/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jdcoefct.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jdcoefct.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1994-1997, Thomas G. Lane.  | 
5  |  |  * Modified 2002-2011 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains the coefficient buffer controller for decompression.  | 
10  |  |  * This controller is the top level of the JPEG decompressor proper.  | 
11  |  |  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.  | 
12  |  |  *  | 
13  |  |  * In buffered-image mode, this controller is the interface between  | 
14  |  |  * input-oriented processing and output-oriented processing.  | 
15  |  |  * Also, the input side (only) is used when reading a file for transcoding.  | 
16  |  |  */  | 
17  |  |  | 
18  |  | #define JPEG_INTERNALS  | 
19  |  | #include "jinclude.h"  | 
20  |  | #include "jpeglib.h"  | 
21  |  |  | 
22  |  | /* Block smoothing is only applicable for progressive JPEG, so: */  | 
23  |  | #ifndef D_PROGRESSIVE_SUPPORTED  | 
24  |  | #undef BLOCK_SMOOTHING_SUPPORTED  | 
25  |  | #endif  | 
26  |  |  | 
27  |  | /* Private buffer controller object */  | 
28  |  |  | 
29  |  | typedef struct { | 
30  |  |   struct jpeg_d_coef_controller pub; /* public fields */  | 
31  |  |  | 
32  |  |   /* These variables keep track of the current location of the input side. */  | 
33  |  |   /* cinfo->input_iMCU_row is also used for this. */  | 
34  |  |   JDIMENSION MCU_ctr;   /* counts MCUs processed in current row */  | 
35  |  |   int MCU_vert_offset;    /* counts MCU rows within iMCU row */  | 
36  |  |   int MCU_rows_per_iMCU_row;  /* number of such rows needed */  | 
37  |  |  | 
38  |  |   /* The output side's location is represented by cinfo->output_iMCU_row. */  | 
39  |  |  | 
40  |  |   /* In single-pass modes, it's sufficient to buffer just one MCU.  | 
41  |  |    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,  | 
42  |  |    * and let the entropy decoder write into that workspace each time.  | 
43  |  |    * (On 80x86, the workspace is FAR even though it's not really very big;  | 
44  |  |    * this is to keep the module interfaces unchanged when a large coefficient  | 
45  |  |    * buffer is necessary.)  | 
46  |  |    * In multi-pass modes, this array points to the current MCU's blocks  | 
47  |  |    * within the virtual arrays; it is used only by the input side.  | 
48  |  |    */  | 
49  |  |   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];  | 
50  |  |  | 
51  |  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
52  |  |   /* In multi-pass modes, we need a virtual block array for each component. */  | 
53  |  |   jvirt_barray_ptr whole_image[MAX_COMPONENTS];  | 
54  |  | #endif  | 
55  |  |  | 
56  |  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
57  |  |   /* When doing block smoothing, we latch coefficient Al values here */  | 
58  |  |   int * coef_bits_latch;  | 
59  | 0  | #define SAVED_COEFS  6    /* we save coef_bits[0..5] */  | 
60  |  | #endif  | 
61  |  | } my_coef_controller;  | 
62  |  |  | 
63  |  | typedef my_coef_controller * my_coef_ptr;  | 
64  |  |  | 
65  |  | /* Forward declarations */  | 
66  |  | METHODDEF(int) decompress_onepass  | 
67  |  |   JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));  | 
68  |  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
69  |  | METHODDEF(int) decompress_data  | 
70  |  |   JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));  | 
71  |  | #endif  | 
72  |  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
73  |  | LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));  | 
74  |  | METHODDEF(int) decompress_smooth_data  | 
75  |  |   JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));  | 
76  |  | #endif  | 
77  |  |  | 
78  |  |  | 
79  |  | LOCAL(void)  | 
80  |  | start_iMCU_row (j_decompress_ptr cinfo)  | 
81  |  | /* Reset within-iMCU-row counters for a new row (input side) */  | 
82  | 0  | { | 
83  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
84  |  |  | 
85  |  |   /* In an interleaved scan, an MCU row is the same as an iMCU row.  | 
86  |  |    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.  | 
87  |  |    * But at the bottom of the image, process only what's left.  | 
88  |  |    */  | 
89  | 0  |   if (cinfo->comps_in_scan > 1) { | 
90  | 0  |     coef->MCU_rows_per_iMCU_row = 1;  | 
91  | 0  |   } else { | 
92  | 0  |     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))  | 
93  | 0  |       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;  | 
94  | 0  |     else  | 
95  | 0  |       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;  | 
96  | 0  |   }  | 
97  |  | 
  | 
98  | 0  |   coef->MCU_ctr = 0;  | 
99  | 0  |   coef->MCU_vert_offset = 0;  | 
100  | 0  | }  | 
101  |  |  | 
102  |  |  | 
103  |  | /*  | 
104  |  |  * Initialize for an input processing pass.  | 
105  |  |  */  | 
106  |  |  | 
107  |  | METHODDEF(void)  | 
108  |  | start_input_pass (j_decompress_ptr cinfo)  | 
109  | 0  | { | 
110  | 0  |   cinfo->input_iMCU_row = 0;  | 
111  | 0  |   start_iMCU_row(cinfo);  | 
112  | 0  | }  | 
113  |  |  | 
114  |  |  | 
115  |  | /*  | 
116  |  |  * Initialize for an output processing pass.  | 
117  |  |  */  | 
118  |  |  | 
119  |  | METHODDEF(void)  | 
120  |  | start_output_pass (j_decompress_ptr cinfo)  | 
121  | 0  | { | 
122  | 0  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
123  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
124  |  |  | 
125  |  |   /* If multipass, check to see whether to use block smoothing on this pass */  | 
126  | 0  |   if (coef->pub.coef_arrays != NULL) { | 
127  | 0  |     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))  | 
128  | 0  |       coef->pub.decompress_data = decompress_smooth_data;  | 
129  | 0  |     else  | 
130  | 0  |       coef->pub.decompress_data = decompress_data;  | 
131  | 0  |   }  | 
132  | 0  | #endif  | 
133  | 0  |   cinfo->output_iMCU_row = 0;  | 
134  | 0  | }  | 
135  |  |  | 
136  |  |  | 
137  |  | /*  | 
138  |  |  * Decompress and return some data in the single-pass case.  | 
139  |  |  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | 
140  |  |  * Input and output must run in lockstep since we have only a one-MCU buffer.  | 
141  |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.  | 
142  |  |  *  | 
143  |  |  * NB: output_buf contains a plane for each component in image,  | 
144  |  |  * which we index according to the component's SOF position.  | 
145  |  |  */  | 
146  |  |  | 
147  |  | METHODDEF(int)  | 
148  |  | decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)  | 
149  | 0  | { | 
150  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
151  | 0  |   JDIMENSION MCU_col_num; /* index of current MCU within row */  | 
152  | 0  |   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;  | 
153  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
154  | 0  |   int blkn, ci, xindex, yindex, yoffset, useful_width;  | 
155  | 0  |   JSAMPARRAY output_ptr;  | 
156  | 0  |   JDIMENSION start_col, output_col;  | 
157  | 0  |   jpeg_component_info *compptr;  | 
158  | 0  |   inverse_DCT_method_ptr inverse_DCT;  | 
159  |  |  | 
160  |  |   /* Loop to process as much as one whole iMCU row */  | 
161  | 0  |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;  | 
162  | 0  |        yoffset++) { | 
163  | 0  |     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;  | 
164  | 0  |    MCU_col_num++) { | 
165  |  |       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */  | 
166  | 0  |       if (cinfo->lim_Se) /* can bypass in DC only case */  | 
167  | 0  |   FMEMZERO((void FAR *) coef->MCU_buffer[0],  | 
168  | 0  |      (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));  | 
169  | 0  |       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | 
170  |  |   /* Suspension forced; update state counters and exit */  | 
171  | 0  |   coef->MCU_vert_offset = yoffset;  | 
172  | 0  |   coef->MCU_ctr = MCU_col_num;  | 
173  | 0  |   return JPEG_SUSPENDED;  | 
174  | 0  |       }  | 
175  |  |       /* Determine where data should go in output_buf and do the IDCT thing.  | 
176  |  |        * We skip dummy blocks at the right and bottom edges (but blkn gets  | 
177  |  |        * incremented past them!).  Note the inner loop relies on having  | 
178  |  |        * allocated the MCU_buffer[] blocks sequentially.  | 
179  |  |        */  | 
180  | 0  |       blkn = 0;     /* index of current DCT block within MCU */  | 
181  | 0  |       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
182  | 0  |   compptr = cinfo->cur_comp_info[ci];  | 
183  |  |   /* Don't bother to IDCT an uninteresting component. */  | 
184  | 0  |   if (! compptr->component_needed) { | 
185  | 0  |     blkn += compptr->MCU_blocks;  | 
186  | 0  |     continue;  | 
187  | 0  |   }  | 
188  | 0  |   inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];  | 
189  | 0  |   useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width  | 
190  | 0  |                 : compptr->last_col_width;  | 
191  | 0  |   output_ptr = output_buf[compptr->component_index] +  | 
192  | 0  |     yoffset * compptr->DCT_v_scaled_size;  | 
193  | 0  |   start_col = MCU_col_num * compptr->MCU_sample_width;  | 
194  | 0  |   for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
195  | 0  |     if (cinfo->input_iMCU_row < last_iMCU_row ||  | 
196  | 0  |         yoffset+yindex < compptr->last_row_height) { | 
197  | 0  |       output_col = start_col;  | 
198  | 0  |       for (xindex = 0; xindex < useful_width; xindex++) { | 
199  | 0  |         (*inverse_DCT) (cinfo, compptr,  | 
200  | 0  |             (JCOEFPTR) coef->MCU_buffer[blkn+xindex],  | 
201  | 0  |             output_ptr, output_col);  | 
202  | 0  |         output_col += compptr->DCT_h_scaled_size;  | 
203  | 0  |       }  | 
204  | 0  |     }  | 
205  | 0  |     blkn += compptr->MCU_width;  | 
206  | 0  |     output_ptr += compptr->DCT_v_scaled_size;  | 
207  | 0  |   }  | 
208  | 0  |       }  | 
209  | 0  |     }  | 
210  |  |     /* Completed an MCU row, but perhaps not an iMCU row */  | 
211  | 0  |     coef->MCU_ctr = 0;  | 
212  | 0  |   }  | 
213  |  |   /* Completed the iMCU row, advance counters for next one */  | 
214  | 0  |   cinfo->output_iMCU_row++;  | 
215  | 0  |   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | 
216  | 0  |     start_iMCU_row(cinfo);  | 
217  | 0  |     return JPEG_ROW_COMPLETED;  | 
218  | 0  |   }  | 
219  |  |   /* Completed the scan */  | 
220  | 0  |   (*cinfo->inputctl->finish_input_pass) (cinfo);  | 
221  | 0  |   return JPEG_SCAN_COMPLETED;  | 
222  | 0  | }  | 
223  |  |  | 
224  |  |  | 
225  |  | /*  | 
226  |  |  * Dummy consume-input routine for single-pass operation.  | 
227  |  |  */  | 
228  |  |  | 
229  |  | METHODDEF(int)  | 
230  |  | dummy_consume_data (j_decompress_ptr cinfo)  | 
231  | 0  | { | 
232  | 0  |   return JPEG_SUSPENDED; /* Always indicate nothing was done */  | 
233  | 0  | }  | 
234  |  |  | 
235  |  |  | 
236  |  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
237  |  |  | 
238  |  | /*  | 
239  |  |  * Consume input data and store it in the full-image coefficient buffer.  | 
240  |  |  * We read as much as one fully interleaved MCU row ("iMCU" row) per call, | 
241  |  |  * ie, v_samp_factor block rows for each component in the scan.  | 
242  |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.  | 
243  |  |  */  | 
244  |  |  | 
245  |  | METHODDEF(int)  | 
246  |  | consume_data (j_decompress_ptr cinfo)  | 
247  | 0  | { | 
248  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
249  | 0  |   JDIMENSION MCU_col_num; /* index of current MCU within row */  | 
250  | 0  |   int blkn, ci, xindex, yindex, yoffset;  | 
251  | 0  |   JDIMENSION start_col;  | 
252  | 0  |   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];  | 
253  | 0  |   JBLOCKROW buffer_ptr;  | 
254  | 0  |   jpeg_component_info *compptr;  | 
255  |  |  | 
256  |  |   /* Align the virtual buffers for the components used in this scan. */  | 
257  | 0  |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
258  | 0  |     compptr = cinfo->cur_comp_info[ci];  | 
259  | 0  |     buffer[ci] = (*cinfo->mem->access_virt_barray)  | 
260  | 0  |       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],  | 
261  | 0  |        cinfo->input_iMCU_row * compptr->v_samp_factor,  | 
262  | 0  |        (JDIMENSION) compptr->v_samp_factor, TRUE);  | 
263  |  |     /* Note: entropy decoder expects buffer to be zeroed,  | 
264  |  |      * but this is handled automatically by the memory manager  | 
265  |  |      * because we requested a pre-zeroed array.  | 
266  |  |      */  | 
267  | 0  |   }  | 
268  |  |  | 
269  |  |   /* Loop to process one whole iMCU row */  | 
270  | 0  |   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;  | 
271  | 0  |        yoffset++) { | 
272  | 0  |     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;  | 
273  | 0  |    MCU_col_num++) { | 
274  |  |       /* Construct list of pointers to DCT blocks belonging to this MCU */  | 
275  | 0  |       blkn = 0;     /* index of current DCT block within MCU */  | 
276  | 0  |       for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
277  | 0  |   compptr = cinfo->cur_comp_info[ci];  | 
278  | 0  |   start_col = MCU_col_num * compptr->MCU_width;  | 
279  | 0  |   for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | 
280  | 0  |     buffer_ptr = buffer[ci][yindex+yoffset] + start_col;  | 
281  | 0  |     for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | 
282  | 0  |       coef->MCU_buffer[blkn++] = buffer_ptr++;  | 
283  | 0  |     }  | 
284  | 0  |   }  | 
285  | 0  |       }  | 
286  |  |       /* Try to fetch the MCU. */  | 
287  | 0  |       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | 
288  |  |   /* Suspension forced; update state counters and exit */  | 
289  | 0  |   coef->MCU_vert_offset = yoffset;  | 
290  | 0  |   coef->MCU_ctr = MCU_col_num;  | 
291  | 0  |   return JPEG_SUSPENDED;  | 
292  | 0  |       }  | 
293  | 0  |     }  | 
294  |  |     /* Completed an MCU row, but perhaps not an iMCU row */  | 
295  | 0  |     coef->MCU_ctr = 0;  | 
296  | 0  |   }  | 
297  |  |   /* Completed the iMCU row, advance counters for next one */  | 
298  | 0  |   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | 
299  | 0  |     start_iMCU_row(cinfo);  | 
300  | 0  |     return JPEG_ROW_COMPLETED;  | 
301  | 0  |   }  | 
302  |  |   /* Completed the scan */  | 
303  | 0  |   (*cinfo->inputctl->finish_input_pass) (cinfo);  | 
304  | 0  |   return JPEG_SCAN_COMPLETED;  | 
305  | 0  | }  | 
306  |  |  | 
307  |  |  | 
308  |  | /*  | 
309  |  |  * Decompress and return some data in the multi-pass case.  | 
310  |  |  * Always attempts to emit one fully interleaved MCU row ("iMCU" row). | 
311  |  |  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.  | 
312  |  |  *  | 
313  |  |  * NB: output_buf contains a plane for each component in image.  | 
314  |  |  */  | 
315  |  |  | 
316  |  | METHODDEF(int)  | 
317  |  | decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)  | 
318  | 0  | { | 
319  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
320  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
321  | 0  |   JDIMENSION block_num;  | 
322  | 0  |   int ci, block_row, block_rows;  | 
323  | 0  |   JBLOCKARRAY buffer;  | 
324  | 0  |   JBLOCKROW buffer_ptr;  | 
325  | 0  |   JSAMPARRAY output_ptr;  | 
326  | 0  |   JDIMENSION output_col;  | 
327  | 0  |   jpeg_component_info *compptr;  | 
328  | 0  |   inverse_DCT_method_ptr inverse_DCT;  | 
329  |  |  | 
330  |  |   /* Force some input to be done if we are getting ahead of the input. */  | 
331  | 0  |   while (cinfo->input_scan_number < cinfo->output_scan_number ||  | 
332  | 0  |    (cinfo->input_scan_number == cinfo->output_scan_number &&  | 
333  | 0  |     cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | 
334  | 0  |     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)  | 
335  | 0  |       return JPEG_SUSPENDED;  | 
336  | 0  |   }  | 
337  |  |  | 
338  |  |   /* OK, output from the virtual arrays. */  | 
339  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
340  | 0  |        ci++, compptr++) { | 
341  |  |     /* Don't bother to IDCT an uninteresting component. */  | 
342  | 0  |     if (! compptr->component_needed)  | 
343  | 0  |       continue;  | 
344  |  |     /* Align the virtual buffer for this component. */  | 
345  | 0  |     buffer = (*cinfo->mem->access_virt_barray)  | 
346  | 0  |       ((j_common_ptr) cinfo, coef->whole_image[ci],  | 
347  | 0  |        cinfo->output_iMCU_row * compptr->v_samp_factor,  | 
348  | 0  |        (JDIMENSION) compptr->v_samp_factor, FALSE);  | 
349  |  |     /* Count non-dummy DCT block rows in this iMCU row. */  | 
350  | 0  |     if (cinfo->output_iMCU_row < last_iMCU_row)  | 
351  | 0  |       block_rows = compptr->v_samp_factor;  | 
352  | 0  |     else { | 
353  |  |       /* NB: can't use last_row_height here; it is input-side-dependent! */  | 
354  | 0  |       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);  | 
355  | 0  |       if (block_rows == 0) block_rows = compptr->v_samp_factor;  | 
356  | 0  |     }  | 
357  | 0  |     inverse_DCT = cinfo->idct->inverse_DCT[ci];  | 
358  | 0  |     output_ptr = output_buf[ci];  | 
359  |  |     /* Loop over all DCT blocks to be processed. */  | 
360  | 0  |     for (block_row = 0; block_row < block_rows; block_row++) { | 
361  | 0  |       buffer_ptr = buffer[block_row];  | 
362  | 0  |       output_col = 0;  | 
363  | 0  |       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { | 
364  | 0  |   (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,  | 
365  | 0  |       output_ptr, output_col);  | 
366  | 0  |   buffer_ptr++;  | 
367  | 0  |   output_col += compptr->DCT_h_scaled_size;  | 
368  | 0  |       }  | 
369  | 0  |       output_ptr += compptr->DCT_v_scaled_size;  | 
370  | 0  |     }  | 
371  | 0  |   }  | 
372  |  | 
  | 
373  | 0  |   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)  | 
374  | 0  |     return JPEG_ROW_COMPLETED;  | 
375  | 0  |   return JPEG_SCAN_COMPLETED;  | 
376  | 0  | }  | 
377  |  |  | 
378  |  | #endif /* D_MULTISCAN_FILES_SUPPORTED */  | 
379  |  |  | 
380  |  |  | 
381  |  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
382  |  |  | 
383  |  | /*  | 
384  |  |  * This code applies interblock smoothing as described by section K.8  | 
385  |  |  * of the JPEG standard: the first 5 AC coefficients are estimated from  | 
386  |  |  * the DC values of a DCT block and its 8 neighboring blocks.  | 
387  |  |  * We apply smoothing only for progressive JPEG decoding, and only if  | 
388  |  |  * the coefficients it can estimate are not yet known to full precision.  | 
389  |  |  */  | 
390  |  |  | 
391  |  | /* Natural-order array positions of the first 5 zigzag-order coefficients */  | 
392  | 0  | #define Q01_POS  1  | 
393  | 0  | #define Q10_POS  8  | 
394  | 0  | #define Q20_POS  16  | 
395  | 0  | #define Q11_POS  9  | 
396  | 0  | #define Q02_POS  2  | 
397  |  |  | 
398  |  | /*  | 
399  |  |  * Determine whether block smoothing is applicable and safe.  | 
400  |  |  * We also latch the current states of the coef_bits[] entries for the  | 
401  |  |  * AC coefficients; otherwise, if the input side of the decompressor  | 
402  |  |  * advances into a new scan, we might think the coefficients are known  | 
403  |  |  * more accurately than they really are.  | 
404  |  |  */  | 
405  |  |  | 
406  |  | LOCAL(boolean)  | 
407  |  | smoothing_ok (j_decompress_ptr cinfo)  | 
408  | 0  | { | 
409  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
410  | 0  |   boolean smoothing_useful = FALSE;  | 
411  | 0  |   int ci, coefi;  | 
412  | 0  |   jpeg_component_info *compptr;  | 
413  | 0  |   JQUANT_TBL * qtable;  | 
414  | 0  |   int * coef_bits;  | 
415  | 0  |   int * coef_bits_latch;  | 
416  |  | 
  | 
417  | 0  |   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)  | 
418  | 0  |     return FALSE;  | 
419  |  |  | 
420  |  |   /* Allocate latch area if not already done */  | 
421  | 0  |   if (coef->coef_bits_latch == NULL)  | 
422  | 0  |     coef->coef_bits_latch = (int *)  | 
423  | 0  |       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
424  | 0  |           cinfo->num_components *  | 
425  | 0  |           (SAVED_COEFS * SIZEOF(int)));  | 
426  | 0  |   coef_bits_latch = coef->coef_bits_latch;  | 
427  |  | 
  | 
428  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
429  | 0  |        ci++, compptr++) { | 
430  |  |     /* All components' quantization values must already be latched. */  | 
431  | 0  |     if ((qtable = compptr->quant_table) == NULL)  | 
432  | 0  |       return FALSE;  | 
433  |  |     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */  | 
434  | 0  |     if (qtable->quantval[0] == 0 ||  | 
435  | 0  |   qtable->quantval[Q01_POS] == 0 ||  | 
436  | 0  |   qtable->quantval[Q10_POS] == 0 ||  | 
437  | 0  |   qtable->quantval[Q20_POS] == 0 ||  | 
438  | 0  |   qtable->quantval[Q11_POS] == 0 ||  | 
439  | 0  |   qtable->quantval[Q02_POS] == 0)  | 
440  | 0  |       return FALSE;  | 
441  |  |     /* DC values must be at least partly known for all components. */  | 
442  | 0  |     coef_bits = cinfo->coef_bits[ci];  | 
443  | 0  |     if (coef_bits[0] < 0)  | 
444  | 0  |       return FALSE;  | 
445  |  |     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */  | 
446  | 0  |     for (coefi = 1; coefi <= 5; coefi++) { | 
447  | 0  |       coef_bits_latch[coefi] = coef_bits[coefi];  | 
448  | 0  |       if (coef_bits[coefi] != 0)  | 
449  | 0  |   smoothing_useful = TRUE;  | 
450  | 0  |     }  | 
451  | 0  |     coef_bits_latch += SAVED_COEFS;  | 
452  | 0  |   }  | 
453  |  |  | 
454  | 0  |   return smoothing_useful;  | 
455  | 0  | }  | 
456  |  |  | 
457  |  |  | 
458  |  | /*  | 
459  |  |  * Variant of decompress_data for use when doing block smoothing.  | 
460  |  |  */  | 
461  |  |  | 
462  |  | METHODDEF(int)  | 
463  |  | decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)  | 
464  | 0  | { | 
465  | 0  |   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;  | 
466  | 0  |   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;  | 
467  | 0  |   JDIMENSION block_num, last_block_column;  | 
468  | 0  |   int ci, block_row, block_rows, access_rows;  | 
469  | 0  |   JBLOCKARRAY buffer;  | 
470  | 0  |   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;  | 
471  | 0  |   JSAMPARRAY output_ptr;  | 
472  | 0  |   JDIMENSION output_col;  | 
473  | 0  |   jpeg_component_info *compptr;  | 
474  | 0  |   inverse_DCT_method_ptr inverse_DCT;  | 
475  | 0  |   boolean first_row, last_row;  | 
476  | 0  |   JBLOCK workspace;  | 
477  | 0  |   int *coef_bits;  | 
478  | 0  |   JQUANT_TBL *quanttbl;  | 
479  | 0  |   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;  | 
480  | 0  |   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;  | 
481  | 0  |   int Al, pred;  | 
482  |  |  | 
483  |  |   /* Force some input to be done if we are getting ahead of the input. */  | 
484  | 0  |   while (cinfo->input_scan_number <= cinfo->output_scan_number &&  | 
485  | 0  |    ! cinfo->inputctl->eoi_reached) { | 
486  | 0  |     if (cinfo->input_scan_number == cinfo->output_scan_number) { | 
487  |  |       /* If input is working on current scan, we ordinarily want it to  | 
488  |  |        * have completed the current row.  But if input scan is DC,  | 
489  |  |        * we want it to keep one row ahead so that next block row's DC  | 
490  |  |        * values are up to date.  | 
491  |  |        */  | 
492  | 0  |       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;  | 
493  | 0  |       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)  | 
494  | 0  |   break;  | 
495  | 0  |     }  | 
496  | 0  |     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)  | 
497  | 0  |       return JPEG_SUSPENDED;  | 
498  | 0  |   }  | 
499  |  |  | 
500  |  |   /* OK, output from the virtual arrays. */  | 
501  | 0  |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
502  | 0  |        ci++, compptr++) { | 
503  |  |     /* Don't bother to IDCT an uninteresting component. */  | 
504  | 0  |     if (! compptr->component_needed)  | 
505  | 0  |       continue;  | 
506  |  |     /* Count non-dummy DCT block rows in this iMCU row. */  | 
507  | 0  |     if (cinfo->output_iMCU_row < last_iMCU_row) { | 
508  | 0  |       block_rows = compptr->v_samp_factor;  | 
509  | 0  |       access_rows = block_rows * 2; /* this and next iMCU row */  | 
510  | 0  |       last_row = FALSE;  | 
511  | 0  |     } else { | 
512  |  |       /* NB: can't use last_row_height here; it is input-side-dependent! */  | 
513  | 0  |       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);  | 
514  | 0  |       if (block_rows == 0) block_rows = compptr->v_samp_factor;  | 
515  | 0  |       access_rows = block_rows; /* this iMCU row only */  | 
516  | 0  |       last_row = TRUE;  | 
517  | 0  |     }  | 
518  |  |     /* Align the virtual buffer for this component. */  | 
519  | 0  |     if (cinfo->output_iMCU_row > 0) { | 
520  | 0  |       access_rows += compptr->v_samp_factor; /* prior iMCU row too */  | 
521  | 0  |       buffer = (*cinfo->mem->access_virt_barray)  | 
522  | 0  |   ((j_common_ptr) cinfo, coef->whole_image[ci],  | 
523  | 0  |    (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,  | 
524  | 0  |    (JDIMENSION) access_rows, FALSE);  | 
525  | 0  |       buffer += compptr->v_samp_factor; /* point to current iMCU row */  | 
526  | 0  |       first_row = FALSE;  | 
527  | 0  |     } else { | 
528  | 0  |       buffer = (*cinfo->mem->access_virt_barray)  | 
529  | 0  |   ((j_common_ptr) cinfo, coef->whole_image[ci],  | 
530  | 0  |    (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);  | 
531  | 0  |       first_row = TRUE;  | 
532  | 0  |     }  | 
533  |  |     /* Fetch component-dependent info */  | 
534  | 0  |     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);  | 
535  | 0  |     quanttbl = compptr->quant_table;  | 
536  | 0  |     Q00 = quanttbl->quantval[0];  | 
537  | 0  |     Q01 = quanttbl->quantval[Q01_POS];  | 
538  | 0  |     Q10 = quanttbl->quantval[Q10_POS];  | 
539  | 0  |     Q20 = quanttbl->quantval[Q20_POS];  | 
540  | 0  |     Q11 = quanttbl->quantval[Q11_POS];  | 
541  | 0  |     Q02 = quanttbl->quantval[Q02_POS];  | 
542  | 0  |     inverse_DCT = cinfo->idct->inverse_DCT[ci];  | 
543  | 0  |     output_ptr = output_buf[ci];  | 
544  |  |     /* Loop over all DCT blocks to be processed. */  | 
545  | 0  |     for (block_row = 0; block_row < block_rows; block_row++) { | 
546  | 0  |       buffer_ptr = buffer[block_row];  | 
547  | 0  |       if (first_row && block_row == 0)  | 
548  | 0  |   prev_block_row = buffer_ptr;  | 
549  | 0  |       else  | 
550  | 0  |   prev_block_row = buffer[block_row-1];  | 
551  | 0  |       if (last_row && block_row == block_rows-1)  | 
552  | 0  |   next_block_row = buffer_ptr;  | 
553  | 0  |       else  | 
554  | 0  |   next_block_row = buffer[block_row+1];  | 
555  |  |       /* We fetch the surrounding DC values using a sliding-register approach.  | 
556  |  |        * Initialize all nine here so as to do the right thing on narrow pics.  | 
557  |  |        */  | 
558  | 0  |       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];  | 
559  | 0  |       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];  | 
560  | 0  |       DC7 = DC8 = DC9 = (int) next_block_row[0][0];  | 
561  | 0  |       output_col = 0;  | 
562  | 0  |       last_block_column = compptr->width_in_blocks - 1;  | 
563  | 0  |       for (block_num = 0; block_num <= last_block_column; block_num++) { | 
564  |  |   /* Fetch current DCT block into workspace so we can modify it. */  | 
565  | 0  |   jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);  | 
566  |  |   /* Update DC values */  | 
567  | 0  |   if (block_num < last_block_column) { | 
568  | 0  |     DC3 = (int) prev_block_row[1][0];  | 
569  | 0  |     DC6 = (int) buffer_ptr[1][0];  | 
570  | 0  |     DC9 = (int) next_block_row[1][0];  | 
571  | 0  |   }  | 
572  |  |   /* Compute coefficient estimates per K.8.  | 
573  |  |    * An estimate is applied only if coefficient is still zero,  | 
574  |  |    * and is not known to be fully accurate.  | 
575  |  |    */  | 
576  |  |   /* AC01 */  | 
577  | 0  |   if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { | 
578  | 0  |     num = 36 * Q00 * (DC4 - DC6);  | 
579  | 0  |     if (num >= 0) { | 
580  | 0  |       pred = (int) (((Q01<<7) + num) / (Q01<<8));  | 
581  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
582  | 0  |         pred = (1<<Al)-1;  | 
583  | 0  |     } else { | 
584  | 0  |       pred = (int) (((Q01<<7) - num) / (Q01<<8));  | 
585  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
586  | 0  |         pred = (1<<Al)-1;  | 
587  | 0  |       pred = -pred;  | 
588  | 0  |     }  | 
589  | 0  |     workspace[1] = (JCOEF) pred;  | 
590  | 0  |   }  | 
591  |  |   /* AC10 */  | 
592  | 0  |   if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { | 
593  | 0  |     num = 36 * Q00 * (DC2 - DC8);  | 
594  | 0  |     if (num >= 0) { | 
595  | 0  |       pred = (int) (((Q10<<7) + num) / (Q10<<8));  | 
596  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
597  | 0  |         pred = (1<<Al)-1;  | 
598  | 0  |     } else { | 
599  | 0  |       pred = (int) (((Q10<<7) - num) / (Q10<<8));  | 
600  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
601  | 0  |         pred = (1<<Al)-1;  | 
602  | 0  |       pred = -pred;  | 
603  | 0  |     }  | 
604  | 0  |     workspace[8] = (JCOEF) pred;  | 
605  | 0  |   }  | 
606  |  |   /* AC20 */  | 
607  | 0  |   if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { | 
608  | 0  |     num = 9 * Q00 * (DC2 + DC8 - 2*DC5);  | 
609  | 0  |     if (num >= 0) { | 
610  | 0  |       pred = (int) (((Q20<<7) + num) / (Q20<<8));  | 
611  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
612  | 0  |         pred = (1<<Al)-1;  | 
613  | 0  |     } else { | 
614  | 0  |       pred = (int) (((Q20<<7) - num) / (Q20<<8));  | 
615  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
616  | 0  |         pred = (1<<Al)-1;  | 
617  | 0  |       pred = -pred;  | 
618  | 0  |     }  | 
619  | 0  |     workspace[16] = (JCOEF) pred;  | 
620  | 0  |   }  | 
621  |  |   /* AC11 */  | 
622  | 0  |   if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { | 
623  | 0  |     num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);  | 
624  | 0  |     if (num >= 0) { | 
625  | 0  |       pred = (int) (((Q11<<7) + num) / (Q11<<8));  | 
626  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
627  | 0  |         pred = (1<<Al)-1;  | 
628  | 0  |     } else { | 
629  | 0  |       pred = (int) (((Q11<<7) - num) / (Q11<<8));  | 
630  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
631  | 0  |         pred = (1<<Al)-1;  | 
632  | 0  |       pred = -pred;  | 
633  | 0  |     }  | 
634  | 0  |     workspace[9] = (JCOEF) pred;  | 
635  | 0  |   }  | 
636  |  |   /* AC02 */  | 
637  | 0  |   if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { | 
638  | 0  |     num = 9 * Q00 * (DC4 + DC6 - 2*DC5);  | 
639  | 0  |     if (num >= 0) { | 
640  | 0  |       pred = (int) (((Q02<<7) + num) / (Q02<<8));  | 
641  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
642  | 0  |         pred = (1<<Al)-1;  | 
643  | 0  |     } else { | 
644  | 0  |       pred = (int) (((Q02<<7) - num) / (Q02<<8));  | 
645  | 0  |       if (Al > 0 && pred >= (1<<Al))  | 
646  | 0  |         pred = (1<<Al)-1;  | 
647  | 0  |       pred = -pred;  | 
648  | 0  |     }  | 
649  | 0  |     workspace[2] = (JCOEF) pred;  | 
650  | 0  |   }  | 
651  |  |   /* OK, do the IDCT */  | 
652  | 0  |   (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,  | 
653  | 0  |       output_ptr, output_col);  | 
654  |  |   /* Advance for next column */  | 
655  | 0  |   DC1 = DC2; DC2 = DC3;  | 
656  | 0  |   DC4 = DC5; DC5 = DC6;  | 
657  | 0  |   DC7 = DC8; DC8 = DC9;  | 
658  | 0  |   buffer_ptr++, prev_block_row++, next_block_row++;  | 
659  | 0  |   output_col += compptr->DCT_h_scaled_size;  | 
660  | 0  |       }  | 
661  | 0  |       output_ptr += compptr->DCT_v_scaled_size;  | 
662  | 0  |     }  | 
663  | 0  |   }  | 
664  |  | 
  | 
665  | 0  |   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)  | 
666  | 0  |     return JPEG_ROW_COMPLETED;  | 
667  | 0  |   return JPEG_SCAN_COMPLETED;  | 
668  | 0  | }  | 
669  |  |  | 
670  |  | #endif /* BLOCK_SMOOTHING_SUPPORTED */  | 
671  |  |  | 
672  |  |  | 
673  |  | /*  | 
674  |  |  * Initialize coefficient buffer controller.  | 
675  |  |  */  | 
676  |  |  | 
677  |  | GLOBAL(void)  | 
678  |  | jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)  | 
679  | 0  | { | 
680  | 0  |   my_coef_ptr coef;  | 
681  |  | 
  | 
682  | 0  |   coef = (my_coef_ptr)  | 
683  | 0  |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
684  | 0  |         SIZEOF(my_coef_controller));  | 
685  | 0  |   cinfo->coef = (struct jpeg_d_coef_controller *) coef;  | 
686  | 0  |   coef->pub.start_input_pass = start_input_pass;  | 
687  | 0  |   coef->pub.start_output_pass = start_output_pass;  | 
688  | 0  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
689  | 0  |   coef->coef_bits_latch = NULL;  | 
690  | 0  | #endif  | 
691  |  |  | 
692  |  |   /* Create the coefficient buffer. */  | 
693  | 0  |   if (need_full_buffer) { | 
694  | 0  | #ifdef D_MULTISCAN_FILES_SUPPORTED  | 
695  |  |     /* Allocate a full-image virtual array for each component, */  | 
696  |  |     /* padded to a multiple of samp_factor DCT blocks in each direction. */  | 
697  |  |     /* Note we ask for a pre-zeroed array. */  | 
698  | 0  |     int ci, access_rows;  | 
699  | 0  |     jpeg_component_info *compptr;  | 
700  |  | 
  | 
701  | 0  |     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;  | 
702  | 0  |    ci++, compptr++) { | 
703  | 0  |       access_rows = compptr->v_samp_factor;  | 
704  | 0  | #ifdef BLOCK_SMOOTHING_SUPPORTED  | 
705  |  |       /* If block smoothing could be used, need a bigger window */  | 
706  | 0  |       if (cinfo->progressive_mode)  | 
707  | 0  |   access_rows *= 3;  | 
708  | 0  | #endif  | 
709  | 0  |       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)  | 
710  | 0  |   ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,  | 
711  | 0  |    (JDIMENSION) jround_up((long) compptr->width_in_blocks,  | 
712  | 0  |         (long) compptr->h_samp_factor),  | 
713  | 0  |    (JDIMENSION) jround_up((long) compptr->height_in_blocks,  | 
714  | 0  |         (long) compptr->v_samp_factor),  | 
715  | 0  |    (JDIMENSION) access_rows);  | 
716  | 0  |     }  | 
717  | 0  |     coef->pub.consume_data = consume_data;  | 
718  | 0  |     coef->pub.decompress_data = decompress_data;  | 
719  | 0  |     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */  | 
720  |  | #else  | 
721  |  |     ERREXIT(cinfo, JERR_NOT_COMPILED);  | 
722  |  | #endif  | 
723  | 0  |   } else { | 
724  |  |     /* We only need a single-MCU buffer. */  | 
725  | 0  |     JBLOCKROW buffer;  | 
726  | 0  |     int i;  | 
727  |  | 
  | 
728  | 0  |     buffer = (JBLOCKROW)  | 
729  | 0  |       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,  | 
730  | 0  |           D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));  | 
731  | 0  |     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | 
732  | 0  |       coef->MCU_buffer[i] = buffer + i;  | 
733  | 0  |     }  | 
734  | 0  |     if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */  | 
735  | 0  |       FMEMZERO((void FAR *) buffer,  | 
736  | 0  |          (size_t) (D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)));  | 
737  | 0  |     coef->pub.consume_data = dummy_consume_data;  | 
738  | 0  |     coef->pub.decompress_data = decompress_onepass;  | 
739  |  |     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */  | 
740  | 0  |   }  | 
741  | 0  | }  |