/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jcsample.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jcsample.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1991-1996, Thomas G. Lane.  | 
5  |  |  * This file is part of the Independent JPEG Group's software.  | 
6  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
7  |  |  *  | 
8  |  |  * This file contains downsampling routines.  | 
9  |  |  *  | 
10  |  |  * Downsampling input data is counted in "row groups".  A row group  | 
11  |  |  * is defined to be max_v_samp_factor pixel rows of each component,  | 
12  |  |  * from which the downsampler produces v_samp_factor sample rows.  | 
13  |  |  * A single row group is processed in each call to the downsampler module.  | 
14  |  |  *  | 
15  |  |  * The downsampler is responsible for edge-expansion of its output data  | 
16  |  |  * to fill an integral number of DCT blocks horizontally.  The source buffer  | 
17  |  |  * may be modified if it is helpful for this purpose (the source buffer is  | 
18  |  |  * allocated wide enough to correspond to the desired output width).  | 
19  |  |  * The caller (the prep controller) is responsible for vertical padding.  | 
20  |  |  *  | 
21  |  |  * The downsampler may request "context rows" by setting need_context_rows  | 
22  |  |  * during startup.  In this case, the input arrays will contain at least  | 
23  |  |  * one row group's worth of pixels above and below the passed-in data;  | 
24  |  |  * the caller will create dummy rows at image top and bottom by replicating  | 
25  |  |  * the first or last real pixel row.  | 
26  |  |  *  | 
27  |  |  * An excellent reference for image resampling is  | 
28  |  |  *   Digital Image Warping, George Wolberg, 1990.  | 
29  |  |  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.  | 
30  |  |  *  | 
31  |  |  * The downsampling algorithm used here is a simple average of the source  | 
32  |  |  * pixels covered by the output pixel.  The hi-falutin sampling literature  | 
33  |  |  * refers to this as a "box filter".  In general the characteristics of a box  | 
34  |  |  * filter are not very good, but for the specific cases we normally use (1:1  | 
35  |  |  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not  | 
36  |  |  * nearly so bad.  If you intend to use other sampling ratios, you'd be well  | 
37  |  |  * advised to improve this code.  | 
38  |  |  *  | 
39  |  |  * A simple input-smoothing capability is provided.  This is mainly intended  | 
40  |  |  * for cleaning up color-dithered GIF input files (if you find it inadequate,  | 
41  |  |  * we suggest using an external filtering program such as pnmconvol).  When  | 
42  |  |  * enabled, each input pixel P is replaced by a weighted sum of itself and its  | 
43  |  |  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,  | 
44  |  |  * where SF = (smoothing_factor / 1024).  | 
45  |  |  * Currently, smoothing is only supported for 2h2v sampling factors.  | 
46  |  |  */  | 
47  |  |  | 
48  |  | #define JPEG_INTERNALS  | 
49  |  | #include "jinclude.h"  | 
50  |  | #include "jpeglib.h"  | 
51  |  |  | 
52  |  |  | 
53  |  | /* Pointer to routine to downsample a single component */  | 
54  |  | typedef JMETHOD(void, downsample1_ptr,  | 
55  |  |     (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
56  |  |      JSAMPARRAY input_data, JSAMPARRAY output_data));  | 
57  |  |  | 
58  |  | /* Private subobject */  | 
59  |  |  | 
60  |  | typedef struct { | 
61  |  |   struct jpeg_downsampler pub;  /* public fields */  | 
62  |  |  | 
63  |  |   /* Downsampling method pointers, one per component */  | 
64  |  |   downsample1_ptr methods[MAX_COMPONENTS];  | 
65  |  |  | 
66  |  |   /* Height of an output row group for each component. */  | 
67  |  |   int rowgroup_height[MAX_COMPONENTS];  | 
68  |  |  | 
69  |  |   /* These arrays save pixel expansion factors so that int_downsample need not  | 
70  |  |    * recompute them each time.  They are unused for other downsampling methods.  | 
71  |  |    */  | 
72  |  |   UINT8 h_expand[MAX_COMPONENTS];  | 
73  |  |   UINT8 v_expand[MAX_COMPONENTS];  | 
74  |  | } my_downsampler;  | 
75  |  |  | 
76  |  | typedef my_downsampler * my_downsample_ptr;  | 
77  |  |  | 
78  |  |  | 
79  |  | /*  | 
80  |  |  * Initialize for a downsampling pass.  | 
81  |  |  */  | 
82  |  |  | 
83  |  | METHODDEF(void)  | 
84  |  | start_pass_downsample (j_compress_ptr cinfo)  | 
85  | 0  | { | 
86  |  |   /* no work for now */  | 
87  | 0  | }  | 
88  |  |  | 
89  |  |  | 
90  |  | /*  | 
91  |  |  * Expand a component horizontally from width input_cols to width output_cols,  | 
92  |  |  * by duplicating the rightmost samples.  | 
93  |  |  */  | 
94  |  |  | 
95  |  | LOCAL(void)  | 
96  |  | expand_right_edge (JSAMPARRAY image_data, int num_rows,  | 
97  |  |        JDIMENSION input_cols, JDIMENSION output_cols)  | 
98  | 0  | { | 
99  | 0  |   register JSAMPROW ptr;  | 
100  | 0  |   register JSAMPLE pixval;  | 
101  | 0  |   register int count;  | 
102  | 0  |   int row;  | 
103  | 0  |   int numcols = (int) (output_cols - input_cols);  | 
104  |  | 
  | 
105  | 0  |   if (numcols > 0) { | 
106  | 0  |     for (row = 0; row < num_rows; row++) { | 
107  | 0  |       ptr = image_data[row] + input_cols;  | 
108  | 0  |       pixval = ptr[-1];   /* don't need GETJSAMPLE() here */  | 
109  | 0  |       for (count = numcols; count > 0; count--)  | 
110  | 0  |   *ptr++ = pixval;  | 
111  | 0  |     }  | 
112  | 0  |   }  | 
113  | 0  | }  | 
114  |  |  | 
115  |  |  | 
116  |  | /*  | 
117  |  |  * Do downsampling for a whole row group (all components).  | 
118  |  |  *  | 
119  |  |  * In this version we simply downsample each component independently.  | 
120  |  |  */  | 
121  |  |  | 
122  |  | METHODDEF(void)  | 
123  |  | sep_downsample (j_compress_ptr cinfo,  | 
124  |  |     JSAMPIMAGE input_buf, JDIMENSION in_row_index,  | 
125  |  |     JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)  | 
126  | 0  | { | 
127  | 0  |   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;  | 
128  | 0  |   int ci;  | 
129  | 0  |   jpeg_component_info * compptr;  | 
130  | 0  |   JSAMPARRAY in_ptr, out_ptr;  | 
131  |  | 
  | 
132  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
133  | 0  |        ci++, compptr++) { | 
134  | 0  |     in_ptr = input_buf[ci] + in_row_index;  | 
135  | 0  |     out_ptr = output_buf[ci] +  | 
136  | 0  |         (out_row_group_index * downsample->rowgroup_height[ci]);  | 
137  | 0  |     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);  | 
138  | 0  |   }  | 
139  | 0  | }  | 
140  |  |  | 
141  |  |  | 
142  |  | /*  | 
143  |  |  * Downsample pixel values of a single component.  | 
144  |  |  * One row group is processed per call.  | 
145  |  |  * This version handles arbitrary integral sampling ratios, without smoothing.  | 
146  |  |  * Note that this version is not actually used for customary sampling ratios.  | 
147  |  |  */  | 
148  |  |  | 
149  |  | METHODDEF(void)  | 
150  |  | int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
151  |  |     JSAMPARRAY input_data, JSAMPARRAY output_data)  | 
152  | 0  | { | 
153  | 0  |   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;  | 
154  | 0  |   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;  | 
155  | 0  |   JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */  | 
156  | 0  |   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;  | 
157  | 0  |   JSAMPROW inptr, outptr;  | 
158  | 0  |   INT32 outvalue;  | 
159  |  | 
  | 
160  | 0  |   h_expand = downsample->h_expand[compptr->component_index];  | 
161  | 0  |   v_expand = downsample->v_expand[compptr->component_index];  | 
162  | 0  |   numpix = h_expand * v_expand;  | 
163  | 0  |   numpix2 = numpix/2;  | 
164  |  |  | 
165  |  |   /* Expand input data enough to let all the output samples be generated  | 
166  |  |    * by the standard loop.  Special-casing padded output would be more  | 
167  |  |    * efficient.  | 
168  |  |    */  | 
169  | 0  |   expand_right_edge(input_data, cinfo->max_v_samp_factor,  | 
170  | 0  |         cinfo->image_width, output_cols * h_expand);  | 
171  |  | 
  | 
172  | 0  |   inrow = outrow = 0;  | 
173  | 0  |   while (inrow < cinfo->max_v_samp_factor) { | 
174  | 0  |     outptr = output_data[outrow];  | 
175  | 0  |     for (outcol = 0, outcol_h = 0; outcol < output_cols;  | 
176  | 0  |    outcol++, outcol_h += h_expand) { | 
177  | 0  |       outvalue = 0;  | 
178  | 0  |       for (v = 0; v < v_expand; v++) { | 
179  | 0  |   inptr = input_data[inrow+v] + outcol_h;  | 
180  | 0  |   for (h = 0; h < h_expand; h++) { | 
181  | 0  |     outvalue += (INT32) GETJSAMPLE(*inptr++);  | 
182  | 0  |   }  | 
183  | 0  |       }  | 
184  | 0  |       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);  | 
185  | 0  |     }  | 
186  | 0  |     inrow += v_expand;  | 
187  | 0  |     outrow++;  | 
188  | 0  |   }  | 
189  | 0  | }  | 
190  |  |  | 
191  |  |  | 
192  |  | /*  | 
193  |  |  * Downsample pixel values of a single component.  | 
194  |  |  * This version handles the special case of a full-size component,  | 
195  |  |  * without smoothing.  | 
196  |  |  */  | 
197  |  |  | 
198  |  | METHODDEF(void)  | 
199  |  | fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
200  |  |          JSAMPARRAY input_data, JSAMPARRAY output_data)  | 
201  | 0  | { | 
202  |  |   /* Copy the data */  | 
203  | 0  |   jcopy_sample_rows(input_data, 0, output_data, 0,  | 
204  | 0  |         cinfo->max_v_samp_factor, cinfo->image_width);  | 
205  |  |   /* Edge-expand */  | 
206  | 0  |   expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,  | 
207  | 0  |         compptr->width_in_blocks * compptr->DCT_h_scaled_size);  | 
208  | 0  | }  | 
209  |  |  | 
210  |  |  | 
211  |  | /*  | 
212  |  |  * Downsample pixel values of a single component.  | 
213  |  |  * This version handles the common case of 2:1 horizontal and 1:1 vertical,  | 
214  |  |  * without smoothing.  | 
215  |  |  *  | 
216  |  |  * A note about the "bias" calculations: when rounding fractional values to  | 
217  |  |  * integer, we do not want to always round 0.5 up to the next integer.  | 
218  |  |  * If we did that, we'd introduce a noticeable bias towards larger values.  | 
219  |  |  * Instead, this code is arranged so that 0.5 will be rounded up or down at  | 
220  |  |  * alternate pixel locations (a simple ordered dither pattern).  | 
221  |  |  */  | 
222  |  |  | 
223  |  | METHODDEF(void)  | 
224  |  | h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
225  |  |      JSAMPARRAY input_data, JSAMPARRAY output_data)  | 
226  | 0  | { | 
227  | 0  |   int inrow;  | 
228  | 0  |   JDIMENSION outcol;  | 
229  | 0  |   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;  | 
230  | 0  |   register JSAMPROW inptr, outptr;  | 
231  | 0  |   register int bias;  | 
232  |  |  | 
233  |  |   /* Expand input data enough to let all the output samples be generated  | 
234  |  |    * by the standard loop.  Special-casing padded output would be more  | 
235  |  |    * efficient.  | 
236  |  |    */  | 
237  | 0  |   expand_right_edge(input_data, cinfo->max_v_samp_factor,  | 
238  | 0  |         cinfo->image_width, output_cols * 2);  | 
239  |  | 
  | 
240  | 0  |   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | 
241  | 0  |     outptr = output_data[inrow];  | 
242  | 0  |     inptr = input_data[inrow];  | 
243  | 0  |     bias = 0;     /* bias = 0,1,0,1,... for successive samples */  | 
244  | 0  |     for (outcol = 0; outcol < output_cols; outcol++) { | 
245  | 0  |       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])  | 
246  | 0  |             + bias) >> 1);  | 
247  | 0  |       bias ^= 1;    /* 0=>1, 1=>0 */  | 
248  | 0  |       inptr += 2;  | 
249  | 0  |     }  | 
250  | 0  |   }  | 
251  | 0  | }  | 
252  |  |  | 
253  |  |  | 
254  |  | /*  | 
255  |  |  * Downsample pixel values of a single component.  | 
256  |  |  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,  | 
257  |  |  * without smoothing.  | 
258  |  |  */  | 
259  |  |  | 
260  |  | METHODDEF(void)  | 
261  |  | h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
262  |  |      JSAMPARRAY input_data, JSAMPARRAY output_data)  | 
263  | 0  | { | 
264  | 0  |   int inrow, outrow;  | 
265  | 0  |   JDIMENSION outcol;  | 
266  | 0  |   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;  | 
267  | 0  |   register JSAMPROW inptr0, inptr1, outptr;  | 
268  | 0  |   register int bias;  | 
269  |  |  | 
270  |  |   /* Expand input data enough to let all the output samples be generated  | 
271  |  |    * by the standard loop.  Special-casing padded output would be more  | 
272  |  |    * efficient.  | 
273  |  |    */  | 
274  | 0  |   expand_right_edge(input_data, cinfo->max_v_samp_factor,  | 
275  | 0  |         cinfo->image_width, output_cols * 2);  | 
276  |  | 
  | 
277  | 0  |   inrow = outrow = 0;  | 
278  | 0  |   while (inrow < cinfo->max_v_samp_factor) { | 
279  | 0  |     outptr = output_data[outrow];  | 
280  | 0  |     inptr0 = input_data[inrow];  | 
281  | 0  |     inptr1 = input_data[inrow+1];  | 
282  | 0  |     bias = 1;     /* bias = 1,2,1,2,... for successive samples */  | 
283  | 0  |     for (outcol = 0; outcol < output_cols; outcol++) { | 
284  | 0  |       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +  | 
285  | 0  |             GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])  | 
286  | 0  |             + bias) >> 2);  | 
287  | 0  |       bias ^= 3;    /* 1=>2, 2=>1 */  | 
288  | 0  |       inptr0 += 2; inptr1 += 2;  | 
289  | 0  |     }  | 
290  | 0  |     inrow += 2;  | 
291  | 0  |     outrow++;  | 
292  | 0  |   }  | 
293  | 0  | }  | 
294  |  |  | 
295  |  |  | 
296  |  | #ifdef INPUT_SMOOTHING_SUPPORTED  | 
297  |  |  | 
298  |  | /*  | 
299  |  |  * Downsample pixel values of a single component.  | 
300  |  |  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,  | 
301  |  |  * with smoothing.  One row of context is required.  | 
302  |  |  */  | 
303  |  |  | 
304  |  | METHODDEF(void)  | 
305  |  | h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,  | 
306  |  |       JSAMPARRAY input_data, JSAMPARRAY output_data)  | 
307  | 0  | { | 
308  | 0  |   int inrow, outrow;  | 
309  | 0  |   JDIMENSION colctr;  | 
310  | 0  |   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;  | 
311  | 0  |   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;  | 
312  | 0  |   INT32 membersum, neighsum, memberscale, neighscale;  | 
313  |  |  | 
314  |  |   /* Expand input data enough to let all the output samples be generated  | 
315  |  |    * by the standard loop.  Special-casing padded output would be more  | 
316  |  |    * efficient.  | 
317  |  |    */  | 
318  | 0  |   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,  | 
319  | 0  |         cinfo->image_width, output_cols * 2);  | 
320  |  |  | 
321  |  |   /* We don't bother to form the individual "smoothed" input pixel values;  | 
322  |  |    * we can directly compute the output which is the average of the four  | 
323  |  |    * smoothed values.  Each of the four member pixels contributes a fraction  | 
324  |  |    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three  | 
325  |  |    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final  | 
326  |  |    * output.  The four corner-adjacent neighbor pixels contribute a fraction  | 
327  |  |    * SF to just one smoothed pixel, or SF/4 to the final output; while the  | 
328  |  |    * eight edge-adjacent neighbors contribute SF to each of two smoothed  | 
329  |  |    * pixels, or SF/2 overall.  In order to use integer arithmetic, these  | 
330  |  |    * factors are scaled by 2^16 = 65536.  | 
331  |  |    * Also recall that SF = smoothing_factor / 1024.  | 
332  |  |    */  | 
333  |  | 
  | 
334  | 0  |   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */  | 
335  | 0  |   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */  | 
336  |  | 
  | 
337  | 0  |   inrow = outrow = 0;  | 
338  | 0  |   while (inrow < cinfo->max_v_samp_factor) { | 
339  | 0  |     outptr = output_data[outrow];  | 
340  | 0  |     inptr0 = input_data[inrow];  | 
341  | 0  |     inptr1 = input_data[inrow+1];  | 
342  | 0  |     above_ptr = input_data[inrow-1];  | 
343  | 0  |     below_ptr = input_data[inrow+2];  | 
344  |  |  | 
345  |  |     /* Special case for first column: pretend column -1 is same as column 0 */  | 
346  | 0  |     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +  | 
347  | 0  |     GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);  | 
348  | 0  |     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +  | 
349  | 0  |          GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +  | 
350  | 0  |          GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +  | 
351  | 0  |          GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);  | 
352  | 0  |     neighsum += neighsum;  | 
353  | 0  |     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +  | 
354  | 0  |     GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);  | 
355  | 0  |     membersum = membersum * memberscale + neighsum * neighscale;  | 
356  | 0  |     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);  | 
357  | 0  |     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;  | 
358  |  | 
  | 
359  | 0  |     for (colctr = output_cols - 2; colctr > 0; colctr--) { | 
360  |  |       /* sum of pixels directly mapped to this output element */  | 
361  | 0  |       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +  | 
362  | 0  |       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);  | 
363  |  |       /* sum of edge-neighbor pixels */  | 
364  | 0  |       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +  | 
365  | 0  |      GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +  | 
366  | 0  |      GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +  | 
367  | 0  |      GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);  | 
368  |  |       /* The edge-neighbors count twice as much as corner-neighbors */  | 
369  | 0  |       neighsum += neighsum;  | 
370  |  |       /* Add in the corner-neighbors */  | 
371  | 0  |       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +  | 
372  | 0  |       GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);  | 
373  |  |       /* form final output scaled up by 2^16 */  | 
374  | 0  |       membersum = membersum * memberscale + neighsum * neighscale;  | 
375  |  |       /* round, descale and output it */  | 
376  | 0  |       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);  | 
377  | 0  |       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;  | 
378  | 0  |     }  | 
379  |  |  | 
380  |  |     /* Special case for last column */  | 
381  | 0  |     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +  | 
382  | 0  |     GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);  | 
383  | 0  |     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +  | 
384  | 0  |          GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +  | 
385  | 0  |          GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +  | 
386  | 0  |          GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);  | 
387  | 0  |     neighsum += neighsum;  | 
388  | 0  |     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +  | 
389  | 0  |     GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);  | 
390  | 0  |     membersum = membersum * memberscale + neighsum * neighscale;  | 
391  | 0  |     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);  | 
392  |  | 
  | 
393  | 0  |     inrow += 2;  | 
394  | 0  |     outrow++;  | 
395  | 0  |   }  | 
396  | 0  | }  | 
397  |  |  | 
398  |  |  | 
399  |  | /*  | 
400  |  |  * Downsample pixel values of a single component.  | 
401  |  |  * This version handles the special case of a full-size component,  | 
402  |  |  * with smoothing.  One row of context is required.  | 
403  |  |  */  | 
404  |  |  | 
405  |  | METHODDEF(void)  | 
406  |  | fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,  | 
407  |  |           JSAMPARRAY input_data, JSAMPARRAY output_data)  | 
408  | 0  | { | 
409  | 0  |   int inrow;  | 
410  | 0  |   JDIMENSION colctr;  | 
411  | 0  |   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;  | 
412  | 0  |   register JSAMPROW inptr, above_ptr, below_ptr, outptr;  | 
413  | 0  |   INT32 membersum, neighsum, memberscale, neighscale;  | 
414  | 0  |   int colsum, lastcolsum, nextcolsum;  | 
415  |  |  | 
416  |  |   /* Expand input data enough to let all the output samples be generated  | 
417  |  |    * by the standard loop.  Special-casing padded output would be more  | 
418  |  |    * efficient.  | 
419  |  |    */  | 
420  | 0  |   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,  | 
421  | 0  |         cinfo->image_width, output_cols);  | 
422  |  |  | 
423  |  |   /* Each of the eight neighbor pixels contributes a fraction SF to the  | 
424  |  |    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order  | 
425  |  |    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.  | 
426  |  |    * Also recall that SF = smoothing_factor / 1024.  | 
427  |  |    */  | 
428  |  | 
  | 
429  | 0  |   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */  | 
430  | 0  |   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */  | 
431  |  | 
  | 
432  | 0  |   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | 
433  | 0  |     outptr = output_data[inrow];  | 
434  | 0  |     inptr = input_data[inrow];  | 
435  | 0  |     above_ptr = input_data[inrow-1];  | 
436  | 0  |     below_ptr = input_data[inrow+1];  | 
437  |  |  | 
438  |  |     /* Special case for first column */  | 
439  | 0  |     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +  | 
440  | 0  |        GETJSAMPLE(*inptr);  | 
441  | 0  |     membersum = GETJSAMPLE(*inptr++);  | 
442  | 0  |     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +  | 
443  | 0  |      GETJSAMPLE(*inptr);  | 
444  | 0  |     neighsum = colsum + (colsum - membersum) + nextcolsum;  | 
445  | 0  |     membersum = membersum * memberscale + neighsum * neighscale;  | 
446  | 0  |     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);  | 
447  | 0  |     lastcolsum = colsum; colsum = nextcolsum;  | 
448  |  | 
  | 
449  | 0  |     for (colctr = output_cols - 2; colctr > 0; colctr--) { | 
450  | 0  |       membersum = GETJSAMPLE(*inptr++);  | 
451  | 0  |       above_ptr++; below_ptr++;  | 
452  | 0  |       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +  | 
453  | 0  |        GETJSAMPLE(*inptr);  | 
454  | 0  |       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;  | 
455  | 0  |       membersum = membersum * memberscale + neighsum * neighscale;  | 
456  | 0  |       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);  | 
457  | 0  |       lastcolsum = colsum; colsum = nextcolsum;  | 
458  | 0  |     }  | 
459  |  |  | 
460  |  |     /* Special case for last column */  | 
461  | 0  |     membersum = GETJSAMPLE(*inptr);  | 
462  | 0  |     neighsum = lastcolsum + (colsum - membersum) + colsum;  | 
463  | 0  |     membersum = membersum * memberscale + neighsum * neighscale;  | 
464  | 0  |     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);  | 
465  |  | 
  | 
466  | 0  |   }  | 
467  | 0  | }  | 
468  |  |  | 
469  |  | #endif /* INPUT_SMOOTHING_SUPPORTED */  | 
470  |  |  | 
471  |  |  | 
472  |  | /*  | 
473  |  |  * Module initialization routine for downsampling.  | 
474  |  |  * Note that we must select a routine for each component.  | 
475  |  |  */  | 
476  |  |  | 
477  |  | GLOBAL(void)  | 
478  |  | jinit_downsampler (j_compress_ptr cinfo)  | 
479  | 0  | { | 
480  | 0  |   my_downsample_ptr downsample;  | 
481  | 0  |   int ci;  | 
482  | 0  |   jpeg_component_info * compptr;  | 
483  | 0  |   boolean smoothok = TRUE;  | 
484  | 0  |   int h_in_group, v_in_group, h_out_group, v_out_group;  | 
485  |  | 
  | 
486  | 0  |   downsample = (my_downsample_ptr)  | 
487  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
488  | 0  |         SIZEOF(my_downsampler));  | 
489  | 0  |   cinfo->downsample = (struct jpeg_downsampler *) downsample;  | 
490  | 0  |   downsample->pub.start_pass = start_pass_downsample;  | 
491  | 0  |   downsample->pub.downsample = sep_downsample;  | 
492  | 0  |   downsample->pub.need_context_rows = FALSE;  | 
493  |  | 
  | 
494  | 0  |   if (cinfo->CCIR601_sampling)  | 
495  | 0  |     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);  | 
496  |  |  | 
497  |  |   /* Verify we can handle the sampling factors, and set up method pointers */  | 
498  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
499  | 0  |        ci++, compptr++) { | 
500  |  |     /* Compute size of an "output group" for DCT scaling.  This many samples  | 
501  |  |      * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.  | 
502  |  |      */  | 
503  | 0  |     h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /  | 
504  | 0  |       cinfo->min_DCT_h_scaled_size;  | 
505  | 0  |     v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /  | 
506  | 0  |       cinfo->min_DCT_v_scaled_size;  | 
507  | 0  |     h_in_group = cinfo->max_h_samp_factor;  | 
508  | 0  |     v_in_group = cinfo->max_v_samp_factor;  | 
509  | 0  |     downsample->rowgroup_height[ci] = v_out_group; /* save for use later */  | 
510  | 0  |     if (h_in_group == h_out_group && v_in_group == v_out_group) { | 
511  | 0  | #ifdef INPUT_SMOOTHING_SUPPORTED  | 
512  | 0  |       if (cinfo->smoothing_factor) { | 
513  | 0  |   downsample->methods[ci] = fullsize_smooth_downsample;  | 
514  | 0  |   downsample->pub.need_context_rows = TRUE;  | 
515  | 0  |       } else  | 
516  | 0  | #endif  | 
517  | 0  |   downsample->methods[ci] = fullsize_downsample;  | 
518  | 0  |     } else if (h_in_group == h_out_group * 2 &&  | 
519  | 0  |          v_in_group == v_out_group) { | 
520  | 0  |       smoothok = FALSE;  | 
521  | 0  |       downsample->methods[ci] = h2v1_downsample;  | 
522  | 0  |     } else if (h_in_group == h_out_group * 2 &&  | 
523  | 0  |          v_in_group == v_out_group * 2) { | 
524  | 0  | #ifdef INPUT_SMOOTHING_SUPPORTED  | 
525  | 0  |       if (cinfo->smoothing_factor) { | 
526  | 0  |   downsample->methods[ci] = h2v2_smooth_downsample;  | 
527  | 0  |   downsample->pub.need_context_rows = TRUE;  | 
528  | 0  |       } else  | 
529  | 0  | #endif  | 
530  | 0  |   downsample->methods[ci] = h2v2_downsample;  | 
531  | 0  |     } else if ((h_in_group % h_out_group) == 0 &&  | 
532  | 0  |          (v_in_group % v_out_group) == 0) { | 
533  | 0  |       smoothok = FALSE;  | 
534  | 0  |       downsample->methods[ci] = int_downsample;  | 
535  | 0  |       downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);  | 
536  | 0  |       downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);  | 
537  | 0  |     } else  | 
538  | 0  |       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);  | 
539  | 0  |   }  | 
540  |  | 
  | 
541  | 0  | #ifdef INPUT_SMOOTHING_SUPPORTED  | 
542  | 0  |   if (cinfo->smoothing_factor && !smoothok)  | 
543  | 0  |     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);  | 
544  | 0  | #endif  | 
545  | 0  | }  |