbers; we can convert each of those numbers once
407
//  and store the results in a table.  Later, all conversions can be
408
//  done using only simple table lookups.
409
//
410
//---------------------------------------------------------------------------
411
412
413
//--------------------
414
// Simple constructors
415
//--------------------
416
417
inline
418
half::half ()
419
0
{
420
    // no initialization
421
0
}
422
423
424
//----------------------------
425
// Half-from-float constructor
426
//----------------------------
427
428
inline
429
half::half (float f)
430
0
{
431
0
    uif x;
432
433
0
    x.f = f;
434
435
0
    if (f == 0)
436
0
    {
437
  //
438
  // Common special case - zero.
439
  // Preserve the zero's sign bit.
440
  //
441
442
0
  _h = (x.i >> 16);
443
0
    }
444
0
    else
445
0
    {
446
  //
447
  // We extract the combined sign and exponent, e, from our
448
  // floating-point number, f.  Then we convert e to the sign
449
  // and exponent of the half number via a table lookup.
450
  //
451
  // For the most common case, where a normalized half is produced,
452
  // the table lookup returns a non-zero value; in this case, all
453
  // we have to do is round f's significand to 10 bits and combine
454
  // the result with e.
455
  //
456
  // For all other cases (overflow, zeroes, denormalized numbers
457
  // resulting from underflow, infinities and NANs), the table
458
  // lookup returns zero, and we call a longer, non-inline function
459
  // to do the float-to-half conversion.
460
  //
461
462
0
  register int e = (x.i >> 23) & 0x000001ff;
463
464
0
  e = _eLut[e];
465
466
0
  if (e)
467
0
  {
468
      //
469
      // Simple case - round the significand, m, to 10
470
      // bits and combine it with the sign and exponent.
471
      //
472
473
0
      register int m = x.i & 0x007fffff;
474
0
      _h = e + ((m + 0x00000fff + ((m >> 13) & 1)) >> 13);
475
0
  }
476
0
  else
477
0
  {
478
      //
479
      // Difficult case - call a function.
480
      //
481
482
0
      _h = convert (x.i);
483
0
  }
484
0
    }
485
0
}
486
487
488
//------------------------------------------
489
// Half-to-float conversion via table lookup
490
//------------------------------------------
491
492
inline
493
half::operator float () const
494
0
{
495
0
    return _toFloat[_h].f;
496
0
}
497
498
499
//-------------------------
500
// Round to n-bit precision
501
//-------------------------
502
503
inline half
504
half::round (unsigned int n) const
505
0
{
506
    //
507
    // Parameter check.
508
    //
509
510
0
    if (n >= 10)
511
0
  return *this;
512
513
    //
514
    // Disassemble h into the sign, s,
515
    // and the combined exponent and significand, e.
516
    //
517
518
0
    unsigned short s = _h & 0x8000;
519
0
    unsigned short e = _h & 0x7fff;
520
521
    //
522
    // Round the exponent and significand to the nearest value
523
    // where ones occur only in the (10-n) most significant bits.
524
    // Note that the exponent adjusts automatically if rounding
525
    // up causes the significand to overflow.
526
    //
527
528
0
    e >>= 9 - n;
529
0
    e  += e & 1;
530
0
    e <<= 9 - n;
531
532
    //
533
    // Check for exponent overflow.
534
    //
535
536
0
    if (e >= 0x7c00)
537
0
    {
538
  //
539
  // Overflow occurred -- truncate instead of rounding.
540
  //
541
542
0
  e = _h;
543
0
  e >>= 10 - n;
544
0
  e <<= 10 - n;
545
0
    }
546
547
    //
548
    // Put the original sign bit back.
549
    //
550
551
0
    half h;
552
0
    h._h = s | e;
553
554
0
    return h;
555
0
}
556
557
558
//-----------------------
559
// Other inline functions
560
//-----------------------
561
562
inline half 
563
half::operator - () const
564
0
{
565
0
    half h;
566
0
    h._h = _h ^ 0x8000;
567
0
    return h;
568
0
}
569
570
571
inline half &
572
half::operator = (half h)
573
0
{
574
0
    _h = h._h;
575
0
    return *this;
576
0
}
577
578
579
inline half &
580
half::operator = (float f)
581
0
{
582
0
    *this = half (f);
583
0
    return *this;
584
0
}
585
586
587
inline half &
588
half::operator += (half h)
589
0
{
590
0
    *this = half (float (*this) + float (h));
591
0
    return *this;
592
0
}
593
594
595
inline half &
596
half::operator += (float f)
597
0
{
598
0
    *this = half (float (*this) + f);
599
0
    return *this;
600
0
}
601
602
603
inline half &
604
half::operator -= (half h)
605
0
{
606
0
    *this = half (float (*this) - float (h));
607
0
    return *this;
608
0
}
609
610
611
inline half &
612
half::operator -= (float f)
613
0
{
614
0
    *this = half (float (*this) - f);
615
0
    return *this;
616
0
}
617
618
619
inline half &
620
half::operator *= (half h)
621
0
{
622
0
    *this = half (float (*this) * float (h));
623
0
    return *this;
624
0
}
625
626
627
inline half &
628
half::operator *= (float f)
629
0
{
630
0
    *this = half (float (*this) * f);
631
0
    return *this;
632
0
}
633
634
635
inline half &
636
half::operator /= (half h)
637
0
{
638
0
    *this = half (float (*this) / float (h));
639
0
    return *this;
640
0
}
641
642
643
inline half &
644
half::operator /= (float f)
645
0
{
646
0
    *this = half (float (*this) / f);
647
0
    return *this;
648
0
}
649
650
651
inline bool 
652
half::isFinite () const
653
0
{
654
0
    unsigned short e = (_h >> 10) & 0x001f;
655
0
    return e < 31;
656
0
}
657
658
659
inline bool
660
half::isNormalized () const
661
0
{
662
0
    unsigned short e = (_h >> 10) & 0x001f;
663
0
    return e > 0 && e < 31;
664
0
}
665
666
667
inline bool
668
half::isDenormalized () const
669
0
{
670
0
    unsigned short e = (_h >> 10) & 0x001f;
671
0
    unsigned short m =  _h & 0x3ff;
672
0
    return e == 0 && m != 0;
673
0
}
674
675
676
inline bool
677
half::isZero () const
678
0
{
679
0
    return (_h & 0x7fff) == 0;
680
0
}
681
682
683
inline bool
684
half::isNan () const
685
0
{
686
0
    unsigned short e = (_h >> 10) & 0x001f;
687
0
    unsigned short m =  _h & 0x3ff;
688
0
    return e == 31 && m != 0;
689
0
}
690
691
692
inline bool
693
half::isInfinity () const
694
0
{
695
0
    unsigned short e = (_h >> 10) & 0x001f;
696
0
    unsigned short m =  _h & 0x3ff;
697
0
    return e == 31 && m == 0;
698
0
}
699
700
701
inline bool 
702
half::isNegative () const
703
0
{
704
0
    return (_h & 0x8000) != 0;
705
0
}
706
707
708
inline half
709
half::posInf ()
710
0
{
711
0
    half h;
712
0
    h._h = 0x7c00;
713
0
    return h;
714
0
}
715
716
717
inline half
718
half::negInf ()
719
0
{
720
0
    half h;
721
0
    h._h = 0xfc00;
722
0
    return h;
723
0
}
724
725
726
inline half
727
half::qNan ()
728
0
{
729
0
    half h;
730
0
    h._h = 0x7fff;
731
0
    return h;
732
0
}
733
734
735
inline half
736
half::sNan ()
737
0
{
738
0
    half h;
739
0
    h._h = 0x7dff;
740
0
    return h;
741
0
}
742
743
744
inline unsigned short
745
half::bits () const
746
0
{
747
0
    return _h;
748
0
}
749
750
751
inline void
752
half::setBits (unsigned short bits)
753
0
{
754
0
    _h = bits;
755
0
}
756
757
#endif