/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jccoefct.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jccoefct.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1994-1997, Thomas G. Lane.  | 
5  |  |  * Modified 2003-2011 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains the coefficient buffer controller for compression.  | 
10  |  |  * This controller is the top level of the JPEG compressor proper.  | 
11  |  |  * The coefficient buffer lies between forward-DCT and entropy encoding steps.  | 
12  |  |  */  | 
13  |  |  | 
14  |  | #define JPEG_INTERNALS  | 
15  |  | #include "jinclude.h"  | 
16  |  | #include "jpeglib.h"  | 
17  |  |  | 
18  |  |  | 
19  |  | /* We use a full-image coefficient buffer when doing Huffman optimization,  | 
20  |  |  * and also for writing multiple-scan JPEG files.  In all cases, the DCT  | 
21  |  |  * step is run during the first pass, and subsequent passes need only read  | 
22  |  |  * the buffered coefficients.  | 
23  |  |  */  | 
24  |  | #ifdef ENTROPY_OPT_SUPPORTED  | 
25  |  | #define FULL_COEF_BUFFER_SUPPORTED  | 
26  |  | #else  | 
27  |  | #ifdef C_MULTISCAN_FILES_SUPPORTED  | 
28  |  | #define FULL_COEF_BUFFER_SUPPORTED  | 
29  |  | #endif  | 
30  |  | #endif  | 
31  |  |  | 
32  |  |  | 
33  |  | /* Private buffer controller object */  | 
34  |  |  | 
35  |  | typedef struct { | 
36  |  |   struct jpeg_c_coef_controller pub; /* public fields */  | 
37  |  |  | 
38  |  |   JDIMENSION iMCU_row_num;  /* iMCU row # within image */  | 
39  |  |   JDIMENSION mcu_ctr;   /* counts MCUs processed in current row */  | 
40  |  |   int MCU_vert_offset;    /* counts MCU rows within iMCU row */  | 
41  |  |   int MCU_rows_per_iMCU_row;  /* number of such rows needed */  | 
42  |  |  | 
43  |  |   /* For single-pass compression, it's sufficient to buffer just one MCU  | 
44  |  |    * (although this may prove a bit slow in practice).  We allocate a  | 
45  |  |    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each  | 
46  |  |    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though  | 
47  |  |    * it's not really very big; this is to keep the module interfaces unchanged  | 
48  |  |    * when a large coefficient buffer is necessary.)  | 
49  |  |    * In multi-pass modes, this array points to the current MCU's blocks  | 
50  |  |    * within the virtual arrays.  | 
51  |  |    */  | 
52  |  |   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];  | 
53  |  |  | 
54  |  |   /* In multi-pass modes, we need a virtual block array for each component. */  | 
55  |  |   jvirt_barray_ptr whole_image[MAX_COMPONENTS];  | 
56  |  | } my_coef_controller;  | 
57  |  |  | 
58  |  | typedef my_coef_controller * my_coef_ptr;  | 
59  |  |  | 
60  |  |  | 
61  |  | /* Forward declarations */  | 
62  |  | METHODDEF(boolean) compress_data  | 
63  |  |     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));  | 
64  |  | #ifdef FULL_COEF_BUFFER_SUPPORTED  | 
65  |  | METHODDEF(boolean) compress_first_pass  | 
66  |  |     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));  | 
67  |  | METHODDEF(boolean) compress_output  | 
68  |  |     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));  | 
69  |  | #endif  | 
70  |  |  | 
71  |  |  | 
72  |  | LOCAL(void)  | 
73  |  | start_iMCU_row (j_compress_ptr cinfo)  | 
74  |  | /* Reset within-iMCU-row counters for a new row */  | 
75  | 0  | { | 
76  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
77  |  |  | 
78  |  |   /* In an interleaved scan, an MCU row is the same as an iMCU row.  | 
79  |  |    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.  | 
80  |  |    * But at the bottom of the image, process only what's left.  | 
81  |  |    */  | 
82  | 0  |   if (cinfo->comps_in_scan > 1) { | 
83  | 0  |     coef->MCU_rows_per_iMCU_row = 1;  | 
84  | 0  |   } else { | 
85  | 0  |     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))  | 
86  | 0  |       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;  | 
87  | 0  |     else  | 
88  | 0  |       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;  | 
89  | 0  |   }  | 
90  |  | 
  | 
91  | 0  |   coef->mcu_ctr = 0;  | 
92  | 0  |   coef->MCU_vert_offset = 0;  | 
93  | 0  | }  | 
94  |  |  | 
95  |  |  | 
96  |  | /*  | 
97  |  |  * Initialize for a processing pass.  | 
98  |  |  */  | 
99  |  |  | 
100  |  | METHODDEF(void)  | 
101  |  | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)  | 
102  | 0  | { | 
103  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
104  |  | 
  | 
105  | 0  |   coef->iMCU_row_num = 0;  | 
106  | 0  |   start_iMCU_row(cinfo);  | 
107  |  | 
  | 
108  | 0  |   switch (pass_mode) { | 
109  | 0  |   case JBUF_PASS_THRU:  | 
110  | 0  |     if (coef->whole_image[0] != NULL)  | 
111  | 0  |       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);  | 
112  | 0  |     coef->pub.compress_data = compress_data;  | 
113  | 0  |     break;  | 
114  | 0  | #ifdef FULL_COEF_BUFFER_SUPPORTED  | 
115  | 0  |   case JBUF_SAVE_AND_PASS:  | 
116  | 0  |     if (coef->whole_image[0] == NULL)  | 
117  | 0  |       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);  | 
118  | 0  |     coef->pub.compress_data = compress_first_pass;  | 
119  | 0  |     break;  | 
120  | 0  |   case JBUF_CRANK_DEST:  | 
121  | 0  |     if (coef->whole_image[0] == NULL)  | 
122  | 0  |       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);  | 
123  | 0  |     coef->pub.compress_data = compress_output;  | 
124  | 0  |     break;  | 
125  | 0  | #endif  | 
126  | 0  |   default:  | 
127  | 0  |     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);  | 
128  | 0  |     break;  | 
129  | 0  |   }  | 
130  | 0  | }  | 
131  |  |  | 
132  |  |  | 
133  |  | /*  | 
134  |  |  * Process some data in the single-pass case.  | 
135  |  |  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | 
136  |  |  * per call, ie, v_samp_factor block rows for each component in the image.  | 
137  |  |  * Returns TRUE if the iMCU row is completed, FALSE if suspended.  | 
138  |  |  *  | 
139  |  |  * NB: input_buf contains a plane for each component in image,  | 
140  |  |  * which we index according to the component's SOF position.  | 
141  |  |  */  | 
142  |  |  | 
143  |  | METHODDEF(boolean)  | 
144  |  | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)  | 
145  | 0  | { | 
146  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
147  | 0  |   JDIMENSION MCU_col_num; /* index of current MCU within row */  | 
148  | 0  |   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;  | 
149  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
150  | 0  |   int blkn, bi, ci, yindex, yoffset, blockcnt;  | 
151  | 0  |   JDIMENSION ypos, xpos;  | 
152  | 0  |   jpeg_component_info *compptr;  | 
153  | 0  |   forward_DCT_ptr forward_DCT;  | 
154  |  |  | 
155  |  |   /* Loop to write as much as one whole iMCU row */  | 
156  | 0  |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;  | 
157  | 0  |        yoffset++) { | 
158  | 0  |     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;  | 
159  | 0  |    MCU_col_num++) { | 
160  |  |       /* Determine where data comes from in input_buf and do the DCT thing.  | 
161  |  |        * Each call on forward_DCT processes a horizontal row of DCT blocks  | 
162  |  |        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks  | 
163  |  |        * sequentially.  Dummy blocks at the right or bottom edge are filled in  | 
164  |  |        * specially.  The data in them does not matter for image reconstruction,  | 
165  |  |        * so we fill them with values that will encode to the smallest amount of  | 
166  |  |        * data, viz: all zeroes in the AC entries, DC entries equal to previous  | 
167  |  |        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)  | 
168  |  |        */  | 
169  | 0  |       blkn = 0;  | 
170  | 0  |       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
171  | 0  |   compptr = cinfo->cur_comp_info[ci];  | 
172  | 0  |   forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];  | 
173  | 0  |   blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width  | 
174  | 0  |             : compptr->last_col_width;  | 
175  | 0  |   xpos = MCU_col_num * compptr->MCU_sample_width;  | 
176  | 0  |   ypos = yoffset * compptr->DCT_v_scaled_size;  | 
177  |  |   /* ypos == (yoffset+yindex) * DCTSIZE */  | 
178  | 0  |   for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
179  | 0  |     if (coef->iMCU_row_num < last_iMCU_row ||  | 
180  | 0  |         yoffset+yindex < compptr->last_row_height) { | 
181  | 0  |       (*forward_DCT) (cinfo, compptr,  | 
182  | 0  |           input_buf[compptr->component_index],  | 
183  | 0  |           coef->MCU_buffer[blkn],  | 
184  | 0  |           ypos, xpos, (JDIMENSION) blockcnt);  | 
185  | 0  |       if (blockcnt < compptr->MCU_width) { | 
186  |  |         /* Create some dummy blocks at the right edge of the image. */  | 
187  | 0  |         FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt],  | 
188  | 0  |            (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));  | 
189  | 0  |         for (bi = blockcnt; bi < compptr->MCU_width; bi++) { | 
190  | 0  |     coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];  | 
191  | 0  |         }  | 
192  | 0  |       }  | 
193  | 0  |     } else { | 
194  |  |       /* Create a row of dummy blocks at the bottom of the image. */  | 
195  | 0  |       FMEMZERO((void FAR *) coef->MCU_buffer[blkn],  | 
196  | 0  |          compptr->MCU_width * SIZEOF(JBLOCK));  | 
197  | 0  |       for (bi = 0; bi < compptr->MCU_width; bi++) { | 
198  | 0  |         coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];  | 
199  | 0  |       }  | 
200  | 0  |     }  | 
201  | 0  |     blkn += compptr->MCU_width;  | 
202  | 0  |     ypos += compptr->DCT_v_scaled_size;  | 
203  | 0  |   }  | 
204  | 0  |       }  | 
205  |  |       /* Try to write the MCU.  In event of a suspension failure, we will  | 
206  |  |        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)  | 
207  |  |        */  | 
208  | 0  |       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | 
209  |  |   /* Suspension forced; update state counters and exit */  | 
210  | 0  |   coef->MCU_vert_offset = yoffset;  | 
211  | 0  |   coef->mcu_ctr = MCU_col_num;  | 
212  | 0  |   return FALSE;  | 
213  | 0  |       }  | 
214  | 0  |     }  | 
215  |  |     /* Completed an MCU row, but perhaps not an iMCU row */  | 
216  | 0  |     coef->mcu_ctr = 0;  | 
217  | 0  |   }  | 
218  |  |   /* Completed the iMCU row, advance counters for next one */  | 
219  | 0  |   coef->iMCU_row_num++;  | 
220  | 0  |   start_iMCU_row(cinfo);  | 
221  | 0  |   return TRUE;  | 
222  | 0  | }  | 
223  |  |  | 
224  |  |  | 
225  |  | #ifdef FULL_COEF_BUFFER_SUPPORTED  | 
226  |  |  | 
227  |  | /*  | 
228  |  |  * Process some data in the first pass of a multi-pass case.  | 
229  |  |  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | 
230  |  |  * per call, ie, v_samp_factor block rows for each component in the image.  | 
231  |  |  * This amount of data is read from the source buffer, DCT'd and quantized,  | 
232  |  |  * and saved into the virtual arrays.  We also generate suitable dummy blocks  | 
233  |  |  * as needed at the right and lower edges.  (The dummy blocks are constructed  | 
234  |  |  * in the virtual arrays, which have been padded appropriately.)  This makes  | 
235  |  |  * it possible for subsequent passes not to worry about real vs. dummy blocks.  | 
236  |  |  *  | 
237  |  |  * We must also emit the data to the entropy encoder.  This is conveniently  | 
238  |  |  * done by calling compress_output() after we've loaded the current strip  | 
239  |  |  * of the virtual arrays.  | 
240  |  |  *  | 
241  |  |  * NB: input_buf contains a plane for each component in image.  All  | 
242  |  |  * components are DCT'd and loaded into the virtual arrays in this pass.  | 
243  |  |  * However, it may be that only a subset of the components are emitted to  | 
244  |  |  * the entropy encoder during this first pass; be careful about looking  | 
245  |  |  * at the scan-dependent variables (MCU dimensions, etc).  | 
246  |  |  */  | 
247  |  |  | 
248  |  | METHODDEF(boolean)  | 
249  |  | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)  | 
250  | 0  | { | 
251  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
252  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
253  | 0  |   JDIMENSION blocks_across, MCUs_across, MCUindex;  | 
254  | 0  |   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;  | 
255  | 0  |   JCOEF lastDC;  | 
256  | 0  |   jpeg_component_info *compptr;  | 
257  | 0  |   JBLOCKARRAY buffer;  | 
258  | 0  |   JBLOCKROW thisblockrow, lastblockrow;  | 
259  | 0  |   forward_DCT_ptr forward_DCT;  | 
260  |  | 
  | 
261  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
262  | 0  |        ci++, compptr++) { | 
263  |  |     /* Align the virtual buffer for this component. */  | 
264  | 0  |     buffer = (*cinfo->mem->access_virt_barray)  | 
265  | 0  |       ((j_common_ptr) cinfo, coef->whole_image[ci],  | 
266  | 0  |        coef->iMCU_row_num * compptr->v_samp_factor,  | 
267  | 0  |        (JDIMENSION) compptr->v_samp_factor, TRUE);  | 
268  |  |     /* Count non-dummy DCT block rows in this iMCU row. */  | 
269  | 0  |     if (coef->iMCU_row_num < last_iMCU_row)  | 
270  | 0  |       block_rows = compptr->v_samp_factor;  | 
271  | 0  |     else { | 
272  |  |       /* NB: can't use last_row_height here, since may not be set! */  | 
273  | 0  |       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);  | 
274  | 0  |       if (block_rows == 0) block_rows = compptr->v_samp_factor;  | 
275  | 0  |     }  | 
276  | 0  |     blocks_across = compptr->width_in_blocks;  | 
277  | 0  |     h_samp_factor = compptr->h_samp_factor;  | 
278  |  |     /* Count number of dummy blocks to be added at the right margin. */  | 
279  | 0  |     ndummy = (int) (blocks_across % h_samp_factor);  | 
280  | 0  |     if (ndummy > 0)  | 
281  | 0  |       ndummy = h_samp_factor - ndummy;  | 
282  | 0  |     forward_DCT = cinfo->fdct->forward_DCT[ci];  | 
283  |  |     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call  | 
284  |  |      * on forward_DCT processes a complete horizontal row of DCT blocks.  | 
285  |  |      */  | 
286  | 0  |     for (block_row = 0; block_row < block_rows; block_row++) { | 
287  | 0  |       thisblockrow = buffer[block_row];  | 
288  | 0  |       (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,  | 
289  | 0  |           (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),  | 
290  | 0  |           (JDIMENSION) 0, blocks_across);  | 
291  | 0  |       if (ndummy > 0) { | 
292  |  |   /* Create dummy blocks at the right edge of the image. */  | 
293  | 0  |   thisblockrow += blocks_across; /* => first dummy block */  | 
294  | 0  |   FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));  | 
295  | 0  |   lastDC = thisblockrow[-1][0];  | 
296  | 0  |   for (bi = 0; bi < ndummy; bi++) { | 
297  | 0  |     thisblockrow[bi][0] = lastDC;  | 
298  | 0  |   }  | 
299  | 0  |       }  | 
300  | 0  |     }  | 
301  |  |     /* If at end of image, create dummy block rows as needed.  | 
302  |  |      * The tricky part here is that within each MCU, we want the DC values  | 
303  |  |      * of the dummy blocks to match the last real block's DC value.  | 
304  |  |      * This squeezes a few more bytes out of the resulting file...  | 
305  |  |      */  | 
306  | 0  |     if (coef->iMCU_row_num == last_iMCU_row) { | 
307  | 0  |       blocks_across += ndummy;  /* include lower right corner */  | 
308  | 0  |       MCUs_across = blocks_across / h_samp_factor;  | 
309  | 0  |       for (block_row = block_rows; block_row < compptr->v_samp_factor;  | 
310  | 0  |      block_row++) { | 
311  | 0  |   thisblockrow = buffer[block_row];  | 
312  | 0  |   lastblockrow = buffer[block_row-1];  | 
313  | 0  |   FMEMZERO((void FAR *) thisblockrow,  | 
314  | 0  |      (size_t) (blocks_across * SIZEOF(JBLOCK)));  | 
315  | 0  |   for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | 
316  | 0  |     lastDC = lastblockrow[h_samp_factor-1][0];  | 
317  | 0  |     for (bi = 0; bi < h_samp_factor; bi++) { | 
318  | 0  |       thisblockrow[bi][0] = lastDC;  | 
319  | 0  |     }  | 
320  | 0  |     thisblockrow += h_samp_factor; /* advance to next MCU in row */  | 
321  | 0  |     lastblockrow += h_samp_factor;  | 
322  | 0  |   }  | 
323  | 0  |       }  | 
324  | 0  |     }  | 
325  | 0  |   }  | 
326  |  |   /* NB: compress_output will increment iMCU_row_num if successful.  | 
327  |  |    * A suspension return will result in redoing all the work above next time.  | 
328  |  |    */  | 
329  |  |  | 
330  |  |   /* Emit data to the entropy encoder, sharing code with subsequent passes */  | 
331  | 0  |   return compress_output(cinfo, input_buf);  | 
332  | 0  | }  | 
333  |  |  | 
334  |  |  | 
335  |  | /*  | 
336  |  |  * Process some data in subsequent passes of a multi-pass case.  | 
337  |  |  * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | 
338  |  |  * per call, ie, v_samp_factor block rows for each component in the scan.  | 
339  |  |  * The data is obtained from the virtual arrays and fed to the entropy coder.  | 
340  |  |  * Returns TRUE if the iMCU row is completed, FALSE if suspended.  | 
341  |  |  *  | 
342  |  |  * NB: input_buf is ignored; it is likely to be a NULL pointer.  | 
343  |  |  */  | 
344  |  |  | 
345  |  | METHODDEF(boolean)  | 
346  |  | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)  | 
347  | 0  | { | 
348  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
349  | 0  |   JDIMENSION MCU_col_num; /* index of current MCU within row */  | 
350  | 0  |   int blkn, ci, xindex, yindex, yoffset;  | 
351  | 0  |   JDIMENSION start_col;  | 
352  | 0  |   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];  | 
353  | 0  |   JBLOCKROW buffer_ptr;  | 
354  | 0  |   jpeg_component_info *compptr;  | 
355  |  |  | 
356  |  |   /* Align the virtual buffers for the components used in this scan.  | 
357  |  |    * NB: during first pass, this is safe only because the buffers will  | 
358  |  |    * already be aligned properly, so jmemmgr.c won't need to do any I/O.  | 
359  |  |    */  | 
360  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
361  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
362  | 0  |     buffer[ci] = (*cinfo->mem->access_virt_barray)  | 
363  | 0  |       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],  | 
364  | 0  |        coef->iMCU_row_num * compptr->v_samp_factor,  | 
365  | 0  |        (JDIMENSION) compptr->v_samp_factor, FALSE);  | 
366  | 0  |   }  | 
367  |  |  | 
368  |  |   /* Loop to process one whole iMCU row */  | 
369  | 0  |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;  | 
370  | 0  |        yoffset++) { | 
371  | 0  |     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;  | 
372  | 0  |    MCU_col_num++) { | 
373  |  |       /* Construct list of pointers to DCT blocks belonging to this MCU */  | 
374  | 0  |       blkn = 0;     /* index of current DCT block within MCU */  | 
375  | 0  |       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
376  | 0  |   compptr = cinfo->cur_comp_info[ci];  | 
377  | 0  |   start_col = MCU_col_num * compptr->MCU_width;  | 
378  | 0  |   for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
379  | 0  |     buffer_ptr = buffer[ci][yindex+yoffset] + start_col;  | 
380  | 0  |     for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | 
381  | 0  |       coef->MCU_buffer[blkn++] = buffer_ptr++;  | 
382  | 0  |     }  | 
383  | 0  |   }  | 
384  | 0  |       }  | 
385  |  |       /* Try to write the MCU. */  | 
386  | 0  |       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | 
387  |  |   /* Suspension forced; update state counters and exit */  | 
388  | 0  |   coef->MCU_vert_offset = yoffset;  | 
389  | 0  |   coef->mcu_ctr = MCU_col_num;  | 
390  | 0  |   return FALSE;  | 
391  | 0  |       }  | 
392  | 0  |     }  | 
393  |  |     /* Completed an MCU row, but perhaps not an iMCU row */  | 
394  | 0  |     coef->mcu_ctr = 0;  | 
395  | 0  |   }  | 
396  |  |   /* Completed the iMCU row, advance counters for next one */  | 
397  | 0  |   coef->iMCU_row_num++;  | 
398  | 0  |   start_iMCU_row(cinfo);  | 
399  | 0  |   return TRUE;  | 
400  | 0  | }  | 
401  |  |  | 
402  |  | #endif /* FULL_COEF_BUFFER_SUPPORTED */  | 
403  |  |  | 
404  |  |  | 
405  |  | /*  | 
406  |  |  * Initialize coefficient buffer controller.  | 
407  |  |  */  | 
408  |  |  | 
409  |  | GLOBAL(void)  | 
410  |  | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)  | 
411  | 0  | { | 
412  | 0  |   my_coef_ptr coef;  | 
413  |  | 
  | 
414  | 0  |   coef = (my_coef_ptr)  | 
415  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
416  | 0  |         SIZEOF(my_coef_controller));  | 
417  | 0  |   cinfo->coef = (struct jpeg_c_coef_controller *) coef;  | 
418  | 0  |   coef->pub.start_pass = start_pass_coef;  | 
419  |  |  | 
420  |  |   /* Create the coefficient buffer. */  | 
421  | 0  |   if (need_full_buffer) { | 
422  | 0  | #ifdef FULL_COEF_BUFFER_SUPPORTED  | 
423  |  |     /* Allocate a full-image virtual array for each component, */  | 
424  |  |     /* padded to a multiple of samp_factor DCT blocks in each direction. */  | 
425  | 0  |     int ci;  | 
426  | 0  |     jpeg_component_info *compptr;  | 
427  |  | 
  | 
428  | 0  |     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
429  | 0  |    ci++, compptr++) { | 
430  | 0  |       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)  | 
431  | 0  |   ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,  | 
432  | 0  |    (JDIMENSION) jround_up((long) compptr->width_in_blocks,  | 
433  | 0  |         (long) compptr->h_samp_factor),  | 
434  | 0  |    (JDIMENSION) jround_up((long) compptr->height_in_blocks,  | 
435  | 0  |         (long) compptr->v_samp_factor),  | 
436  | 0  |    (JDIMENSION) compptr->v_samp_factor);  | 
437  | 0  |     }  | 
438  |  | #else  | 
439  |  |     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);  | 
440  |  | #endif  | 
441  | 0  |   } else { | 
442  |  |     /* We only need a single-MCU buffer. */  | 
443  | 0  |     JBLOCKROW buffer;  | 
444  | 0  |     int i;  | 
445  |  | 
  | 
446  | 0  |     buffer = (JBLOCKROW)  | 
447  | 0  |       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
448  | 0  |           C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));  | 
449  | 0  |     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { | 
450  | 0  |       coef->MCU_buffer[i] = buffer + i;  | 
451  | 0  |     }  | 
452  |  |     coef->whole_image[0] = NULL; /* flag for no virtual arrays */  | 
453  | 0  |   }  | 
454  | 0  | }  |