/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jdarith.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jdarith.c  | 
3  |  |  *  | 
4  |  |  * Developed 1997-2019 by Guido Vollbeding.  | 
5  |  |  * This file is part of the Independent JPEG Group's software.  | 
6  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
7  |  |  *  | 
8  |  |  * This file contains portable arithmetic entropy decoding routines for JPEG  | 
9  |  |  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).  | 
10  |  |  *  | 
11  |  |  * Both sequential and progressive modes are supported in this single module.  | 
12  |  |  *  | 
13  |  |  * Suspension is not currently supported in this module.  | 
14  |  |  */  | 
15  |  |  | 
16  |  | #define JPEG_INTERNALS  | 
17  |  | #include "jinclude.h"  | 
18  |  | #include "jpeglib.h"  | 
19  |  |  | 
20  |  |  | 
21  |  | /* Expanded entropy decoder object for arithmetic decoding. */  | 
22  |  |  | 
23  |  | typedef struct { | 
24  |  |   struct jpeg_entropy_decoder pub; /* public fields */  | 
25  |  |  | 
26  |  |   INT32 c;       /* C register, base of coding interval + input bit buffer */  | 
27  |  |   INT32 a;               /* A register, normalized size of coding interval */  | 
28  |  |   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */  | 
29  |  |                                                          /* init: ct = -16 */  | 
30  |  |                                                          /* run: ct = 0..7 */  | 
31  |  |                                                          /* error: ct = -1 */  | 
32  |  |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */  | 
33  |  |   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */  | 
34  |  |  | 
35  |  |   unsigned int restarts_to_go;  /* MCUs left in this restart interval */  | 
36  |  |  | 
37  |  |   /* Pointers to statistics areas (these workspaces have image lifespan) */  | 
38  |  |   unsigned char * dc_stats[NUM_ARITH_TBLS];  | 
39  |  |   unsigned char * ac_stats[NUM_ARITH_TBLS];  | 
40  |  |  | 
41  |  |   /* Statistics bin for coding with fixed probability 0.5 */  | 
42  |  |   unsigned char fixed_bin[4];  | 
43  |  | } arith_entropy_decoder;  | 
44  |  |  | 
45  |  | typedef arith_entropy_decoder * arith_entropy_ptr;  | 
46  |  |  | 
47  |  | /* The following two definitions specify the allocation chunk size  | 
48  |  |  * for the statistics area.  | 
49  |  |  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least  | 
50  |  |  * 49 statistics bins for DC, and 245 statistics bins for AC coding.  | 
51  |  |  *  | 
52  |  |  * We use a compact representation with 1 byte per statistics bin,  | 
53  |  |  * thus the numbers directly represent byte sizes.  | 
54  |  |  * This 1 byte per statistics bin contains the meaning of the MPS  | 
55  |  |  * (more probable symbol) in the highest bit (mask 0x80), and the  | 
56  |  |  * index into the probability estimation state machine table  | 
57  |  |  * in the lower bits (mask 0x7F).  | 
58  |  |  */  | 
59  |  |  | 
60  | 0  | #define DC_STAT_BINS 64  | 
61  | 0  | #define AC_STAT_BINS 256  | 
62  |  |  | 
63  |  |  | 
64  |  | LOCAL(int)  | 
65  |  | get_byte (j_decompress_ptr cinfo)  | 
66  |  | /* Read next input byte; we do not support suspension in this module. */  | 
67  | 0  | { | 
68  | 0  |   struct jpeg_source_mgr * src = cinfo->src;  | 
69  |  | 
  | 
70  | 0  |   if (src->bytes_in_buffer == 0)  | 
71  | 0  |     if (! (*src->fill_input_buffer) (cinfo))  | 
72  | 0  |       ERREXIT(cinfo, JERR_CANT_SUSPEND);  | 
73  | 0  |   src->bytes_in_buffer--;  | 
74  | 0  |   return GETJOCTET(*src->next_input_byte++);  | 
75  | 0  | }  | 
76  |  |  | 
77  |  |  | 
78  |  | /*  | 
79  |  |  * The core arithmetic decoding routine (common in JPEG and JBIG).  | 
80  |  |  * This needs to go as fast as possible.  | 
81  |  |  * Machine-dependent optimization facilities  | 
82  |  |  * are not utilized in this portable implementation.  | 
83  |  |  * However, this code should be fairly efficient and  | 
84  |  |  * may be a good base for further optimizations anyway.  | 
85  |  |  *  | 
86  |  |  * Return value is 0 or 1 (binary decision).  | 
87  |  |  *  | 
88  |  |  * Note: I've changed the handling of the code base & bit  | 
89  |  |  * buffer register C compared to other implementations  | 
90  |  |  * based on the standards layout & procedures.  | 
91  |  |  * While it also contains both the actual base of the  | 
92  |  |  * coding interval (16 bits) and the next-bits buffer,  | 
93  |  |  * the cut-point between these two parts is floating  | 
94  |  |  * (instead of fixed) with the bit shift counter CT.  | 
95  |  |  * Thus, we also need only one (variable instead of  | 
96  |  |  * fixed size) shift for the LPS/MPS decision, and  | 
97  |  |  * we can do away with any renormalization update  | 
98  |  |  * of C (except for new data insertion, of course).  | 
99  |  |  *  | 
100  |  |  * I've also introduced a new scheme for accessing  | 
101  |  |  * the probability estimation state machine table,  | 
102  |  |  * derived from Markus Kuhn's JBIG implementation.  | 
103  |  |  */  | 
104  |  |  | 
105  |  | LOCAL(int)  | 
106  |  | arith_decode (j_decompress_ptr cinfo, unsigned char *st)  | 
107  | 0  | { | 
108  | 0  |   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;  | 
109  | 0  |   register unsigned char nl, nm;  | 
110  | 0  |   register INT32 qe, temp;  | 
111  | 0  |   register int sv, data;  | 
112  |  |  | 
113  |  |   /* Renormalization & data input per section D.2.6 */  | 
114  | 0  |   while (e->a < 0x8000L) { | 
115  | 0  |     if (--e->ct < 0) { | 
116  |  |       /* Need to fetch next data byte */  | 
117  | 0  |       if (cinfo->unread_marker)  | 
118  | 0  |   data = 0;   /* stuff zero data */  | 
119  | 0  |       else { | 
120  | 0  |   data = get_byte(cinfo); /* read next input byte */  | 
121  | 0  |   if (data == 0xFF) { /* zero stuff or marker code */ | 
122  | 0  |     do data = get_byte(cinfo);  | 
123  | 0  |     while (data == 0xFF);  /* swallow extra 0xFF bytes */  | 
124  | 0  |     if (data == 0)  | 
125  | 0  |       data = 0xFF; /* discard stuffed zero byte */  | 
126  | 0  |     else { | 
127  |  |       /* Note: Different from the Huffman decoder, hitting  | 
128  |  |        * a marker while processing the compressed data  | 
129  |  |        * segment is legal in arithmetic coding.  | 
130  |  |        * The convention is to supply zero data  | 
131  |  |        * then until decoding is complete.  | 
132  |  |        */  | 
133  | 0  |       cinfo->unread_marker = data;  | 
134  | 0  |       data = 0;  | 
135  | 0  |     }  | 
136  | 0  |   }  | 
137  | 0  |       }  | 
138  | 0  |       e->c = (e->c << 8) | data; /* insert data into C register */  | 
139  | 0  |       if ((e->ct += 8) < 0)  /* update bit shift counter */  | 
140  |  |   /* Need more initial bytes */  | 
141  | 0  |   if (++e->ct == 0)  | 
142  |  |     /* Got 2 initial bytes -> re-init A and exit loop */  | 
143  | 0  |     e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */  | 
144  | 0  |     }  | 
145  | 0  |     e->a <<= 1;  | 
146  | 0  |   }  | 
147  |  |  | 
148  |  |   /* Fetch values from our compact representation of Table D.3(D.2):  | 
149  |  |    * Qe values and probability estimation state machine  | 
150  |  |    */  | 
151  | 0  |   sv = *st;  | 
152  | 0  |   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */  | 
153  | 0  |   nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */  | 
154  | 0  |   nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */  | 
155  |  |  | 
156  |  |   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */  | 
157  | 0  |   temp = e->a - qe;  | 
158  | 0  |   e->a = temp;  | 
159  | 0  |   temp <<= e->ct;  | 
160  | 0  |   if (e->c >= temp) { | 
161  | 0  |     e->c -= temp;  | 
162  |  |     /* Conditional LPS (less probable symbol) exchange */  | 
163  | 0  |     if (e->a < qe) { | 
164  | 0  |       e->a = qe;  | 
165  | 0  |       *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */  | 
166  | 0  |     } else { | 
167  | 0  |       e->a = qe;  | 
168  | 0  |       *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */  | 
169  | 0  |       sv ^= 0x80;   /* Exchange LPS/MPS */  | 
170  | 0  |     }  | 
171  | 0  |   } else if (e->a < 0x8000L) { | 
172  |  |     /* Conditional MPS (more probable symbol) exchange */  | 
173  | 0  |     if (e->a < qe) { | 
174  | 0  |       *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */  | 
175  | 0  |       sv ^= 0x80;   /* Exchange LPS/MPS */  | 
176  | 0  |     } else { | 
177  | 0  |       *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */  | 
178  | 0  |     }  | 
179  | 0  |   }  | 
180  |  | 
  | 
181  | 0  |   return sv >> 7;  | 
182  | 0  | }  | 
183  |  |  | 
184  |  |  | 
185  |  | /*  | 
186  |  |  * Check for a restart marker & resynchronize decoder.  | 
187  |  |  */  | 
188  |  |  | 
189  |  | LOCAL(void)  | 
190  |  | process_restart (j_decompress_ptr cinfo)  | 
191  | 0  | { | 
192  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
193  | 0  |   int ci;  | 
194  | 0  |   jpeg_component_info * compptr;  | 
195  |  |  | 
196  |  |   /* Advance past the RSTn marker */  | 
197  | 0  |   if (! (*cinfo->marker->read_restart_marker) (cinfo))  | 
198  | 0  |     ERREXIT(cinfo, JERR_CANT_SUSPEND);  | 
199  |  |  | 
200  |  |   /* Re-initialize statistics areas */  | 
201  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
202  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
203  | 0  |     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
204  | 0  |       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);  | 
205  |  |       /* Reset DC predictions to 0 */  | 
206  | 0  |       entropy->last_dc_val[ci] = 0;  | 
207  | 0  |       entropy->dc_context[ci] = 0;  | 
208  | 0  |     }  | 
209  | 0  |     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||  | 
210  | 0  |   (cinfo->progressive_mode && cinfo->Ss)) { | 
211  | 0  |       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);  | 
212  | 0  |     }  | 
213  | 0  |   }  | 
214  |  |  | 
215  |  |   /* Reset arithmetic decoding variables */  | 
216  | 0  |   entropy->c = 0;  | 
217  | 0  |   entropy->a = 0;  | 
218  | 0  |   entropy->ct = -16;  /* force reading 2 initial bytes to fill C */  | 
219  |  |  | 
220  |  |   /* Reset restart counter */  | 
221  | 0  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
222  | 0  | }  | 
223  |  |  | 
224  |  |  | 
225  |  | /*  | 
226  |  |  * Arithmetic MCU decoding.  | 
227  |  |  * Each of these routines decodes and returns one MCU's worth of  | 
228  |  |  * arithmetic-compressed coefficients.  | 
229  |  |  * The coefficients are reordered from zigzag order into natural array order,  | 
230  |  |  * but are not dequantized.  | 
231  |  |  *  | 
232  |  |  * The i'th block of the MCU is stored into the block pointed to by  | 
233  |  |  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.  | 
234  |  |  */  | 
235  |  |  | 
236  |  | /*  | 
237  |  |  * MCU decoding for DC initial scan (either spectral selection,  | 
238  |  |  * or first pass of successive approximation).  | 
239  |  |  */  | 
240  |  |  | 
241  |  | METHODDEF(boolean)  | 
242  |  | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
243  | 0  | { | 
244  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
245  | 0  |   JBLOCKROW block;  | 
246  | 0  |   unsigned char *st;  | 
247  | 0  |   int blkn, ci, tbl, sign;  | 
248  | 0  |   int v, m;  | 
249  |  |  | 
250  |  |   /* Process restart marker if needed */  | 
251  | 0  |   if (cinfo->restart_interval) { | 
252  | 0  |     if (entropy->restarts_to_go == 0)  | 
253  | 0  |       process_restart(cinfo);  | 
254  | 0  |     entropy->restarts_to_go--;  | 
255  | 0  |   }  | 
256  |  | 
  | 
257  | 0  |   if (entropy->ct == -1) return TRUE; /* if error do nothing */  | 
258  |  |  | 
259  |  |   /* Outer loop handles each block in the MCU */  | 
260  |  |  | 
261  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
262  | 0  |     block = MCU_data[blkn];  | 
263  | 0  |     ci = cinfo->MCU_membership[blkn];  | 
264  | 0  |     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;  | 
265  |  |  | 
266  |  |     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */  | 
267  |  |  | 
268  |  |     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */  | 
269  | 0  |     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];  | 
270  |  |  | 
271  |  |     /* Figure F.19: Decode_DC_DIFF */  | 
272  | 0  |     if (arith_decode(cinfo, st) == 0)  | 
273  | 0  |       entropy->dc_context[ci] = 0;  | 
274  | 0  |     else { | 
275  |  |       /* Figure F.21: Decoding nonzero value v */  | 
276  |  |       /* Figure F.22: Decoding the sign of v */  | 
277  | 0  |       sign = arith_decode(cinfo, st + 1);  | 
278  | 0  |       st += 2; st += sign;  | 
279  |  |       /* Figure F.23: Decoding the magnitude category of v */  | 
280  | 0  |       if ((m = arith_decode(cinfo, st)) != 0) { | 
281  | 0  |   st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */  | 
282  | 0  |   while (arith_decode(cinfo, st)) { | 
283  | 0  |     if ((m <<= 1) == (int) 0x8000U) { | 
284  | 0  |       WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
285  | 0  |       entropy->ct = -1;     /* magnitude overflow */  | 
286  | 0  |       return TRUE;  | 
287  | 0  |     }  | 
288  | 0  |     st += 1;  | 
289  | 0  |   }  | 
290  | 0  |       }  | 
291  |  |       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */  | 
292  | 0  |       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))  | 
293  | 0  |   entropy->dc_context[ci] = 0;      /* zero diff category */  | 
294  | 0  |       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))  | 
295  | 0  |   entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */  | 
296  | 0  |       else  | 
297  | 0  |   entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */  | 
298  | 0  |       v = m;  | 
299  |  |       /* Figure F.24: Decoding the magnitude bit pattern of v */  | 
300  | 0  |       st += 14;  | 
301  | 0  |       while (m >>= 1)  | 
302  | 0  |   if (arith_decode(cinfo, st)) v |= m;  | 
303  | 0  |       v += 1; if (sign) v = -v;  | 
304  | 0  |       entropy->last_dc_val[ci] += v;  | 
305  | 0  |     }  | 
306  |  |  | 
307  |  |     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */  | 
308  | 0  |     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);  | 
309  | 0  |   }  | 
310  |  |  | 
311  | 0  |   return TRUE;  | 
312  | 0  | }  | 
313  |  |  | 
314  |  |  | 
315  |  | /*  | 
316  |  |  * MCU decoding for AC initial scan (either spectral selection,  | 
317  |  |  * or first pass of successive approximation).  | 
318  |  |  */  | 
319  |  |  | 
320  |  | METHODDEF(boolean)  | 
321  |  | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
322  | 0  | { | 
323  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
324  | 0  |   JBLOCKROW block;  | 
325  | 0  |   unsigned char *st;  | 
326  | 0  |   int tbl, sign, k;  | 
327  | 0  |   int v, m;  | 
328  | 0  |   const int * natural_order;  | 
329  |  |  | 
330  |  |   /* Process restart marker if needed */  | 
331  | 0  |   if (cinfo->restart_interval) { | 
332  | 0  |     if (entropy->restarts_to_go == 0)  | 
333  | 0  |       process_restart(cinfo);  | 
334  | 0  |     entropy->restarts_to_go--;  | 
335  | 0  |   }  | 
336  |  | 
  | 
337  | 0  |   if (entropy->ct == -1) return TRUE; /* if error do nothing */  | 
338  |  |  | 
339  | 0  |   natural_order = cinfo->natural_order;  | 
340  |  |  | 
341  |  |   /* There is always only one block per MCU */  | 
342  | 0  |   block = MCU_data[0];  | 
343  | 0  |   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;  | 
344  |  |  | 
345  |  |   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */  | 
346  |  |  | 
347  |  |   /* Figure F.20: Decode_AC_coefficients */  | 
348  | 0  |   k = cinfo->Ss - 1;  | 
349  | 0  |   do { | 
350  | 0  |     st = entropy->ac_stats[tbl] + 3 * k;  | 
351  | 0  |     if (arith_decode(cinfo, st)) break;   /* EOB flag */  | 
352  | 0  |     for (;;) { | 
353  | 0  |       k++;  | 
354  | 0  |       if (arith_decode(cinfo, st + 1)) break;  | 
355  | 0  |       st += 3;  | 
356  | 0  |       if (k >= cinfo->Se) { | 
357  | 0  |   WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
358  | 0  |   entropy->ct = -1;     /* spectral overflow */  | 
359  | 0  |   return TRUE;  | 
360  | 0  |       }  | 
361  | 0  |     }  | 
362  |  |     /* Figure F.21: Decoding nonzero value v */  | 
363  |  |     /* Figure F.22: Decoding the sign of v */  | 
364  | 0  |     sign = arith_decode(cinfo, entropy->fixed_bin);  | 
365  | 0  |     st += 2;  | 
366  |  |     /* Figure F.23: Decoding the magnitude category of v */  | 
367  | 0  |     if ((m = arith_decode(cinfo, st)) != 0) { | 
368  | 0  |       if (arith_decode(cinfo, st)) { | 
369  | 0  |   m <<= 1;  | 
370  | 0  |   st = entropy->ac_stats[tbl] +  | 
371  | 0  |        (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);  | 
372  | 0  |   while (arith_decode(cinfo, st)) { | 
373  | 0  |     if ((m <<= 1) == (int) 0x8000U) { | 
374  | 0  |       WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
375  | 0  |       entropy->ct = -1;     /* magnitude overflow */  | 
376  | 0  |       return TRUE;  | 
377  | 0  |     }  | 
378  | 0  |     st += 1;  | 
379  | 0  |   }  | 
380  | 0  |       }  | 
381  | 0  |     }  | 
382  | 0  |     v = m;  | 
383  |  |     /* Figure F.24: Decoding the magnitude bit pattern of v */  | 
384  | 0  |     st += 14;  | 
385  | 0  |     while (m >>= 1)  | 
386  | 0  |       if (arith_decode(cinfo, st)) v |= m;  | 
387  | 0  |     v += 1; if (sign) v = -v;  | 
388  |  |     /* Scale and output coefficient in natural (dezigzagged) order */  | 
389  | 0  |     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);  | 
390  | 0  |   } while (k < cinfo->Se);  | 
391  |  |  | 
392  | 0  |   return TRUE;  | 
393  | 0  | }  | 
394  |  |  | 
395  |  |  | 
396  |  | /*  | 
397  |  |  * MCU decoding for DC successive approximation refinement scan.  | 
398  |  |  * Note: we assume such scans can be multi-component,  | 
399  |  |  * although the spec is not very clear on the point.  | 
400  |  |  */  | 
401  |  |  | 
402  |  | METHODDEF(boolean)  | 
403  |  | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
404  | 0  | { | 
405  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
406  | 0  |   unsigned char *st;  | 
407  | 0  |   JCOEF p1;  | 
408  | 0  |   int blkn;  | 
409  |  |  | 
410  |  |   /* Process restart marker if needed */  | 
411  | 0  |   if (cinfo->restart_interval) { | 
412  | 0  |     if (entropy->restarts_to_go == 0)  | 
413  | 0  |       process_restart(cinfo);  | 
414  | 0  |     entropy->restarts_to_go--;  | 
415  | 0  |   }  | 
416  |  | 
  | 
417  | 0  |   st = entropy->fixed_bin;  /* use fixed probability estimation */  | 
418  | 0  |   p1 = 1 << cinfo->Al;    /* 1 in the bit position being coded */  | 
419  |  |  | 
420  |  |   /* Outer loop handles each block in the MCU */  | 
421  |  | 
  | 
422  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
423  |  |     /* Encoded data is simply the next bit of the two's-complement DC value */  | 
424  | 0  |     if (arith_decode(cinfo, st))  | 
425  | 0  |       MCU_data[blkn][0][0] |= p1;  | 
426  | 0  |   }  | 
427  |  | 
  | 
428  | 0  |   return TRUE;  | 
429  | 0  | }  | 
430  |  |  | 
431  |  |  | 
432  |  | /*  | 
433  |  |  * MCU decoding for AC successive approximation refinement scan.  | 
434  |  |  */  | 
435  |  |  | 
436  |  | METHODDEF(boolean)  | 
437  |  | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
438  | 0  | { | 
439  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
440  | 0  |   JBLOCKROW block;  | 
441  | 0  |   JCOEFPTR thiscoef;  | 
442  | 0  |   unsigned char *st;  | 
443  | 0  |   int tbl, k, kex;  | 
444  | 0  |   JCOEF p1, m1;  | 
445  | 0  |   const int * natural_order;  | 
446  |  |  | 
447  |  |   /* Process restart marker if needed */  | 
448  | 0  |   if (cinfo->restart_interval) { | 
449  | 0  |     if (entropy->restarts_to_go == 0)  | 
450  | 0  |       process_restart(cinfo);  | 
451  | 0  |     entropy->restarts_to_go--;  | 
452  | 0  |   }  | 
453  |  | 
  | 
454  | 0  |   if (entropy->ct == -1) return TRUE; /* if error do nothing */  | 
455  |  |  | 
456  | 0  |   natural_order = cinfo->natural_order;  | 
457  |  |  | 
458  |  |   /* There is always only one block per MCU */  | 
459  | 0  |   block = MCU_data[0];  | 
460  | 0  |   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;  | 
461  |  | 
  | 
462  | 0  |   p1 = 1 << cinfo->Al;    /* 1 in the bit position being coded */  | 
463  | 0  |   m1 = -p1;     /* -1 in the bit position being coded */  | 
464  |  |  | 
465  |  |   /* Establish EOBx (previous stage end-of-block) index */  | 
466  | 0  |   kex = cinfo->Se;  | 
467  | 0  |   do { | 
468  | 0  |     if ((*block)[natural_order[kex]]) break;  | 
469  | 0  |   } while (--kex);  | 
470  |  | 
  | 
471  | 0  |   k = cinfo->Ss - 1;  | 
472  | 0  |   do { | 
473  | 0  |     st = entropy->ac_stats[tbl] + 3 * k;  | 
474  | 0  |     if (k >= kex)  | 
475  | 0  |       if (arith_decode(cinfo, st)) break; /* EOB flag */  | 
476  | 0  |     for (;;) { | 
477  | 0  |       thiscoef = *block + natural_order[++k];  | 
478  | 0  |       if (*thiscoef) {       /* previously nonzero coef */ | 
479  | 0  |   if (arith_decode(cinfo, st + 2)) { | 
480  | 0  |     if (*thiscoef < 0)  | 
481  | 0  |       *thiscoef += m1;  | 
482  | 0  |     else  | 
483  | 0  |       *thiscoef += p1;  | 
484  | 0  |   }  | 
485  | 0  |   break;  | 
486  | 0  |       }  | 
487  | 0  |       if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ | 
488  | 0  |   if (arith_decode(cinfo, entropy->fixed_bin))  | 
489  | 0  |     *thiscoef = m1;  | 
490  | 0  |   else  | 
491  | 0  |     *thiscoef = p1;  | 
492  | 0  |   break;  | 
493  | 0  |       }  | 
494  | 0  |       st += 3;  | 
495  | 0  |       if (k >= cinfo->Se) { | 
496  | 0  |   WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
497  | 0  |   entropy->ct = -1;     /* spectral overflow */  | 
498  | 0  |   return TRUE;  | 
499  | 0  |       }  | 
500  | 0  |     }  | 
501  | 0  |   } while (k < cinfo->Se);  | 
502  |  |  | 
503  | 0  |   return TRUE;  | 
504  | 0  | }  | 
505  |  |  | 
506  |  |  | 
507  |  | /*  | 
508  |  |  * Decode one MCU's worth of arithmetic-compressed coefficients.  | 
509  |  |  */  | 
510  |  |  | 
511  |  | METHODDEF(boolean)  | 
512  |  | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)  | 
513  | 0  | { | 
514  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
515  | 0  |   jpeg_component_info * compptr;  | 
516  | 0  |   JBLOCKROW block;  | 
517  | 0  |   unsigned char *st;  | 
518  | 0  |   int blkn, ci, tbl, sign, k;  | 
519  | 0  |   int v, m;  | 
520  | 0  |   const int * natural_order;  | 
521  |  |  | 
522  |  |   /* Process restart marker if needed */  | 
523  | 0  |   if (cinfo->restart_interval) { | 
524  | 0  |     if (entropy->restarts_to_go == 0)  | 
525  | 0  |       process_restart(cinfo);  | 
526  | 0  |     entropy->restarts_to_go--;  | 
527  | 0  |   }  | 
528  |  | 
  | 
529  | 0  |   if (entropy->ct == -1) return TRUE; /* if error do nothing */  | 
530  |  |  | 
531  | 0  |   natural_order = cinfo->natural_order;  | 
532  |  |  | 
533  |  |   /* Outer loop handles each block in the MCU */  | 
534  |  | 
  | 
535  | 0  |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
536  | 0  |     block = MCU_data[blkn];  | 
537  | 0  |     ci = cinfo->MCU_membership[blkn];  | 
538  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
539  |  |  | 
540  |  |     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */  | 
541  |  | 
  | 
542  | 0  |     tbl = compptr->dc_tbl_no;  | 
543  |  |  | 
544  |  |     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */  | 
545  | 0  |     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];  | 
546  |  |  | 
547  |  |     /* Figure F.19: Decode_DC_DIFF */  | 
548  | 0  |     if (arith_decode(cinfo, st) == 0)  | 
549  | 0  |       entropy->dc_context[ci] = 0;  | 
550  | 0  |     else { | 
551  |  |       /* Figure F.21: Decoding nonzero value v */  | 
552  |  |       /* Figure F.22: Decoding the sign of v */  | 
553  | 0  |       sign = arith_decode(cinfo, st + 1);  | 
554  | 0  |       st += 2; st += sign;  | 
555  |  |       /* Figure F.23: Decoding the magnitude category of v */  | 
556  | 0  |       if ((m = arith_decode(cinfo, st)) != 0) { | 
557  | 0  |   st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */  | 
558  | 0  |   while (arith_decode(cinfo, st)) { | 
559  | 0  |     if ((m <<= 1) == (int) 0x8000U) { | 
560  | 0  |       WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
561  | 0  |       entropy->ct = -1;     /* magnitude overflow */  | 
562  | 0  |       return TRUE;  | 
563  | 0  |     }  | 
564  | 0  |     st += 1;  | 
565  | 0  |   }  | 
566  | 0  |       }  | 
567  |  |       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */  | 
568  | 0  |       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))  | 
569  | 0  |   entropy->dc_context[ci] = 0;      /* zero diff category */  | 
570  | 0  |       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))  | 
571  | 0  |   entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */  | 
572  | 0  |       else  | 
573  | 0  |   entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */  | 
574  | 0  |       v = m;  | 
575  |  |       /* Figure F.24: Decoding the magnitude bit pattern of v */  | 
576  | 0  |       st += 14;  | 
577  | 0  |       while (m >>= 1)  | 
578  | 0  |   if (arith_decode(cinfo, st)) v |= m;  | 
579  | 0  |       v += 1; if (sign) v = -v;  | 
580  | 0  |       entropy->last_dc_val[ci] += v;  | 
581  | 0  |     }  | 
582  |  |  | 
583  | 0  |     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];  | 
584  |  |  | 
585  |  |     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */  | 
586  |  | 
  | 
587  | 0  |     if (cinfo->lim_Se == 0) continue;  | 
588  | 0  |     tbl = compptr->ac_tbl_no;  | 
589  | 0  |     k = 0;  | 
590  |  |  | 
591  |  |     /* Figure F.20: Decode_AC_coefficients */  | 
592  | 0  |     do { | 
593  | 0  |       st = entropy->ac_stats[tbl] + 3 * k;  | 
594  | 0  |       if (arith_decode(cinfo, st)) break; /* EOB flag */  | 
595  | 0  |       for (;;) { | 
596  | 0  |   k++;  | 
597  | 0  |   if (arith_decode(cinfo, st + 1)) break;  | 
598  | 0  |   st += 3;  | 
599  | 0  |   if (k >= cinfo->lim_Se) { | 
600  | 0  |     WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
601  | 0  |     entropy->ct = -1;     /* spectral overflow */  | 
602  | 0  |     return TRUE;  | 
603  | 0  |   }  | 
604  | 0  |       }  | 
605  |  |       /* Figure F.21: Decoding nonzero value v */  | 
606  |  |       /* Figure F.22: Decoding the sign of v */  | 
607  | 0  |       sign = arith_decode(cinfo, entropy->fixed_bin);  | 
608  | 0  |       st += 2;  | 
609  |  |       /* Figure F.23: Decoding the magnitude category of v */  | 
610  | 0  |       if ((m = arith_decode(cinfo, st)) != 0) { | 
611  | 0  |   if (arith_decode(cinfo, st)) { | 
612  | 0  |     m <<= 1;  | 
613  | 0  |     st = entropy->ac_stats[tbl] +  | 
614  | 0  |          (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);  | 
615  | 0  |     while (arith_decode(cinfo, st)) { | 
616  | 0  |       if ((m <<= 1) == (int) 0x8000U) { | 
617  | 0  |         WARNMS(cinfo, JWRN_ARITH_BAD_CODE);  | 
618  | 0  |         entropy->ct = -1;     /* magnitude overflow */  | 
619  | 0  |         return TRUE;  | 
620  | 0  |       }  | 
621  | 0  |       st += 1;  | 
622  | 0  |     }  | 
623  | 0  |   }  | 
624  | 0  |       }  | 
625  | 0  |       v = m;  | 
626  |  |       /* Figure F.24: Decoding the magnitude bit pattern of v */  | 
627  | 0  |       st += 14;  | 
628  | 0  |       while (m >>= 1)  | 
629  | 0  |   if (arith_decode(cinfo, st)) v |= m;  | 
630  | 0  |       v += 1; if (sign) v = -v;  | 
631  | 0  |       (*block)[natural_order[k]] = (JCOEF) v;  | 
632  | 0  |     } while (k < cinfo->lim_Se);  | 
633  | 0  |   }  | 
634  |  |  | 
635  | 0  |   return TRUE;  | 
636  | 0  | }  | 
637  |  |  | 
638  |  |  | 
639  |  | /*  | 
640  |  |  * Initialize for an arithmetic-compressed scan.  | 
641  |  |  */  | 
642  |  |  | 
643  |  | METHODDEF(void)  | 
644  |  | start_pass (j_decompress_ptr cinfo)  | 
645  | 0  | { | 
646  | 0  |   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;  | 
647  | 0  |   int ci, tbl;  | 
648  | 0  |   jpeg_component_info * compptr;  | 
649  |  | 
  | 
650  | 0  |   if (cinfo->progressive_mode) { | 
651  |  |     /* Validate progressive scan parameters */  | 
652  | 0  |     if (cinfo->Ss == 0) { | 
653  | 0  |       if (cinfo->Se != 0)  | 
654  | 0  |   goto bad;  | 
655  | 0  |     } else { | 
656  |  |       /* need not check Ss/Se < 0 since they came from unsigned bytes */  | 
657  | 0  |       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)  | 
658  | 0  |   goto bad;  | 
659  |  |       /* AC scans may have only one component */  | 
660  | 0  |       if (cinfo->comps_in_scan != 1)  | 
661  | 0  |   goto bad;  | 
662  | 0  |     }  | 
663  | 0  |     if (cinfo->Ah != 0) { | 
664  |  |       /* Successive approximation refinement scan: must have Al = Ah-1. */  | 
665  | 0  |       if (cinfo->Ah-1 != cinfo->Al)  | 
666  | 0  |   goto bad;  | 
667  | 0  |     }  | 
668  | 0  |     if (cinfo->Al > 13) { /* need not check for < 0 */ | 
669  | 0  |       bad:  | 
670  | 0  |       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,  | 
671  | 0  |          cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);  | 
672  | 0  |     }  | 
673  |  |     /* Update progression status, and verify that scan order is legal.  | 
674  |  |      * Note that inter-scan inconsistencies are treated as warnings  | 
675  |  |      * not fatal errors ... not clear if this is right way to behave.  | 
676  |  |      */  | 
677  | 0  |     for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
678  | 0  |       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;  | 
679  | 0  |       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];  | 
680  | 0  |       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */  | 
681  | 0  |   WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);  | 
682  | 0  |       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | 
683  | 0  |   int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];  | 
684  | 0  |   if (cinfo->Ah != expected)  | 
685  | 0  |     WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);  | 
686  | 0  |   coef_bit_ptr[coefi] = cinfo->Al;  | 
687  | 0  |       }  | 
688  | 0  |     }  | 
689  |  |     /* Select MCU decoding routine */  | 
690  | 0  |     if (cinfo->Ah == 0) { | 
691  | 0  |       if (cinfo->Ss == 0)  | 
692  | 0  |   entropy->pub.decode_mcu = decode_mcu_DC_first;  | 
693  | 0  |       else  | 
694  | 0  |   entropy->pub.decode_mcu = decode_mcu_AC_first;  | 
695  | 0  |     } else { | 
696  | 0  |       if (cinfo->Ss == 0)  | 
697  | 0  |   entropy->pub.decode_mcu = decode_mcu_DC_refine;  | 
698  | 0  |       else  | 
699  | 0  |   entropy->pub.decode_mcu = decode_mcu_AC_refine;  | 
700  | 0  |     }  | 
701  | 0  |   } else { | 
702  |  |     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.  | 
703  |  |      * This ought to be an error condition, but we make it a warning.  | 
704  |  |      */  | 
705  | 0  |     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||  | 
706  | 0  |   (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))  | 
707  | 0  |       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);  | 
708  |  |     /* Select MCU decoding routine */  | 
709  | 0  |     entropy->pub.decode_mcu = decode_mcu;  | 
710  | 0  |   }  | 
711  |  |  | 
712  |  |   /* Allocate & initialize requested statistics areas */  | 
713  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
714  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
715  | 0  |     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | 
716  | 0  |       tbl = compptr->dc_tbl_no;  | 
717  | 0  |       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)  | 
718  | 0  |   ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);  | 
719  | 0  |       if (entropy->dc_stats[tbl] == NULL)  | 
720  | 0  |   entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)  | 
721  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);  | 
722  | 0  |       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);  | 
723  |  |       /* Initialize DC predictions to 0 */  | 
724  | 0  |       entropy->last_dc_val[ci] = 0;  | 
725  | 0  |       entropy->dc_context[ci] = 0;  | 
726  | 0  |     }  | 
727  | 0  |     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||  | 
728  | 0  |   (cinfo->progressive_mode && cinfo->Ss)) { | 
729  | 0  |       tbl = compptr->ac_tbl_no;  | 
730  | 0  |       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)  | 
731  | 0  |   ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);  | 
732  | 0  |       if (entropy->ac_stats[tbl] == NULL)  | 
733  | 0  |   entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)  | 
734  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);  | 
735  | 0  |       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);  | 
736  | 0  |     }  | 
737  | 0  |   }  | 
738  |  |  | 
739  |  |   /* Initialize arithmetic decoding variables */  | 
740  | 0  |   entropy->c = 0;  | 
741  | 0  |   entropy->a = 0;  | 
742  | 0  |   entropy->ct = -16;  /* force reading 2 initial bytes to fill C */  | 
743  |  |  | 
744  |  |   /* Initialize restart counter */  | 
745  | 0  |   entropy->restarts_to_go = cinfo->restart_interval;  | 
746  | 0  | }  | 
747  |  |  | 
748  |  |  | 
749  |  | /*  | 
750  |  |  * Finish up at the end of an arithmetic-compressed scan.  | 
751  |  |  */  | 
752  |  |  | 
753  |  | METHODDEF(void)  | 
754  |  | finish_pass (j_decompress_ptr cinfo)  | 
755  | 0  | { | 
756  |  |   /* no work necessary here */  | 
757  | 0  | }  | 
758  |  |  | 
759  |  |  | 
760  |  | /*  | 
761  |  |  * Module initialization routine for arithmetic entropy decoding.  | 
762  |  |  */  | 
763  |  |  | 
764  |  | GLOBAL(void)  | 
765  |  | jinit_arith_decoder (j_decompress_ptr cinfo)  | 
766  | 0  | { | 
767  | 0  |   arith_entropy_ptr entropy;  | 
768  | 0  |   int i;  | 
769  |  | 
  | 
770  | 0  |   entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)  | 
771  | 0  |     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder));  | 
772  | 0  |   cinfo->entropy = &entropy->pub;  | 
773  | 0  |   entropy->pub.start_pass = start_pass;  | 
774  | 0  |   entropy->pub.finish_pass = finish_pass;  | 
775  |  |  | 
776  |  |   /* Mark tables unallocated */  | 
777  | 0  |   for (i = 0; i < NUM_ARITH_TBLS; i++) { | 
778  | 0  |     entropy->dc_stats[i] = NULL;  | 
779  | 0  |     entropy->ac_stats[i] = NULL;  | 
780  | 0  |   }  | 
781  |  |  | 
782  |  |   /* Initialize index for fixed probability estimation */  | 
783  | 0  |   entropy->fixed_bin[0] = 113;  | 
784  |  | 
  | 
785  | 0  |   if (cinfo->progressive_mode) { | 
786  |  |     /* Create progression status table */  | 
787  | 0  |     int *coef_bit_ptr, ci;  | 
788  | 0  |     cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)  | 
789  | 0  |       ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
790  | 0  |        cinfo->num_components * DCTSIZE2 * SIZEOF(int));  | 
791  | 0  |     coef_bit_ptr = & cinfo->coef_bits[0][0];  | 
792  | 0  |     for (ci = 0; ci < cinfo->num_components; ci++)   | 
793  | 0  |       for (i = 0; i < DCTSIZE2; i++)  | 
794  | 0  |   *coef_bit_ptr++ = -1;  | 
795  | 0  |   }  | 
796  | 0  | }  |