/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcdctmgr.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jcdctmgr.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1994-1996, Thomas G. Lane.  | 
5  |  |  * Modified 2003-2013 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains the forward-DCT management logic.  | 
10  |  |  * This code selects a particular DCT implementation to be used,  | 
11  |  |  * and it performs related housekeeping chores including coefficient  | 
12  |  |  * quantization.  | 
13  |  |  */  | 
14  |  |  | 
15  |  | #define JPEG_INTERNALS  | 
16  |  | #include "jinclude.h"  | 
17  |  | #include "jpeglib.h"  | 
18  |  | #include "jdct.h"   /* Private declarations for DCT subsystem */  | 
19  |  |  | 
20  |  |  | 
21  |  | /* Private subobject for this module */  | 
22  |  |  | 
23  |  | typedef struct { | 
24  |  |   struct jpeg_forward_dct pub;  /* public fields */  | 
25  |  |  | 
26  |  |   /* Pointer to the DCT routine actually in use */  | 
27  |  |   forward_DCT_method_ptr do_dct[MAX_COMPONENTS];  | 
28  |  |  | 
29  |  | #ifdef DCT_FLOAT_SUPPORTED  | 
30  |  |   /* Same as above for the floating-point case. */  | 
31  |  |   float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];  | 
32  |  | #endif  | 
33  |  | } my_fdct_controller;  | 
34  |  |  | 
35  |  | typedef my_fdct_controller * my_fdct_ptr;  | 
36  |  |  | 
37  |  |  | 
38  |  | /* The allocated post-DCT divisor tables -- big enough for any  | 
39  |  |  * supported variant and not identical to the quant table entries,  | 
40  |  |  * because of scaling (especially for an unnormalized DCT) --  | 
41  |  |  * are pointed to by dct_table in the per-component comp_info  | 
42  |  |  * structures.  Each table is given in normal array order.  | 
43  |  |  */  | 
44  |  |  | 
45  |  | typedef union { | 
46  |  |   DCTELEM int_array[DCTSIZE2];  | 
47  |  | #ifdef DCT_FLOAT_SUPPORTED  | 
48  |  |   FAST_FLOAT float_array[DCTSIZE2];  | 
49  |  | #endif  | 
50  |  | } divisor_table;  | 
51  |  |  | 
52  |  |  | 
53  |  | /* The current scaled-DCT routines require ISLOW-style divisor tables,  | 
54  |  |  * so be sure to compile that code if either ISLOW or SCALING is requested.  | 
55  |  |  */  | 
56  |  | #ifdef DCT_ISLOW_SUPPORTED  | 
57  |  | #define PROVIDE_ISLOW_TABLES  | 
58  |  | #else  | 
59  |  | #ifdef DCT_SCALING_SUPPORTED  | 
60  |  | #define PROVIDE_ISLOW_TABLES  | 
61  |  | #endif  | 
62  |  | #endif  | 
63  |  |  | 
64  |  |  | 
65  |  | /*  | 
66  |  |  * Perform forward DCT on one or more blocks of a component.  | 
67  |  |  *  | 
68  |  |  * The input samples are taken from the sample_data[] array starting at  | 
69  |  |  * position start_row/start_col, and moving to the right for any additional  | 
70  |  |  * blocks. The quantized coefficients are returned in coef_blocks[].  | 
71  |  |  */  | 
72  |  |  | 
73  |  | METHODDEF(void)  | 
74  |  | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
75  |  |        JSAMPARRAY sample_data, JBLOCKROW coef_blocks,  | 
76  |  |        JDIMENSION start_row, JDIMENSION start_col,  | 
77  |  |        JDIMENSION num_blocks)  | 
78  |  | /* This version is used for integer DCT implementations. */  | 
79  | 0  | { | 
80  |  |   /* This routine is heavily used, so it's worth coding it tightly. */  | 
81  | 0  |   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;  | 
82  | 0  |   forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];  | 
83  | 0  |   DCTELEM * divisors = (DCTELEM *) compptr->dct_table;  | 
84  | 0  |   DCTELEM workspace[DCTSIZE2];  /* work area for FDCT subroutine */  | 
85  | 0  |   JDIMENSION bi;  | 
86  |  | 
  | 
87  | 0  |   sample_data += start_row; /* fold in the vertical offset once */  | 
88  |  | 
  | 
89  | 0  |   for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | 
90  |  |     /* Perform the DCT */  | 
91  | 0  |     (*do_dct) (workspace, sample_data, start_col);  | 
92  |  |  | 
93  |  |     /* Quantize/descale the coefficients, and store into coef_blocks[] */  | 
94  | 0  |     { register DCTELEM temp, qval; | 
95  | 0  |       register int i;  | 
96  | 0  |       register JCOEFPTR output_ptr = coef_blocks[bi];  | 
97  |  | 
  | 
98  | 0  |       for (i = 0; i < DCTSIZE2; i++) { | 
99  | 0  |   qval = divisors[i];  | 
100  | 0  |   temp = workspace[i];  | 
101  |  |   /* Divide the coefficient value by qval, ensuring proper rounding.  | 
102  |  |    * Since C does not specify the direction of rounding for negative  | 
103  |  |    * quotients, we have to force the dividend positive for portability.  | 
104  |  |    *  | 
105  |  |    * In most files, at least half of the output values will be zero  | 
106  |  |    * (at default quantization settings, more like three-quarters...)  | 
107  |  |    * so we should ensure that this case is fast.  On many machines,  | 
108  |  |    * a comparison is enough cheaper than a divide to make a special test  | 
109  |  |    * a win.  Since both inputs will be nonnegative, we need only test  | 
110  |  |    * for a < b to discover whether a/b is 0.  | 
111  |  |    * If your machine's division is fast enough, define FAST_DIVIDE.  | 
112  |  |    */  | 
113  |  | #ifdef FAST_DIVIDE  | 
114  |  | #define DIVIDE_BY(a,b)  a /= b  | 
115  |  | #else  | 
116  | 0  | #define DIVIDE_BY(a,b)  if (a >= b) a /= b; else a = 0  | 
117  | 0  | #endif  | 
118  | 0  |   if (temp < 0) { | 
119  | 0  |     temp = -temp;  | 
120  | 0  |     temp += qval>>1;  /* for rounding */  | 
121  | 0  |     DIVIDE_BY(temp, qval);  | 
122  | 0  |     temp = -temp;  | 
123  | 0  |   } else { | 
124  | 0  |     temp += qval>>1;  /* for rounding */  | 
125  | 0  |     DIVIDE_BY(temp, qval);  | 
126  | 0  |   }  | 
127  | 0  |   output_ptr[i] = (JCOEF) temp;  | 
128  | 0  |       }  | 
129  | 0  |     }  | 
130  | 0  |   }  | 
131  | 0  | }  | 
132  |  |  | 
133  |  |  | 
134  |  | #ifdef DCT_FLOAT_SUPPORTED  | 
135  |  |  | 
136  |  | METHODDEF(void)  | 
137  |  | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
138  |  |        JSAMPARRAY sample_data, JBLOCKROW coef_blocks,  | 
139  |  |        JDIMENSION start_row, JDIMENSION start_col,  | 
140  |  |        JDIMENSION num_blocks)  | 
141  |  | /* This version is used for floating-point DCT implementations. */  | 
142  | 0  | { | 
143  |  |   /* This routine is heavily used, so it's worth coding it tightly. */  | 
144  | 0  |   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;  | 
145  | 0  |   float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];  | 
146  | 0  |   FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table;  | 
147  | 0  |   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */  | 
148  | 0  |   JDIMENSION bi;  | 
149  |  | 
  | 
150  | 0  |   sample_data += start_row; /* fold in the vertical offset once */  | 
151  |  | 
  | 
152  | 0  |   for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | 
153  |  |     /* Perform the DCT */  | 
154  | 0  |     (*do_dct) (workspace, sample_data, start_col);  | 
155  |  |  | 
156  |  |     /* Quantize/descale the coefficients, and store into coef_blocks[] */  | 
157  | 0  |     { register FAST_FLOAT temp; | 
158  | 0  |       register int i;  | 
159  | 0  |       register JCOEFPTR output_ptr = coef_blocks[bi];  | 
160  |  | 
  | 
161  | 0  |       for (i = 0; i < DCTSIZE2; i++) { | 
162  |  |   /* Apply the quantization and scaling factor */  | 
163  | 0  |   temp = workspace[i] * divisors[i];  | 
164  |  |   /* Round to nearest integer.  | 
165  |  |    * Since C does not specify the direction of rounding for negative  | 
166  |  |    * quotients, we have to force the dividend positive for portability.  | 
167  |  |    * The maximum coefficient size is +-16K (for 12-bit data), so this  | 
168  |  |    * code should work for either 16-bit or 32-bit ints.  | 
169  |  |    */  | 
170  | 0  |   output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);  | 
171  | 0  |       }  | 
172  | 0  |     }  | 
173  | 0  |   }  | 
174  | 0  | }  | 
175  |  |  | 
176  |  | #endif /* DCT_FLOAT_SUPPORTED */  | 
177  |  |  | 
178  |  |  | 
179  |  | /*  | 
180  |  |  * Initialize for a processing pass.  | 
181  |  |  * Verify that all referenced Q-tables are present, and set up  | 
182  |  |  * the divisor table for each one.  | 
183  |  |  * In the current implementation, DCT of all components is done during  | 
184  |  |  * the first pass, even if only some components will be output in the  | 
185  |  |  * first scan.  Hence all components should be examined here.  | 
186  |  |  */  | 
187  |  |  | 
188  |  | METHODDEF(void)  | 
189  |  | start_pass_fdctmgr (j_compress_ptr cinfo)  | 
190  | 0  | { | 
191  | 0  |   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;  | 
192  | 0  |   int ci, qtblno, i;  | 
193  | 0  |   jpeg_component_info *compptr;  | 
194  | 0  |   int method = 0;  | 
195  | 0  |   JQUANT_TBL * qtbl;  | 
196  | 0  |   DCTELEM * dtbl;  | 
197  |  | 
  | 
198  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
199  | 0  |        ci++, compptr++) { | 
200  |  |     /* Select the proper DCT routine for this component's scaling */  | 
201  | 0  |     switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | 
202  | 0  | #ifdef DCT_SCALING_SUPPORTED  | 
203  | 0  |     case ((1 << 8) + 1):  | 
204  | 0  |       fdct->do_dct[ci] = jpeg_fdct_1x1;  | 
205  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
206  | 0  |       break;  | 
207  | 0  |     case ((2 << 8) + 2):  | 
208  | 0  |       fdct->do_dct[ci] = jpeg_fdct_2x2;  | 
209  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
210  | 0  |       break;  | 
211  | 0  |     case ((3 << 8) + 3):  | 
212  | 0  |       fdct->do_dct[ci] = jpeg_fdct_3x3;  | 
213  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
214  | 0  |       break;  | 
215  | 0  |     case ((4 << 8) + 4):  | 
216  | 0  |       fdct->do_dct[ci] = jpeg_fdct_4x4;  | 
217  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
218  | 0  |       break;  | 
219  | 0  |     case ((5 << 8) + 5):  | 
220  | 0  |       fdct->do_dct[ci] = jpeg_fdct_5x5;  | 
221  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
222  | 0  |       break;  | 
223  | 0  |     case ((6 << 8) + 6):  | 
224  | 0  |       fdct->do_dct[ci] = jpeg_fdct_6x6;  | 
225  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
226  | 0  |       break;  | 
227  | 0  |     case ((7 << 8) + 7):  | 
228  | 0  |       fdct->do_dct[ci] = jpeg_fdct_7x7;  | 
229  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
230  | 0  |       break;  | 
231  | 0  |     case ((9 << 8) + 9):  | 
232  | 0  |       fdct->do_dct[ci] = jpeg_fdct_9x9;  | 
233  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
234  | 0  |       break;  | 
235  | 0  |     case ((10 << 8) + 10):  | 
236  | 0  |       fdct->do_dct[ci] = jpeg_fdct_10x10;  | 
237  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
238  | 0  |       break;  | 
239  | 0  |     case ((11 << 8) + 11):  | 
240  | 0  |       fdct->do_dct[ci] = jpeg_fdct_11x11;  | 
241  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
242  | 0  |       break;  | 
243  | 0  |     case ((12 << 8) + 12):  | 
244  | 0  |       fdct->do_dct[ci] = jpeg_fdct_12x12;  | 
245  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
246  | 0  |       break;  | 
247  | 0  |     case ((13 << 8) + 13):  | 
248  | 0  |       fdct->do_dct[ci] = jpeg_fdct_13x13;  | 
249  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
250  | 0  |       break;  | 
251  | 0  |     case ((14 << 8) + 14):  | 
252  | 0  |       fdct->do_dct[ci] = jpeg_fdct_14x14;  | 
253  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
254  | 0  |       break;  | 
255  | 0  |     case ((15 << 8) + 15):  | 
256  | 0  |       fdct->do_dct[ci] = jpeg_fdct_15x15;  | 
257  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
258  | 0  |       break;  | 
259  | 0  |     case ((16 << 8) + 16):  | 
260  | 0  |       fdct->do_dct[ci] = jpeg_fdct_16x16;  | 
261  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
262  | 0  |       break;  | 
263  | 0  |     case ((16 << 8) + 8):  | 
264  | 0  |       fdct->do_dct[ci] = jpeg_fdct_16x8;  | 
265  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
266  | 0  |       break;  | 
267  | 0  |     case ((14 << 8) + 7):  | 
268  | 0  |       fdct->do_dct[ci] = jpeg_fdct_14x7;  | 
269  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
270  | 0  |       break;  | 
271  | 0  |     case ((12 << 8) + 6):  | 
272  | 0  |       fdct->do_dct[ci] = jpeg_fdct_12x6;  | 
273  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
274  | 0  |       break;  | 
275  | 0  |     case ((10 << 8) + 5):  | 
276  | 0  |       fdct->do_dct[ci] = jpeg_fdct_10x5;  | 
277  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
278  | 0  |       break;  | 
279  | 0  |     case ((8 << 8) + 4):  | 
280  | 0  |       fdct->do_dct[ci] = jpeg_fdct_8x4;  | 
281  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
282  | 0  |       break;  | 
283  | 0  |     case ((6 << 8) + 3):  | 
284  | 0  |       fdct->do_dct[ci] = jpeg_fdct_6x3;  | 
285  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
286  | 0  |       break;  | 
287  | 0  |     case ((4 << 8) + 2):  | 
288  | 0  |       fdct->do_dct[ci] = jpeg_fdct_4x2;  | 
289  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
290  | 0  |       break;  | 
291  | 0  |     case ((2 << 8) + 1):  | 
292  | 0  |       fdct->do_dct[ci] = jpeg_fdct_2x1;  | 
293  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
294  | 0  |       break;  | 
295  | 0  |     case ((8 << 8) + 16):  | 
296  | 0  |       fdct->do_dct[ci] = jpeg_fdct_8x16;  | 
297  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
298  | 0  |       break;  | 
299  | 0  |     case ((7 << 8) + 14):  | 
300  | 0  |       fdct->do_dct[ci] = jpeg_fdct_7x14;  | 
301  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
302  | 0  |       break;  | 
303  | 0  |     case ((6 << 8) + 12):  | 
304  | 0  |       fdct->do_dct[ci] = jpeg_fdct_6x12;  | 
305  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
306  | 0  |       break;  | 
307  | 0  |     case ((5 << 8) + 10):  | 
308  | 0  |       fdct->do_dct[ci] = jpeg_fdct_5x10;  | 
309  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
310  | 0  |       break;  | 
311  | 0  |     case ((4 << 8) + 8):  | 
312  | 0  |       fdct->do_dct[ci] = jpeg_fdct_4x8;  | 
313  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
314  | 0  |       break;  | 
315  | 0  |     case ((3 << 8) + 6):  | 
316  | 0  |       fdct->do_dct[ci] = jpeg_fdct_3x6;  | 
317  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
318  | 0  |       break;  | 
319  | 0  |     case ((2 << 8) + 4):  | 
320  | 0  |       fdct->do_dct[ci] = jpeg_fdct_2x4;  | 
321  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
322  | 0  |       break;  | 
323  | 0  |     case ((1 << 8) + 2):  | 
324  | 0  |       fdct->do_dct[ci] = jpeg_fdct_1x2;  | 
325  | 0  |       method = JDCT_ISLOW;  /* jfdctint uses islow-style table */  | 
326  | 0  |       break;  | 
327  | 0  | #endif  | 
328  | 0  |     case ((DCTSIZE << 8) + DCTSIZE):  | 
329  | 0  |       switch (cinfo->dct_method) { | 
330  | 0  | #ifdef DCT_ISLOW_SUPPORTED  | 
331  | 0  |       case JDCT_ISLOW:  | 
332  | 0  |   fdct->do_dct[ci] = jpeg_fdct_islow;  | 
333  | 0  |   method = JDCT_ISLOW;  | 
334  | 0  |   break;  | 
335  | 0  | #endif  | 
336  | 0  | #ifdef DCT_IFAST_SUPPORTED  | 
337  | 0  |       case JDCT_IFAST:  | 
338  | 0  |   fdct->do_dct[ci] = jpeg_fdct_ifast;  | 
339  | 0  |   method = JDCT_IFAST;  | 
340  | 0  |   break;  | 
341  | 0  | #endif  | 
342  | 0  | #ifdef DCT_FLOAT_SUPPORTED  | 
343  | 0  |       case JDCT_FLOAT:  | 
344  | 0  |   fdct->do_float_dct[ci] = jpeg_fdct_float;  | 
345  | 0  |   method = JDCT_FLOAT;  | 
346  | 0  |   break;  | 
347  | 0  | #endif  | 
348  | 0  |       default:  | 
349  | 0  |   ERREXIT(cinfo, JERR_NOT_COMPILED);  | 
350  | 0  |   break;  | 
351  | 0  |       }  | 
352  | 0  |       break;  | 
353  | 0  |     default:  | 
354  | 0  |       ERREXIT2(cinfo, JERR_BAD_DCTSIZE,  | 
355  | 0  |          compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);  | 
356  | 0  |       break;  | 
357  | 0  |     }  | 
358  | 0  |     qtblno = compptr->quant_tbl_no;  | 
359  |  |     /* Make sure specified quantization table is present */  | 
360  | 0  |     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||  | 
361  | 0  |   cinfo->quant_tbl_ptrs[qtblno] == NULL)  | 
362  | 0  |       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);  | 
363  | 0  |     qtbl = cinfo->quant_tbl_ptrs[qtblno];  | 
364  |  |     /* Create divisor table from quant table */  | 
365  | 0  |     switch (method) { | 
366  | 0  | #ifdef PROVIDE_ISLOW_TABLES  | 
367  | 0  |     case JDCT_ISLOW:  | 
368  |  |       /* For LL&M IDCT method, divisors are equal to raw quantization  | 
369  |  |        * coefficients multiplied by 8 (to counteract scaling).  | 
370  |  |        */  | 
371  | 0  |       dtbl = (DCTELEM *) compptr->dct_table;  | 
372  | 0  |       for (i = 0; i < DCTSIZE2; i++) { | 
373  | 0  |   dtbl[i] =  | 
374  | 0  |     ((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3);  | 
375  | 0  |       }  | 
376  | 0  |       fdct->pub.forward_DCT[ci] = forward_DCT;  | 
377  | 0  |       break;  | 
378  | 0  | #endif  | 
379  | 0  | #ifdef DCT_IFAST_SUPPORTED  | 
380  | 0  |     case JDCT_IFAST:  | 
381  | 0  |       { | 
382  |  |   /* For AA&N IDCT method, divisors are equal to quantization  | 
383  |  |    * coefficients scaled by scalefactor[row]*scalefactor[col], where  | 
384  |  |    *   scalefactor[0] = 1  | 
385  |  |    *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7  | 
386  |  |    * We apply a further scale factor of 8.  | 
387  |  |    */  | 
388  | 0  | #define CONST_BITS 14  | 
389  | 0  |   static const INT16 aanscales[DCTSIZE2] = { | 
390  |  |     /* precomputed values scaled up by 14 bits */  | 
391  | 0  |     16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,  | 
392  | 0  |     22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,  | 
393  | 0  |     21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,  | 
394  | 0  |     19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,  | 
395  | 0  |     16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,  | 
396  | 0  |     12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,  | 
397  | 0  |      8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,  | 
398  | 0  |      4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247  | 
399  | 0  |   };  | 
400  | 0  |   SHIFT_TEMPS  | 
401  |  | 
  | 
402  | 0  |   dtbl = (DCTELEM *) compptr->dct_table;  | 
403  | 0  |   for (i = 0; i < DCTSIZE2; i++) { | 
404  | 0  |     dtbl[i] = (DCTELEM)  | 
405  | 0  |       DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],  | 
406  | 0  |           (INT32) aanscales[i]),  | 
407  | 0  |         compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3);  | 
408  | 0  |   }  | 
409  | 0  |       }  | 
410  | 0  |       fdct->pub.forward_DCT[ci] = forward_DCT;  | 
411  | 0  |       break;  | 
412  | 0  | #endif  | 
413  | 0  | #ifdef DCT_FLOAT_SUPPORTED  | 
414  | 0  |     case JDCT_FLOAT:  | 
415  | 0  |       { | 
416  |  |   /* For float AA&N IDCT method, divisors are equal to quantization  | 
417  |  |    * coefficients scaled by scalefactor[row]*scalefactor[col], where  | 
418  |  |    *   scalefactor[0] = 1  | 
419  |  |    *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7  | 
420  |  |    * We apply a further scale factor of 8.  | 
421  |  |    * What's actually stored is 1/divisor so that the inner loop can  | 
422  |  |    * use a multiplication rather than a division.  | 
423  |  |    */  | 
424  | 0  |   FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table;  | 
425  | 0  |   int row, col;  | 
426  | 0  |   static const double aanscalefactor[DCTSIZE] = { | 
427  | 0  |     1.0, 1.387039845, 1.306562965, 1.175875602,  | 
428  | 0  |     1.0, 0.785694958, 0.541196100, 0.275899379  | 
429  | 0  |   };  | 
430  |  | 
  | 
431  | 0  |   i = 0;  | 
432  | 0  |   for (row = 0; row < DCTSIZE; row++) { | 
433  | 0  |     for (col = 0; col < DCTSIZE; col++) { | 
434  | 0  |       fdtbl[i] = (FAST_FLOAT)  | 
435  | 0  |         (1.0 / ((double) qtbl->quantval[i] *  | 
436  | 0  |           aanscalefactor[row] * aanscalefactor[col] *  | 
437  | 0  |           (compptr->component_needed ? 16.0 : 8.0)));  | 
438  | 0  |       i++;  | 
439  | 0  |     }  | 
440  | 0  |   }  | 
441  | 0  |       }  | 
442  | 0  |       fdct->pub.forward_DCT[ci] = forward_DCT_float;  | 
443  | 0  |       break;  | 
444  | 0  | #endif  | 
445  | 0  |     default:  | 
446  | 0  |       ERREXIT(cinfo, JERR_NOT_COMPILED);  | 
447  | 0  |       break;  | 
448  | 0  |     }  | 
449  | 0  |   }  | 
450  | 0  | }  | 
451  |  |  | 
452  |  |  | 
453  |  | /*  | 
454  |  |  * Initialize FDCT manager.  | 
455  |  |  */  | 
456  |  |  | 
457  |  | GLOBAL(void)  | 
458  |  | jinit_forward_dct (j_compress_ptr cinfo)  | 
459  | 0  | { | 
460  | 0  |   my_fdct_ptr fdct;  | 
461  | 0  |   int ci;  | 
462  | 0  |   jpeg_component_info *compptr;  | 
463  |  | 
  | 
464  | 0  |   fdct = (my_fdct_ptr)  | 
465  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
466  | 0  |         SIZEOF(my_fdct_controller));  | 
467  | 0  |   cinfo->fdct = &fdct->pub;  | 
468  | 0  |   fdct->pub.start_pass = start_pass_fdctmgr;  | 
469  |  | 
  | 
470  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
471  | 0  |        ci++, compptr++) { | 
472  |  |     /* Allocate a divisor table for each component */  | 
473  | 0  |     compptr->dct_table =  | 
474  | 0  |       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
475  | 0  |           SIZEOF(divisor_table));  | 
476  | 0  |   }  | 
477  | 0  | }  |