/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jfdctint.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jfdctint.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1991-1996, Thomas G. Lane.  | 
5  |  |  * Modification developed 2003-2018 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains a slow-but-accurate integer implementation of the  | 
10  |  |  * forward DCT (Discrete Cosine Transform).  | 
11  |  |  *  | 
12  |  |  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT  | 
13  |  |  * on each column.  Direct algorithms are also available, but they are  | 
14  |  |  * much more complex and seem not to be any faster when reduced to code.  | 
15  |  |  *  | 
16  |  |  * This implementation is based on an algorithm described in  | 
17  |  |  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT  | 
18  |  |  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,  | 
19  |  |  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.  | 
20  |  |  * The primary algorithm described there uses 11 multiplies and 29 adds.  | 
21  |  |  * We use their alternate method with 12 multiplies and 32 adds.  | 
22  |  |  * The advantage of this method is that no data path contains more than one  | 
23  |  |  * multiplication; this allows a very simple and accurate implementation in  | 
24  |  |  * scaled fixed-point arithmetic, with a minimal number of shifts.  | 
25  |  |  *  | 
26  |  |  * We also provide FDCT routines with various input sample block sizes for  | 
27  |  |  * direct resolution reduction or enlargement and for direct resolving the  | 
28  |  |  * common 2x1 and 1x2 subsampling cases without additional resampling: NxN  | 
29  |  |  * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.  | 
30  |  |  *  | 
31  |  |  * For N<8 we fill the remaining block coefficients with zero.  | 
32  |  |  * For N>8 we apply a partial N-point FDCT on the input samples, computing  | 
33  |  |  * just the lower 8 frequency coefficients and discarding the rest.  | 
34  |  |  *  | 
35  |  |  * We must scale the output coefficients of the N-point FDCT appropriately  | 
36  |  |  * to the standard 8-point FDCT level by 8/N per 1-D pass.  This scaling  | 
37  |  |  * is folded into the constant multipliers (pass 2) and/or final/initial  | 
38  |  |  * shifting.  | 
39  |  |  *  | 
40  |  |  * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases  | 
41  |  |  * since there would be too many additional constants to pre-calculate.  | 
42  |  |  */  | 
43  |  |  | 
44  |  | #define JPEG_INTERNALS  | 
45  |  | #include "jinclude.h"  | 
46  |  | #include "jpeglib.h"  | 
47  |  | #include "jdct.h"   /* Private declarations for DCT subsystem */  | 
48  |  |  | 
49  |  | #ifdef DCT_ISLOW_SUPPORTED  | 
50  |  |  | 
51  |  |  | 
52  |  | /*  | 
53  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
54  |  |  */  | 
55  |  |  | 
56  |  | #if DCTSIZE != 8  | 
57  |  |   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */  | 
58  |  | #endif  | 
59  |  |  | 
60  |  |  | 
61  |  | /*  | 
62  |  |  * The poop on this scaling stuff is as follows:  | 
63  |  |  *  | 
64  |  |  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)  | 
65  |  |  * larger than the true DCT outputs.  The final outputs are therefore  | 
66  |  |  * a factor of N larger than desired; since N=8 this can be cured by  | 
67  |  |  * a simple right shift at the end of the algorithm.  The advantage of  | 
68  |  |  * this arrangement is that we save two multiplications per 1-D DCT,  | 
69  |  |  * because the y0 and y4 outputs need not be divided by sqrt(N).  | 
70  |  |  * In the IJG code, this factor of 8 is removed by the quantization step  | 
71  |  |  * (in jcdctmgr.c), NOT in this module.  | 
72  |  |  *  | 
73  |  |  * We have to do addition and subtraction of the integer inputs, which  | 
74  |  |  * is no problem, and multiplication by fractional constants, which is  | 
75  |  |  * a problem to do in integer arithmetic.  We multiply all the constants  | 
76  |  |  * by CONST_SCALE and convert them to integer constants (thus retaining  | 
77  |  |  * CONST_BITS bits of precision in the constants).  After doing a  | 
78  |  |  * multiplication we have to divide the product by CONST_SCALE, with proper  | 
79  |  |  * rounding, to produce the correct output.  This division can be done  | 
80  |  |  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting  | 
81  |  |  * as long as possible so that partial sums can be added together with  | 
82  |  |  * full fractional precision.  | 
83  |  |  *  | 
84  |  |  * The outputs of the first pass are scaled up by PASS1_BITS bits so that  | 
85  |  |  * they are represented to better-than-integral precision.  These outputs  | 
86  |  |  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word  | 
87  |  |  * with the recommended scaling.  (For 12-bit sample data, the intermediate  | 
88  |  |  * array is INT32 anyway.)  | 
89  |  |  *  | 
90  |  |  * To avoid overflow of the 32-bit intermediate results in pass 2, we must  | 
91  |  |  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis  | 
92  |  |  * shows that the values given below are the most effective.  | 
93  |  |  */  | 
94  |  |  | 
95  |  | #if BITS_IN_JSAMPLE == 8  | 
96  | 0  | #define CONST_BITS  13  | 
97  | 0  | #define PASS1_BITS  2  | 
98  |  | #else  | 
99  |  | #define CONST_BITS  13  | 
100  |  | #define PASS1_BITS  1   /* lose a little precision to avoid overflow */  | 
101  |  | #endif  | 
102  |  |  | 
103  |  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus  | 
104  |  |  * causing a lot of useless floating-point operations at run time.  | 
105  |  |  * To get around this we use the following pre-calculated constants.  | 
106  |  |  * If you change CONST_BITS you may want to add appropriate values.  | 
107  |  |  * (With a reasonable C compiler, you can just rely on the FIX() macro...)  | 
108  |  |  */  | 
109  |  |  | 
110  |  | #if CONST_BITS == 13  | 
111  |  | #define FIX_0_298631336  ((INT32)  2446)  /* FIX(0.298631336) */  | 
112  |  | #define FIX_0_390180644  ((INT32)  3196)  /* FIX(0.390180644) */  | 
113  |  | #define FIX_0_541196100  ((INT32)  4433)  /* FIX(0.541196100) */  | 
114  |  | #define FIX_0_765366865  ((INT32)  6270)  /* FIX(0.765366865) */  | 
115  |  | #define FIX_0_899976223  ((INT32)  7373)  /* FIX(0.899976223) */  | 
116  |  | #define FIX_1_175875602  ((INT32)  9633)  /* FIX(1.175875602) */  | 
117  |  | #define FIX_1_501321110  ((INT32)  12299) /* FIX(1.501321110) */  | 
118  |  | #define FIX_1_847759065  ((INT32)  15137) /* FIX(1.847759065) */  | 
119  |  | #define FIX_1_961570560  ((INT32)  16069) /* FIX(1.961570560) */  | 
120  |  | #define FIX_2_053119869  ((INT32)  16819) /* FIX(2.053119869) */  | 
121  |  | #define FIX_2_562915447  ((INT32)  20995) /* FIX(2.562915447) */  | 
122  |  | #define FIX_3_072711026  ((INT32)  25172) /* FIX(3.072711026) */  | 
123  |  | #else  | 
124  |  | #define FIX_0_298631336  FIX(0.298631336)  | 
125  |  | #define FIX_0_390180644  FIX(0.390180644)  | 
126  |  | #define FIX_0_541196100  FIX(0.541196100)  | 
127  |  | #define FIX_0_765366865  FIX(0.765366865)  | 
128  |  | #define FIX_0_899976223  FIX(0.899976223)  | 
129  |  | #define FIX_1_175875602  FIX(1.175875602)  | 
130  |  | #define FIX_1_501321110  FIX(1.501321110)  | 
131  |  | #define FIX_1_847759065  FIX(1.847759065)  | 
132  |  | #define FIX_1_961570560  FIX(1.961570560)  | 
133  |  | #define FIX_2_053119869  FIX(2.053119869)  | 
134  |  | #define FIX_2_562915447  FIX(2.562915447)  | 
135  |  | #define FIX_3_072711026  FIX(3.072711026)  | 
136  |  | #endif  | 
137  |  |  | 
138  |  |  | 
139  |  | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.  | 
140  |  |  * For 8-bit samples with the recommended scaling, all the variable  | 
141  |  |  * and constant values involved are no more than 16 bits wide, so a  | 
142  |  |  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.  | 
143  |  |  * For 12-bit samples, a full 32-bit multiplication will be needed.  | 
144  |  |  */  | 
145  |  |  | 
146  |  | #if BITS_IN_JSAMPLE == 8  | 
147  | 0  | #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)  | 
148  |  | #else  | 
149  |  | #define MULTIPLY(var,const)  ((var) * (const))  | 
150  |  | #endif  | 
151  |  |  | 
152  |  |  | 
153  |  | /*  | 
154  |  |  * Perform the forward DCT on one block of samples.  | 
155  |  |  */  | 
156  |  |  | 
157  |  | GLOBAL(void)  | 
158  |  | jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
159  | 0  | { | 
160  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3;  | 
161  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13;  | 
162  | 0  |   INT32 z1;  | 
163  | 0  |   DCTELEM *dataptr;  | 
164  | 0  |   JSAMPROW elemptr;  | 
165  | 0  |   int ctr;  | 
166  | 0  |   SHIFT_TEMPS  | 
167  |  |  | 
168  |  |   /* Pass 1: process rows.  | 
169  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
170  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
171  |  |    * cK represents sqrt(2) * cos(K*pi/16).  | 
172  |  |    */  | 
173  |  | 
  | 
174  | 0  |   dataptr = data;  | 
175  | 0  |   for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
176  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
177  |  |  | 
178  |  |     /* Even part per LL&M figure 1 --- note that published figure is faulty;  | 
179  |  |      * rotator "c1" should be "c6".  | 
180  |  |      */  | 
181  |  | 
  | 
182  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);  | 
183  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);  | 
184  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);  | 
185  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);  | 
186  |  | 
  | 
187  | 0  |     tmp10 = tmp0 + tmp3;  | 
188  | 0  |     tmp12 = tmp0 - tmp3;  | 
189  | 0  |     tmp11 = tmp1 + tmp2;  | 
190  | 0  |     tmp13 = tmp1 - tmp2;  | 
191  |  | 
  | 
192  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);  | 
193  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);  | 
194  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);  | 
195  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);  | 
196  |  |  | 
197  |  |     /* Apply unsigned->signed conversion. */  | 
198  | 0  |     dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);  | 
199  | 0  |     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);  | 
200  |  | 
  | 
201  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);       /* c6 */  | 
202  |  |     /* Add fudge factor here for final descale. */  | 
203  | 0  |     z1 += ONE << (CONST_BITS-PASS1_BITS-1);  | 
204  |  | 
  | 
205  | 0  |     dataptr[2] = (DCTELEM)  | 
206  | 0  |       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */  | 
207  | 0  |       CONST_BITS-PASS1_BITS);  | 
208  | 0  |     dataptr[6] = (DCTELEM)  | 
209  | 0  |       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */  | 
210  | 0  |       CONST_BITS-PASS1_BITS);  | 
211  |  |  | 
212  |  |     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).  | 
213  |  |      * i0..i3 in the paper are tmp0..tmp3 here.  | 
214  |  |      */  | 
215  |  | 
  | 
216  | 0  |     tmp12 = tmp0 + tmp2;  | 
217  | 0  |     tmp13 = tmp1 + tmp3;  | 
218  |  | 
  | 
219  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602);       /*  c3 */  | 
220  |  |     /* Add fudge factor here for final descale. */  | 
221  | 0  |     z1 += ONE << (CONST_BITS-PASS1_BITS-1);  | 
222  |  | 
  | 
223  | 0  |     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);          /* -c3+c5 */  | 
224  | 0  |     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);          /* -c3-c5 */  | 
225  | 0  |     tmp12 += z1;  | 
226  | 0  |     tmp13 += z1;  | 
227  |  | 
  | 
228  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223);       /* -c3+c7 */  | 
229  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_1_501321110);              /*  c1+c3-c5-c7 */  | 
230  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_0_298631336);              /* -c1+c3+c5-c7 */  | 
231  | 0  |     tmp0 += z1 + tmp12;  | 
232  | 0  |     tmp3 += z1 + tmp13;  | 
233  |  | 
  | 
234  | 0  |     z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447);       /* -c1-c3 */  | 
235  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_3_072711026);              /*  c1+c3+c5-c7 */  | 
236  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_2_053119869);              /*  c1+c3-c5+c7 */  | 
237  | 0  |     tmp1 += z1 + tmp13;  | 
238  | 0  |     tmp2 += z1 + tmp12;  | 
239  |  | 
  | 
240  | 0  |     dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS);  | 
241  | 0  |     dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS);  | 
242  | 0  |     dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS);  | 
243  | 0  |     dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS);  | 
244  |  | 
  | 
245  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
246  | 0  |   }  | 
247  |  |  | 
248  |  |   /* Pass 2: process columns.  | 
249  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
250  |  |    * by an overall factor of 8.  | 
251  |  |    * cK represents sqrt(2) * cos(K*pi/16).  | 
252  |  |    */  | 
253  |  | 
  | 
254  | 0  |   dataptr = data;  | 
255  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
256  |  |     /* Even part per LL&M figure 1 --- note that published figure is faulty;  | 
257  |  |      * rotator "c1" should be "c6".  | 
258  |  |      */  | 
259  |  | 
  | 
260  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];  | 
261  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];  | 
262  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];  | 
263  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];  | 
264  |  |  | 
265  |  |     /* Add fudge factor here for final descale. */  | 
266  | 0  |     tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));  | 
267  | 0  |     tmp12 = tmp0 - tmp3;  | 
268  | 0  |     tmp11 = tmp1 + tmp2;  | 
269  | 0  |     tmp13 = tmp1 - tmp2;  | 
270  |  | 
  | 
271  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];  | 
272  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];  | 
273  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];  | 
274  | 0  |     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];  | 
275  |  | 
  | 
276  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);  | 
277  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);  | 
278  |  | 
  | 
279  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);       /* c6 */  | 
280  |  |     /* Add fudge factor here for final descale. */  | 
281  | 0  |     z1 += ONE << (CONST_BITS+PASS1_BITS-1);  | 
282  |  | 
  | 
283  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
284  | 0  |       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */  | 
285  | 0  |       CONST_BITS+PASS1_BITS);  | 
286  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
287  | 0  |       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */  | 
288  | 0  |       CONST_BITS+PASS1_BITS);  | 
289  |  |  | 
290  |  |     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).  | 
291  |  |      * i0..i3 in the paper are tmp0..tmp3 here.  | 
292  |  |      */  | 
293  |  | 
  | 
294  | 0  |     tmp12 = tmp0 + tmp2;  | 
295  | 0  |     tmp13 = tmp1 + tmp3;  | 
296  |  | 
  | 
297  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602);       /*  c3 */  | 
298  |  |     /* Add fudge factor here for final descale. */  | 
299  | 0  |     z1 += ONE << (CONST_BITS+PASS1_BITS-1);  | 
300  |  | 
  | 
301  | 0  |     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);          /* -c3+c5 */  | 
302  | 0  |     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);          /* -c3-c5 */  | 
303  | 0  |     tmp12 += z1;  | 
304  | 0  |     tmp13 += z1;  | 
305  |  | 
  | 
306  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223);       /* -c3+c7 */  | 
307  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_1_501321110);              /*  c1+c3-c5-c7 */  | 
308  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_0_298631336);              /* -c1+c3+c5-c7 */  | 
309  | 0  |     tmp0 += z1 + tmp12;  | 
310  | 0  |     tmp3 += z1 + tmp13;  | 
311  |  | 
  | 
312  | 0  |     z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447);       /* -c1-c3 */  | 
313  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_3_072711026);              /*  c1+c3+c5-c7 */  | 
314  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_2_053119869);              /*  c1+c3-c5+c7 */  | 
315  | 0  |     tmp1 += z1 + tmp13;  | 
316  | 0  |     tmp2 += z1 + tmp12;  | 
317  |  | 
  | 
318  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS);  | 
319  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS);  | 
320  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS);  | 
321  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS);  | 
322  |  | 
  | 
323  | 0  |     dataptr++;      /* advance pointer to next column */  | 
324  | 0  |   }  | 
325  | 0  | }  | 
326  |  |  | 
327  |  | #ifdef DCT_SCALING_SUPPORTED  | 
328  |  |  | 
329  |  |  | 
330  |  | /*  | 
331  |  |  * Perform the forward DCT on a 7x7 sample block.  | 
332  |  |  */  | 
333  |  |  | 
334  |  | GLOBAL(void)  | 
335  |  | jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
336  | 0  | { | 
337  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3;  | 
338  | 0  |   INT32 tmp10, tmp11, tmp12;  | 
339  | 0  |   INT32 z1, z2, z3;  | 
340  | 0  |   DCTELEM *dataptr;  | 
341  | 0  |   JSAMPROW elemptr;  | 
342  | 0  |   int ctr;  | 
343  | 0  |   SHIFT_TEMPS  | 
344  |  |  | 
345  |  |   /* Pre-zero output coefficient block. */  | 
346  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
347  |  |  | 
348  |  |   /* Pass 1: process rows.  | 
349  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
350  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
351  |  |    * cK represents sqrt(2) * cos(K*pi/14).  | 
352  |  |    */  | 
353  |  | 
  | 
354  | 0  |   dataptr = data;  | 
355  | 0  |   for (ctr = 0; ctr < 7; ctr++) { | 
356  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
357  |  |  | 
358  |  |     /* Even part */  | 
359  |  | 
  | 
360  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);  | 
361  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);  | 
362  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);  | 
363  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]);  | 
364  |  | 
  | 
365  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);  | 
366  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);  | 
367  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);  | 
368  |  | 
  | 
369  | 0  |     z1 = tmp0 + tmp2;  | 
370  |  |     /* Apply unsigned->signed conversion. */  | 
371  | 0  |     dataptr[0] = (DCTELEM)  | 
372  | 0  |       ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);  | 
373  | 0  |     tmp3 += tmp3;  | 
374  | 0  |     z1 -= tmp3;  | 
375  | 0  |     z1 -= tmp3;  | 
376  | 0  |     z1 = MULTIPLY(z1, FIX(0.353553391));                /* (c2+c6-c4)/2 */  | 
377  | 0  |     z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002));       /* (c2+c4-c6)/2 */  | 
378  | 0  |     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123));       /* c6 */  | 
379  | 0  |     dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);  | 
380  | 0  |     z1 -= z2;  | 
381  | 0  |     z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734));       /* c4 */  | 
382  | 0  |     dataptr[4] = (DCTELEM)  | 
383  | 0  |       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */  | 
384  | 0  |         CONST_BITS-PASS1_BITS);  | 
385  | 0  |     dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);  | 
386  |  |  | 
387  |  |     /* Odd part */  | 
388  |  | 
  | 
389  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347));   /* (c3+c1-c5)/2 */  | 
390  | 0  |     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339));   /* (c3+c5-c1)/2 */  | 
391  | 0  |     tmp0 = tmp1 - tmp2;  | 
392  | 0  |     tmp1 += tmp2;  | 
393  | 0  |     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */  | 
394  | 0  |     tmp1 += tmp2;  | 
395  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268));   /* c5 */  | 
396  | 0  |     tmp0 += tmp3;  | 
397  | 0  |     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693));   /* c3+c1-c5 */  | 
398  |  | 
  | 
399  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);  | 
400  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);  | 
401  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);  | 
402  |  | 
  | 
403  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
404  | 0  |   }  | 
405  |  |  | 
406  |  |   /* Pass 2: process columns.  | 
407  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
408  |  |    * by an overall factor of 8.  | 
409  |  |    * We must also scale the output by (8/7)**2 = 64/49, which we fold  | 
410  |  |    * into the constant multipliers:  | 
411  |  |    * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.  | 
412  |  |    */  | 
413  |  | 
  | 
414  | 0  |   dataptr = data;  | 
415  | 0  |   for (ctr = 0; ctr < 7; ctr++) { | 
416  |  |     /* Even part */  | 
417  |  | 
  | 
418  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];  | 
419  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];  | 
420  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];  | 
421  | 0  |     tmp3 = dataptr[DCTSIZE*3];  | 
422  |  | 
  | 
423  | 0  |     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];  | 
424  | 0  |     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];  | 
425  | 0  |     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];  | 
426  |  | 
  | 
427  | 0  |     z1 = tmp0 + tmp2;  | 
428  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
429  | 0  |       DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */  | 
430  | 0  |         CONST_BITS+PASS1_BITS);  | 
431  | 0  |     tmp3 += tmp3;  | 
432  | 0  |     z1 -= tmp3;  | 
433  | 0  |     z1 -= tmp3;  | 
434  | 0  |     z1 = MULTIPLY(z1, FIX(0.461784020));                /* (c2+c6-c4)/2 */  | 
435  | 0  |     z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084));       /* (c2+c4-c6)/2 */  | 
436  | 0  |     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446));       /* c6 */  | 
437  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);  | 
438  | 0  |     z1 -= z2;  | 
439  | 0  |     z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509));       /* c4 */  | 
440  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
441  | 0  |       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */  | 
442  | 0  |         CONST_BITS+PASS1_BITS);  | 
443  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);  | 
444  |  |  | 
445  |  |     /* Odd part */  | 
446  |  | 
  | 
447  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677));   /* (c3+c1-c5)/2 */  | 
448  | 0  |     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464));   /* (c3+c5-c1)/2 */  | 
449  | 0  |     tmp0 = tmp1 - tmp2;  | 
450  | 0  |     tmp1 += tmp2;  | 
451  | 0  |     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */  | 
452  | 0  |     tmp1 += tmp2;  | 
453  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310));   /* c5 */  | 
454  | 0  |     tmp0 += tmp3;  | 
455  | 0  |     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355));   /* c3+c1-c5 */  | 
456  |  | 
  | 
457  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);  | 
458  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);  | 
459  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);  | 
460  |  | 
  | 
461  | 0  |     dataptr++;      /* advance pointer to next column */  | 
462  | 0  |   }  | 
463  | 0  | }  | 
464  |  |  | 
465  |  |  | 
466  |  | /*  | 
467  |  |  * Perform the forward DCT on a 6x6 sample block.  | 
468  |  |  */  | 
469  |  |  | 
470  |  | GLOBAL(void)  | 
471  |  | jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
472  | 0  | { | 
473  | 0  |   INT32 tmp0, tmp1, tmp2;  | 
474  | 0  |   INT32 tmp10, tmp11, tmp12;  | 
475  | 0  |   DCTELEM *dataptr;  | 
476  | 0  |   JSAMPROW elemptr;  | 
477  | 0  |   int ctr;  | 
478  | 0  |   SHIFT_TEMPS  | 
479  |  |  | 
480  |  |   /* Pre-zero output coefficient block. */  | 
481  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
482  |  |  | 
483  |  |   /* Pass 1: process rows.  | 
484  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
485  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
486  |  |    * cK represents sqrt(2) * cos(K*pi/12).  | 
487  |  |    */  | 
488  |  | 
  | 
489  | 0  |   dataptr = data;  | 
490  | 0  |   for (ctr = 0; ctr < 6; ctr++) { | 
491  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
492  |  |  | 
493  |  |     /* Even part */  | 
494  |  | 
  | 
495  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);  | 
496  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);  | 
497  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);  | 
498  |  | 
  | 
499  | 0  |     tmp10 = tmp0 + tmp2;  | 
500  | 0  |     tmp12 = tmp0 - tmp2;  | 
501  |  | 
  | 
502  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);  | 
503  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);  | 
504  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);  | 
505  |  |  | 
506  |  |     /* Apply unsigned->signed conversion. */  | 
507  | 0  |     dataptr[0] = (DCTELEM)  | 
508  | 0  |       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);  | 
509  | 0  |     dataptr[2] = (DCTELEM)  | 
510  | 0  |       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */  | 
511  | 0  |         CONST_BITS-PASS1_BITS);  | 
512  | 0  |     dataptr[4] = (DCTELEM)  | 
513  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */  | 
514  | 0  |         CONST_BITS-PASS1_BITS);  | 
515  |  |  | 
516  |  |     /* Odd part */  | 
517  |  | 
  | 
518  | 0  |     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */  | 
519  | 0  |         CONST_BITS-PASS1_BITS);  | 
520  |  | 
  | 
521  | 0  |     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));  | 
522  | 0  |     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);  | 
523  | 0  |     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));  | 
524  |  | 
  | 
525  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
526  | 0  |   }  | 
527  |  |  | 
528  |  |   /* Pass 2: process columns.  | 
529  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
530  |  |    * by an overall factor of 8.  | 
531  |  |    * We must also scale the output by (8/6)**2 = 16/9, which we fold  | 
532  |  |    * into the constant multipliers:  | 
533  |  |    * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.  | 
534  |  |    */  | 
535  |  | 
  | 
536  | 0  |   dataptr = data;  | 
537  | 0  |   for (ctr = 0; ctr < 6; ctr++) { | 
538  |  |     /* Even part */  | 
539  |  | 
  | 
540  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];  | 
541  | 0  |     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];  | 
542  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];  | 
543  |  | 
  | 
544  | 0  |     tmp10 = tmp0 + tmp2;  | 
545  | 0  |     tmp12 = tmp0 - tmp2;  | 
546  |  | 
  | 
547  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];  | 
548  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];  | 
549  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];  | 
550  |  | 
  | 
551  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
552  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */  | 
553  | 0  |         CONST_BITS+PASS1_BITS);  | 
554  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
555  | 0  |       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */  | 
556  | 0  |         CONST_BITS+PASS1_BITS);  | 
557  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
558  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */  | 
559  | 0  |         CONST_BITS+PASS1_BITS);  | 
560  |  |  | 
561  |  |     /* Odd part */  | 
562  |  | 
  | 
563  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */  | 
564  |  | 
  | 
565  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
566  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */  | 
567  | 0  |         CONST_BITS+PASS1_BITS);  | 
568  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
569  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */  | 
570  | 0  |         CONST_BITS+PASS1_BITS);  | 
571  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
572  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */  | 
573  | 0  |         CONST_BITS+PASS1_BITS);  | 
574  |  | 
  | 
575  | 0  |     dataptr++;      /* advance pointer to next column */  | 
576  | 0  |   }  | 
577  | 0  | }  | 
578  |  |  | 
579  |  |  | 
580  |  | /*  | 
581  |  |  * Perform the forward DCT on a 5x5 sample block.  | 
582  |  |  */  | 
583  |  |  | 
584  |  | GLOBAL(void)  | 
585  |  | jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
586  | 0  | { | 
587  | 0  |   INT32 tmp0, tmp1, tmp2;  | 
588  | 0  |   INT32 tmp10, tmp11;  | 
589  | 0  |   DCTELEM *dataptr;  | 
590  | 0  |   JSAMPROW elemptr;  | 
591  | 0  |   int ctr;  | 
592  | 0  |   SHIFT_TEMPS  | 
593  |  |  | 
594  |  |   /* Pre-zero output coefficient block. */  | 
595  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
596  |  |  | 
597  |  |   /* Pass 1: process rows.  | 
598  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
599  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
600  |  |    * We scale the results further by 2 as part of output adaption  | 
601  |  |    * scaling for different DCT size.  | 
602  |  |    * cK represents sqrt(2) * cos(K*pi/10).  | 
603  |  |    */  | 
604  |  | 
  | 
605  | 0  |   dataptr = data;  | 
606  | 0  |   for (ctr = 0; ctr < 5; ctr++) { | 
607  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
608  |  |  | 
609  |  |     /* Even part */  | 
610  |  | 
  | 
611  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);  | 
612  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);  | 
613  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]);  | 
614  |  | 
  | 
615  | 0  |     tmp10 = tmp0 + tmp1;  | 
616  | 0  |     tmp11 = tmp0 - tmp1;  | 
617  |  | 
  | 
618  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);  | 
619  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);  | 
620  |  |  | 
621  |  |     /* Apply unsigned->signed conversion. */  | 
622  | 0  |     dataptr[0] = (DCTELEM)  | 
623  | 0  |       ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));  | 
624  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(0.790569415));          /* (c2+c4)/2 */  | 
625  | 0  |     tmp10 -= tmp2 << 2;  | 
626  | 0  |     tmp10 = MULTIPLY(tmp10, FIX(0.353553391));          /* (c2-c4)/2 */  | 
627  | 0  |     dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);  | 
628  | 0  |     dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);  | 
629  |  |  | 
630  |  |     /* Odd part */  | 
631  |  | 
  | 
632  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876));    /* c3 */  | 
633  |  | 
  | 
634  | 0  |     dataptr[1] = (DCTELEM)  | 
635  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */  | 
636  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
637  | 0  |     dataptr[3] = (DCTELEM)  | 
638  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */  | 
639  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
640  |  | 
  | 
641  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
642  | 0  |   }  | 
643  |  |  | 
644  |  |   /* Pass 2: process columns.  | 
645  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
646  |  |    * by an overall factor of 8.  | 
647  |  |    * We must also scale the output by (8/5)**2 = 64/25, which we partially  | 
648  |  |    * fold into the constant multipliers (other part was done in pass 1):  | 
649  |  |    * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.  | 
650  |  |    */  | 
651  |  | 
  | 
652  | 0  |   dataptr = data;  | 
653  | 0  |   for (ctr = 0; ctr < 5; ctr++) { | 
654  |  |     /* Even part */  | 
655  |  | 
  | 
656  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];  | 
657  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];  | 
658  | 0  |     tmp2 = dataptr[DCTSIZE*2];  | 
659  |  | 
  | 
660  | 0  |     tmp10 = tmp0 + tmp1;  | 
661  | 0  |     tmp11 = tmp0 - tmp1;  | 
662  |  | 
  | 
663  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];  | 
664  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];  | 
665  |  | 
  | 
666  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
667  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)),        /* 32/25 */  | 
668  | 0  |         CONST_BITS+PASS1_BITS);  | 
669  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(1.011928851));          /* (c2+c4)/2 */  | 
670  | 0  |     tmp10 -= tmp2 << 2;  | 
671  | 0  |     tmp10 = MULTIPLY(tmp10, FIX(0.452548340));          /* (c2-c4)/2 */  | 
672  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);  | 
673  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);  | 
674  |  |  | 
675  |  |     /* Odd part */  | 
676  |  | 
  | 
677  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961));    /* c3 */  | 
678  |  | 
  | 
679  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
680  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */  | 
681  | 0  |         CONST_BITS+PASS1_BITS);  | 
682  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
683  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */  | 
684  | 0  |         CONST_BITS+PASS1_BITS);  | 
685  |  | 
  | 
686  | 0  |     dataptr++;      /* advance pointer to next column */  | 
687  | 0  |   }  | 
688  | 0  | }  | 
689  |  |  | 
690  |  |  | 
691  |  | /*  | 
692  |  |  * Perform the forward DCT on a 4x4 sample block.  | 
693  |  |  */  | 
694  |  |  | 
695  |  | GLOBAL(void)  | 
696  |  | jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
697  | 0  | { | 
698  | 0  |   INT32 tmp0, tmp1;  | 
699  | 0  |   INT32 tmp10, tmp11;  | 
700  | 0  |   DCTELEM *dataptr;  | 
701  | 0  |   JSAMPROW elemptr;  | 
702  | 0  |   int ctr;  | 
703  | 0  |   SHIFT_TEMPS  | 
704  |  |  | 
705  |  |   /* Pre-zero output coefficient block. */  | 
706  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
707  |  |  | 
708  |  |   /* Pass 1: process rows.  | 
709  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
710  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
711  |  |    * We must also scale the output by (8/4)**2 = 2**2, which we add here.  | 
712  |  |    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].  | 
713  |  |    */  | 
714  |  | 
  | 
715  | 0  |   dataptr = data;  | 
716  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
717  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
718  |  |  | 
719  |  |     /* Even part */  | 
720  |  | 
  | 
721  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);  | 
722  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);  | 
723  |  | 
  | 
724  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);  | 
725  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);  | 
726  |  |  | 
727  |  |     /* Apply unsigned->signed conversion. */  | 
728  | 0  |     dataptr[0] = (DCTELEM)  | 
729  | 0  |       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));  | 
730  | 0  |     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));  | 
731  |  |  | 
732  |  |     /* Odd part */  | 
733  |  | 
  | 
734  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */  | 
735  |  |     /* Add fudge factor here for final descale. */  | 
736  | 0  |     tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);  | 
737  |  | 
  | 
738  | 0  |     dataptr[1] = (DCTELEM)  | 
739  | 0  |       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */  | 
740  | 0  |       CONST_BITS-PASS1_BITS-2);  | 
741  | 0  |     dataptr[3] = (DCTELEM)  | 
742  | 0  |       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */  | 
743  | 0  |       CONST_BITS-PASS1_BITS-2);  | 
744  |  | 
  | 
745  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
746  | 0  |   }  | 
747  |  |  | 
748  |  |   /* Pass 2: process columns.  | 
749  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
750  |  |    * by an overall factor of 8.  | 
751  |  |    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].  | 
752  |  |    */  | 
753  |  | 
  | 
754  | 0  |   dataptr = data;  | 
755  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
756  |  |     /* Even part */  | 
757  |  |  | 
758  |  |     /* Add fudge factor here for final descale. */  | 
759  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));  | 
760  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];  | 
761  |  | 
  | 
762  | 0  |     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];  | 
763  | 0  |     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];  | 
764  |  | 
  | 
765  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);  | 
766  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);  | 
767  |  |  | 
768  |  |     /* Odd part */  | 
769  |  | 
  | 
770  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */  | 
771  |  |     /* Add fudge factor here for final descale. */  | 
772  | 0  |     tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);  | 
773  |  | 
  | 
774  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
775  | 0  |       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */  | 
776  | 0  |       CONST_BITS+PASS1_BITS);  | 
777  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
778  | 0  |       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */  | 
779  | 0  |       CONST_BITS+PASS1_BITS);  | 
780  |  | 
  | 
781  | 0  |     dataptr++;      /* advance pointer to next column */  | 
782  | 0  |   }  | 
783  | 0  | }  | 
784  |  |  | 
785  |  |  | 
786  |  | /*  | 
787  |  |  * Perform the forward DCT on a 3x3 sample block.  | 
788  |  |  */  | 
789  |  |  | 
790  |  | GLOBAL(void)  | 
791  |  | jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
792  | 0  | { | 
793  | 0  |   INT32 tmp0, tmp1, tmp2;  | 
794  | 0  |   DCTELEM *dataptr;  | 
795  | 0  |   JSAMPROW elemptr;  | 
796  | 0  |   int ctr;  | 
797  | 0  |   SHIFT_TEMPS  | 
798  |  |  | 
799  |  |   /* Pre-zero output coefficient block. */  | 
800  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
801  |  |  | 
802  |  |   /* Pass 1: process rows.  | 
803  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
804  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
805  |  |    * We scale the results further by 2**2 as part of output adaption  | 
806  |  |    * scaling for different DCT size.  | 
807  |  |    * cK represents sqrt(2) * cos(K*pi/6).  | 
808  |  |    */  | 
809  |  | 
  | 
810  | 0  |   dataptr = data;  | 
811  | 0  |   for (ctr = 0; ctr < 3; ctr++) { | 
812  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
813  |  |  | 
814  |  |     /* Even part */  | 
815  |  | 
  | 
816  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);  | 
817  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]);  | 
818  |  | 
  | 
819  | 0  |     tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);  | 
820  |  |  | 
821  |  |     /* Apply unsigned->signed conversion. */  | 
822  | 0  |     dataptr[0] = (DCTELEM)  | 
823  | 0  |       ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));  | 
824  | 0  |     dataptr[2] = (DCTELEM)  | 
825  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */  | 
826  | 0  |         CONST_BITS-PASS1_BITS-2);  | 
827  |  |  | 
828  |  |     /* Odd part */  | 
829  |  | 
  | 
830  | 0  |     dataptr[1] = (DCTELEM)  | 
831  | 0  |       DESCALE(MULTIPLY(tmp2, FIX(1.224744871)),               /* c1 */  | 
832  | 0  |         CONST_BITS-PASS1_BITS-2);  | 
833  |  | 
  | 
834  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
835  | 0  |   }  | 
836  |  |  | 
837  |  |   /* Pass 2: process columns.  | 
838  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
839  |  |    * by an overall factor of 8.  | 
840  |  |    * We must also scale the output by (8/3)**2 = 64/9, which we partially  | 
841  |  |    * fold into the constant multipliers (other part was done in pass 1):  | 
842  |  |    * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.  | 
843  |  |    */  | 
844  |  | 
  | 
845  | 0  |   dataptr = data;  | 
846  | 0  |   for (ctr = 0; ctr < 3; ctr++) { | 
847  |  |     /* Even part */  | 
848  |  | 
  | 
849  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];  | 
850  | 0  |     tmp1 = dataptr[DCTSIZE*1];  | 
851  |  | 
  | 
852  | 0  |     tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];  | 
853  |  | 
  | 
854  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
855  | 0  |       DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),        /* 16/9 */  | 
856  | 0  |         CONST_BITS+PASS1_BITS);  | 
857  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
858  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */  | 
859  | 0  |         CONST_BITS+PASS1_BITS);  | 
860  |  |  | 
861  |  |     /* Odd part */  | 
862  |  | 
  | 
863  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
864  | 0  |       DESCALE(MULTIPLY(tmp2, FIX(2.177324216)),               /* c1 */  | 
865  | 0  |         CONST_BITS+PASS1_BITS);  | 
866  |  | 
  | 
867  | 0  |     dataptr++;      /* advance pointer to next column */  | 
868  | 0  |   }  | 
869  | 0  | }  | 
870  |  |  | 
871  |  |  | 
872  |  | /*  | 
873  |  |  * Perform the forward DCT on a 2x2 sample block.  | 
874  |  |  */  | 
875  |  |  | 
876  |  | GLOBAL(void)  | 
877  |  | jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
878  | 0  | { | 
879  | 0  |   DCTELEM tmp0, tmp1, tmp2, tmp3;  | 
880  | 0  |   JSAMPROW elemptr;  | 
881  |  |  | 
882  |  |   /* Pre-zero output coefficient block. */  | 
883  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
884  |  |  | 
885  |  |   /* Pass 1: process rows.  | 
886  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
887  |  |    */  | 
888  |  |  | 
889  |  |   /* Row 0 */  | 
890  | 0  |   elemptr = sample_data[0] + start_col;  | 
891  |  | 
  | 
892  | 0  |   tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);  | 
893  | 0  |   tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);  | 
894  |  |  | 
895  |  |   /* Row 1 */  | 
896  | 0  |   elemptr = sample_data[1] + start_col;  | 
897  |  | 
  | 
898  | 0  |   tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);  | 
899  | 0  |   tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);  | 
900  |  |  | 
901  |  |   /* Pass 2: process columns.  | 
902  |  |    * We leave the results scaled up by an overall factor of 8.  | 
903  |  |    * We must also scale the output by (8/2)**2 = 2**4.  | 
904  |  |    */  | 
905  |  |  | 
906  |  |   /* Column 0 */  | 
907  |  |   /* Apply unsigned->signed conversion. */  | 
908  | 0  |   data[DCTSIZE*0] = (tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4;  | 
909  | 0  |   data[DCTSIZE*1] = (tmp0 - tmp2) << 4;  | 
910  |  |  | 
911  |  |   /* Column 1 */  | 
912  | 0  |   data[DCTSIZE*0+1] = (tmp1 + tmp3) << 4;  | 
913  | 0  |   data[DCTSIZE*1+1] = (tmp1 - tmp3) << 4;  | 
914  | 0  | }  | 
915  |  |  | 
916  |  |  | 
917  |  | /*  | 
918  |  |  * Perform the forward DCT on a 1x1 sample block.  | 
919  |  |  */  | 
920  |  |  | 
921  |  | GLOBAL(void)  | 
922  |  | jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
923  | 0  | { | 
924  | 0  |   DCTELEM dcval;  | 
925  |  |  | 
926  |  |   /* Pre-zero output coefficient block. */  | 
927  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
928  |  | 
  | 
929  | 0  |   dcval = GETJSAMPLE(sample_data[0][start_col]);  | 
930  |  |  | 
931  |  |   /* We leave the result scaled up by an overall factor of 8. */  | 
932  |  |   /* We must also scale the output by (8/1)**2 = 2**6. */  | 
933  |  |   /* Apply unsigned->signed conversion. */  | 
934  | 0  |   data[0] = (dcval - CENTERJSAMPLE) << 6;  | 
935  | 0  | }  | 
936  |  |  | 
937  |  |  | 
938  |  | /*  | 
939  |  |  * Perform the forward DCT on a 9x9 sample block.  | 
940  |  |  */  | 
941  |  |  | 
942  |  | GLOBAL(void)  | 
943  |  | jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
944  | 0  | { | 
945  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;  | 
946  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13;  | 
947  | 0  |   INT32 z1, z2;  | 
948  | 0  |   DCTELEM workspace[8];  | 
949  | 0  |   DCTELEM *dataptr;  | 
950  | 0  |   DCTELEM *wsptr;  | 
951  | 0  |   JSAMPROW elemptr;  | 
952  | 0  |   int ctr;  | 
953  | 0  |   SHIFT_TEMPS  | 
954  |  |  | 
955  |  |   /* Pass 1: process rows.  | 
956  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
957  |  |    * we scale the results further by 2 as part of output adaption  | 
958  |  |    * scaling for different DCT size.  | 
959  |  |    * cK represents sqrt(2) * cos(K*pi/18).  | 
960  |  |    */  | 
961  |  | 
  | 
962  | 0  |   dataptr = data;  | 
963  | 0  |   ctr = 0;  | 
964  | 0  |   for (;;) { | 
965  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
966  |  |  | 
967  |  |     /* Even part */  | 
968  |  | 
  | 
969  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);  | 
970  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);  | 
971  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);  | 
972  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);  | 
973  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]);  | 
974  |  | 
  | 
975  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);  | 
976  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);  | 
977  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);  | 
978  | 0  |     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);  | 
979  |  | 
  | 
980  | 0  |     z1 = tmp0 + tmp2 + tmp3;  | 
981  | 0  |     z2 = tmp1 + tmp4;  | 
982  |  |     /* Apply unsigned->signed conversion. */  | 
983  | 0  |     dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);  | 
984  | 0  |     dataptr[6] = (DCTELEM)  | 
985  | 0  |       DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)),  /* c6 */  | 
986  | 0  |         CONST_BITS-1);  | 
987  | 0  |     z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049));        /* c2 */  | 
988  | 0  |     z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */  | 
989  | 0  |     dataptr[2] = (DCTELEM)  | 
990  | 0  |       DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441))    /* c4 */  | 
991  | 0  |         + z1 + z2, CONST_BITS-1);  | 
992  | 0  |     dataptr[4] = (DCTELEM)  | 
993  | 0  |       DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608))    /* c8 */  | 
994  | 0  |         + z1 - z2, CONST_BITS-1);  | 
995  |  |  | 
996  |  |     /* Odd part */  | 
997  |  | 
  | 
998  | 0  |     dataptr[3] = (DCTELEM)  | 
999  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */  | 
1000  | 0  |         CONST_BITS-1);  | 
1001  |  | 
  | 
1002  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(1.224744871));        /* c3 */  | 
1003  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */  | 
1004  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */  | 
1005  |  | 
  | 
1006  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);  | 
1007  |  | 
  | 
1008  | 0  |     tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */  | 
1009  |  | 
  | 
1010  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);  | 
1011  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);  | 
1012  |  | 
  | 
1013  | 0  |     ctr++;  | 
1014  |  | 
  | 
1015  | 0  |     if (ctr != DCTSIZE) { | 
1016  | 0  |       if (ctr == 9)  | 
1017  | 0  |   break;     /* Done. */  | 
1018  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
1019  | 0  |     } else  | 
1020  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
1021  | 0  |   }  | 
1022  |  |  | 
1023  |  |   /* Pass 2: process columns.  | 
1024  |  |    * We leave the results scaled up by an overall factor of 8.  | 
1025  |  |    * We must also scale the output by (8/9)**2 = 64/81, which we partially  | 
1026  |  |    * fold into the constant multipliers and final/initial shifting:  | 
1027  |  |    * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.  | 
1028  |  |    */  | 
1029  |  | 
  | 
1030  | 0  |   dataptr = data;  | 
1031  | 0  |   wsptr = workspace;  | 
1032  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
1033  |  |     /* Even part */  | 
1034  |  | 
  | 
1035  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];  | 
1036  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];  | 
1037  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];  | 
1038  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];  | 
1039  | 0  |     tmp4 = dataptr[DCTSIZE*4];  | 
1040  |  | 
  | 
1041  | 0  |     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];  | 
1042  | 0  |     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];  | 
1043  | 0  |     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];  | 
1044  | 0  |     tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];  | 
1045  |  | 
  | 
1046  | 0  |     z1 = tmp0 + tmp2 + tmp3;  | 
1047  | 0  |     z2 = tmp1 + tmp4;  | 
1048  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
1049  | 0  |       DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)),       /* 128/81 */  | 
1050  | 0  |         CONST_BITS+2);  | 
1051  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
1052  | 0  |       DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)),  /* c6 */  | 
1053  | 0  |         CONST_BITS+2);  | 
1054  | 0  |     z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287));        /* c2 */  | 
1055  | 0  |     z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */  | 
1056  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
1057  | 0  |       DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190))    /* c4 */  | 
1058  | 0  |         + z1 + z2, CONST_BITS+2);  | 
1059  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
1060  | 0  |       DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096))    /* c8 */  | 
1061  | 0  |         + z1 - z2, CONST_BITS+2);  | 
1062  |  |  | 
1063  |  |     /* Odd part */  | 
1064  |  | 
  | 
1065  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
1066  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */  | 
1067  | 0  |         CONST_BITS+2);  | 
1068  |  | 
  | 
1069  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(1.935399303));        /* c3 */  | 
1070  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */  | 
1071  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */  | 
1072  |  | 
  | 
1073  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
1074  | 0  |       DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);  | 
1075  |  | 
  | 
1076  | 0  |     tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */  | 
1077  |  | 
  | 
1078  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
1079  | 0  |       DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);  | 
1080  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM)  | 
1081  | 0  |       DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);  | 
1082  |  | 
  | 
1083  | 0  |     dataptr++;      /* advance pointer to next column */  | 
1084  | 0  |     wsptr++;      /* advance pointer to next column */  | 
1085  | 0  |   }  | 
1086  | 0  | }  | 
1087  |  |  | 
1088  |  |  | 
1089  |  | /*  | 
1090  |  |  * Perform the forward DCT on a 10x10 sample block.  | 
1091  |  |  */  | 
1092  |  |  | 
1093  |  | GLOBAL(void)  | 
1094  |  | jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
1095  | 0  | { | 
1096  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;  | 
1097  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;  | 
1098  | 0  |   DCTELEM workspace[8*2];  | 
1099  | 0  |   DCTELEM *dataptr;  | 
1100  | 0  |   DCTELEM *wsptr;  | 
1101  | 0  |   JSAMPROW elemptr;  | 
1102  | 0  |   int ctr;  | 
1103  | 0  |   SHIFT_TEMPS  | 
1104  |  |  | 
1105  |  |   /* Pass 1: process rows.  | 
1106  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
1107  |  |    * we scale the results further by 2 as part of output adaption  | 
1108  |  |    * scaling for different DCT size.  | 
1109  |  |    * cK represents sqrt(2) * cos(K*pi/20).  | 
1110  |  |    */  | 
1111  |  | 
  | 
1112  | 0  |   dataptr = data;  | 
1113  | 0  |   ctr = 0;  | 
1114  | 0  |   for (;;) { | 
1115  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
1116  |  |  | 
1117  |  |     /* Even part */  | 
1118  |  | 
  | 
1119  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);  | 
1120  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);  | 
1121  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);  | 
1122  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);  | 
1123  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);  | 
1124  |  | 
  | 
1125  | 0  |     tmp10 = tmp0 + tmp4;  | 
1126  | 0  |     tmp13 = tmp0 - tmp4;  | 
1127  | 0  |     tmp11 = tmp1 + tmp3;  | 
1128  | 0  |     tmp14 = tmp1 - tmp3;  | 
1129  |  | 
  | 
1130  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);  | 
1131  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);  | 
1132  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);  | 
1133  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);  | 
1134  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);  | 
1135  |  |  | 
1136  |  |     /* Apply unsigned->signed conversion. */  | 
1137  | 0  |     dataptr[0] = (DCTELEM)  | 
1138  | 0  |       ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);  | 
1139  | 0  |     tmp12 += tmp12;  | 
1140  | 0  |     dataptr[4] = (DCTELEM)  | 
1141  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */  | 
1142  | 0  |         MULTIPLY(tmp11 - tmp12, FIX(0.437016024)),  /* c8 */  | 
1143  | 0  |         CONST_BITS-1);  | 
1144  | 0  |     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876));    /* c6 */  | 
1145  | 0  |     dataptr[2] = (DCTELEM)  | 
1146  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)),  /* c2-c6 */  | 
1147  | 0  |         CONST_BITS-1);  | 
1148  | 0  |     dataptr[6] = (DCTELEM)  | 
1149  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)),  /* c2+c6 */  | 
1150  | 0  |         CONST_BITS-1);  | 
1151  |  |  | 
1152  |  |     /* Odd part */  | 
1153  |  | 
  | 
1154  | 0  |     tmp10 = tmp0 + tmp4;  | 
1155  | 0  |     tmp11 = tmp1 - tmp3;  | 
1156  | 0  |     dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);  | 
1157  | 0  |     tmp2 <<= CONST_BITS;  | 
1158  | 0  |     dataptr[1] = (DCTELEM)  | 
1159  | 0  |       DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) +          /* c1 */  | 
1160  | 0  |         MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 +   /* c3 */  | 
1161  | 0  |         MULTIPLY(tmp3, FIX(0.642039522)) +          /* c7 */  | 
1162  | 0  |         MULTIPLY(tmp4, FIX(0.221231742)),           /* c9 */  | 
1163  | 0  |         CONST_BITS-1);  | 
1164  | 0  |     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) -     /* (c3+c7)/2 */  | 
1165  | 0  |       MULTIPLY(tmp1 + tmp3, FIX(0.587785252));      /* (c1-c9)/2 */  | 
1166  | 0  |     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) +   /* (c3-c7)/2 */  | 
1167  | 0  |       (tmp11 << (CONST_BITS - 1)) - tmp2;  | 
1168  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);  | 
1169  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);  | 
1170  |  | 
  | 
1171  | 0  |     ctr++;  | 
1172  |  | 
  | 
1173  | 0  |     if (ctr != DCTSIZE) { | 
1174  | 0  |       if (ctr == 10)  | 
1175  | 0  |   break;     /* Done. */  | 
1176  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
1177  | 0  |     } else  | 
1178  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
1179  | 0  |   }  | 
1180  |  |  | 
1181  |  |   /* Pass 2: process columns.  | 
1182  |  |    * We leave the results scaled up by an overall factor of 8.  | 
1183  |  |    * We must also scale the output by (8/10)**2 = 16/25, which we partially  | 
1184  |  |    * fold into the constant multipliers and final/initial shifting:  | 
1185  |  |    * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.  | 
1186  |  |    */  | 
1187  |  | 
  | 
1188  | 0  |   dataptr = data;  | 
1189  | 0  |   wsptr = workspace;  | 
1190  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
1191  |  |     /* Even part */  | 
1192  |  | 
  | 
1193  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];  | 
1194  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];  | 
1195  | 0  |     tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];  | 
1196  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];  | 
1197  | 0  |     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];  | 
1198  |  | 
  | 
1199  | 0  |     tmp10 = tmp0 + tmp4;  | 
1200  | 0  |     tmp13 = tmp0 - tmp4;  | 
1201  | 0  |     tmp11 = tmp1 + tmp3;  | 
1202  | 0  |     tmp14 = tmp1 - tmp3;  | 
1203  |  | 
  | 
1204  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];  | 
1205  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];  | 
1206  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];  | 
1207  | 0  |     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];  | 
1208  | 0  |     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];  | 
1209  |  | 
  | 
1210  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
1211  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */  | 
1212  | 0  |         CONST_BITS+2);  | 
1213  | 0  |     tmp12 += tmp12;  | 
1214  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
1215  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */  | 
1216  | 0  |         MULTIPLY(tmp11 - tmp12, FIX(0.559380511)),  /* c8 */  | 
1217  | 0  |         CONST_BITS+2);  | 
1218  | 0  |     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961));    /* c6 */  | 
1219  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
1220  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)),  /* c2-c6 */  | 
1221  | 0  |         CONST_BITS+2);  | 
1222  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
1223  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)),  /* c2+c6 */  | 
1224  | 0  |         CONST_BITS+2);  | 
1225  |  |  | 
1226  |  |     /* Odd part */  | 
1227  |  | 
  | 
1228  | 0  |     tmp10 = tmp0 + tmp4;  | 
1229  | 0  |     tmp11 = tmp1 - tmp3;  | 
1230  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
1231  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)),  /* 32/25 */  | 
1232  | 0  |         CONST_BITS+2);  | 
1233  | 0  |     tmp2 = MULTIPLY(tmp2, FIX(1.28));                     /* 32/25 */  | 
1234  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
1235  | 0  |       DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) +          /* c1 */  | 
1236  | 0  |         MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 +   /* c3 */  | 
1237  | 0  |         MULTIPLY(tmp3, FIX(0.821810588)) +          /* c7 */  | 
1238  | 0  |         MULTIPLY(tmp4, FIX(0.283176630)),           /* c9 */  | 
1239  | 0  |         CONST_BITS+2);  | 
1240  | 0  |     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) -     /* (c3+c7)/2 */  | 
1241  | 0  |       MULTIPLY(tmp1 + tmp3, FIX(0.752365123));      /* (c1-c9)/2 */  | 
1242  | 0  |     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) +   /* (c3-c7)/2 */  | 
1243  | 0  |       MULTIPLY(tmp11, FIX(0.64)) - tmp2;            /* 16/25 */  | 
1244  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);  | 
1245  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);  | 
1246  |  | 
  | 
1247  | 0  |     dataptr++;      /* advance pointer to next column */  | 
1248  | 0  |     wsptr++;      /* advance pointer to next column */  | 
1249  | 0  |   }  | 
1250  | 0  | }  | 
1251  |  |  | 
1252  |  |  | 
1253  |  | /*  | 
1254  |  |  * Perform the forward DCT on an 11x11 sample block.  | 
1255  |  |  */  | 
1256  |  |  | 
1257  |  | GLOBAL(void)  | 
1258  |  | jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
1259  | 0  | { | 
1260  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;  | 
1261  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;  | 
1262  | 0  |   INT32 z1, z2, z3;  | 
1263  | 0  |   DCTELEM workspace[8*3];  | 
1264  | 0  |   DCTELEM *dataptr;  | 
1265  | 0  |   DCTELEM *wsptr;  | 
1266  | 0  |   JSAMPROW elemptr;  | 
1267  | 0  |   int ctr;  | 
1268  | 0  |   SHIFT_TEMPS  | 
1269  |  |  | 
1270  |  |   /* Pass 1: process rows.  | 
1271  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
1272  |  |    * we scale the results further by 2 as part of output adaption  | 
1273  |  |    * scaling for different DCT size.  | 
1274  |  |    * cK represents sqrt(2) * cos(K*pi/22).  | 
1275  |  |    */  | 
1276  |  | 
  | 
1277  | 0  |   dataptr = data;  | 
1278  | 0  |   ctr = 0;  | 
1279  | 0  |   for (;;) { | 
1280  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
1281  |  |  | 
1282  |  |     /* Even part */  | 
1283  |  | 
  | 
1284  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);  | 
1285  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);  | 
1286  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);  | 
1287  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);  | 
1288  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);  | 
1289  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]);  | 
1290  |  | 
  | 
1291  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);  | 
1292  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);  | 
1293  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);  | 
1294  | 0  |     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);  | 
1295  | 0  |     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);  | 
1296  |  |  | 
1297  |  |     /* Apply unsigned->signed conversion. */  | 
1298  | 0  |     dataptr[0] = (DCTELEM)  | 
1299  | 0  |       ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);  | 
1300  | 0  |     tmp5 += tmp5;  | 
1301  | 0  |     tmp0 -= tmp5;  | 
1302  | 0  |     tmp1 -= tmp5;  | 
1303  | 0  |     tmp2 -= tmp5;  | 
1304  | 0  |     tmp3 -= tmp5;  | 
1305  | 0  |     tmp4 -= tmp5;  | 
1306  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) +       /* c2 */  | 
1307  | 0  |    MULTIPLY(tmp2 + tmp4, FIX(0.201263574));        /* c10 */  | 
1308  | 0  |     z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931));        /* c6 */  | 
1309  | 0  |     z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156));        /* c4 */  | 
1310  | 0  |     dataptr[2] = (DCTELEM)  | 
1311  | 0  |       DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */  | 
1312  | 0  |         - MULTIPLY(tmp4, FIX(1.390975730)),        /* c4+c10 */  | 
1313  | 0  |         CONST_BITS-1);  | 
1314  | 0  |     dataptr[4] = (DCTELEM)  | 
1315  | 0  |       DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */  | 
1316  | 0  |         - MULTIPLY(tmp2, FIX(1.356927976))         /* c2 */  | 
1317  | 0  |         + MULTIPLY(tmp4, FIX(0.587485545)),        /* c8 */  | 
1318  | 0  |         CONST_BITS-1);  | 
1319  | 0  |     dataptr[6] = (DCTELEM)  | 
1320  | 0  |       DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */  | 
1321  | 0  |         - MULTIPLY(tmp2, FIX(0.788749120)),        /* c8+c10 */  | 
1322  | 0  |         CONST_BITS-1);  | 
1323  |  |  | 
1324  |  |     /* Odd part */  | 
1325  |  | 
  | 
1326  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905));    /* c3 */  | 
1327  | 0  |     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298));    /* c5 */  | 
1328  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576));    /* c7 */  | 
1329  | 0  |     tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */  | 
1330  | 0  |      + MULTIPLY(tmp14, FIX(0.398430003));          /* c9 */  | 
1331  | 0  |     tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576));  /* -c7 */  | 
1332  | 0  |     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907));  /* -c1 */  | 
1333  | 0  |     tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */  | 
1334  | 0  |       - MULTIPLY(tmp14, FIX(1.068791298));         /* c5 */  | 
1335  | 0  |     tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003));   /* c9 */  | 
1336  | 0  |     tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */  | 
1337  | 0  |       + MULTIPLY(tmp14, FIX(1.399818907));         /* c1 */  | 
1338  | 0  |     tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */  | 
1339  | 0  |       - MULTIPLY(tmp14, FIX(1.286413905));         /* c3 */  | 
1340  |  | 
  | 
1341  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);  | 
1342  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);  | 
1343  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);  | 
1344  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);  | 
1345  |  | 
  | 
1346  | 0  |     ctr++;  | 
1347  |  | 
  | 
1348  | 0  |     if (ctr != DCTSIZE) { | 
1349  | 0  |       if (ctr == 11)  | 
1350  | 0  |   break;     /* Done. */  | 
1351  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
1352  | 0  |     } else  | 
1353  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
1354  | 0  |   }  | 
1355  |  |  | 
1356  |  |   /* Pass 2: process columns.  | 
1357  |  |    * We leave the results scaled up by an overall factor of 8.  | 
1358  |  |    * We must also scale the output by (8/11)**2 = 64/121, which we partially  | 
1359  |  |    * fold into the constant multipliers and final/initial shifting:  | 
1360  |  |    * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.  | 
1361  |  |    */  | 
1362  |  | 
  | 
1363  | 0  |   dataptr = data;  | 
1364  | 0  |   wsptr = workspace;  | 
1365  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
1366  |  |     /* Even part */  | 
1367  |  | 
  | 
1368  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];  | 
1369  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];  | 
1370  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];  | 
1371  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];  | 
1372  | 0  |     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];  | 
1373  | 0  |     tmp5 = dataptr[DCTSIZE*5];  | 
1374  |  | 
  | 
1375  | 0  |     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];  | 
1376  | 0  |     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];  | 
1377  | 0  |     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];  | 
1378  | 0  |     tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];  | 
1379  | 0  |     tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];  | 
1380  |  | 
  | 
1381  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
1382  | 0  |       DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,  | 
1383  | 0  |            FIX(1.057851240)),                /* 128/121 */  | 
1384  | 0  |         CONST_BITS+2);  | 
1385  | 0  |     tmp5 += tmp5;  | 
1386  | 0  |     tmp0 -= tmp5;  | 
1387  | 0  |     tmp1 -= tmp5;  | 
1388  | 0  |     tmp2 -= tmp5;  | 
1389  | 0  |     tmp3 -= tmp5;  | 
1390  | 0  |     tmp4 -= tmp5;  | 
1391  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) +       /* c2 */  | 
1392  | 0  |    MULTIPLY(tmp2 + tmp4, FIX(0.212906922));        /* c10 */  | 
1393  | 0  |     z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713));        /* c6 */  | 
1394  | 0  |     z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479));        /* c4 */  | 
1395  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
1396  | 0  |       DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */  | 
1397  | 0  |         - MULTIPLY(tmp4, FIX(1.471445400)),        /* c4+c10 */  | 
1398  | 0  |         CONST_BITS+2);  | 
1399  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
1400  | 0  |       DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */  | 
1401  | 0  |         - MULTIPLY(tmp2, FIX(1.435427942))         /* c2 */  | 
1402  | 0  |         + MULTIPLY(tmp4, FIX(0.621472312)),        /* c8 */  | 
1403  | 0  |         CONST_BITS+2);  | 
1404  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
1405  | 0  |       DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */  | 
1406  | 0  |         - MULTIPLY(tmp2, FIX(0.834379234)),        /* c8+c10 */  | 
1407  | 0  |         CONST_BITS+2);  | 
1408  |  |  | 
1409  |  |     /* Odd part */  | 
1410  |  | 
  | 
1411  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544));    /* c3 */  | 
1412  | 0  |     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199));    /* c5 */  | 
1413  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568));    /* c7 */  | 
1414  | 0  |     tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */  | 
1415  | 0  |      + MULTIPLY(tmp14, FIX(0.421479672));          /* c9 */  | 
1416  | 0  |     tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568));  /* -c7 */  | 
1417  | 0  |     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167));  /* -c1 */  | 
1418  | 0  |     tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */  | 
1419  | 0  |       - MULTIPLY(tmp14, FIX(1.130622199));         /* c5 */  | 
1420  | 0  |     tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672));   /* c9 */  | 
1421  | 0  |     tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */  | 
1422  | 0  |       + MULTIPLY(tmp14, FIX(1.480800167));         /* c1 */  | 
1423  | 0  |     tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */  | 
1424  | 0  |       - MULTIPLY(tmp14, FIX(1.360834544));         /* c3 */  | 
1425  |  | 
  | 
1426  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);  | 
1427  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);  | 
1428  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);  | 
1429  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);  | 
1430  |  | 
  | 
1431  | 0  |     dataptr++;      /* advance pointer to next column */  | 
1432  | 0  |     wsptr++;      /* advance pointer to next column */  | 
1433  | 0  |   }  | 
1434  | 0  | }  | 
1435  |  |  | 
1436  |  |  | 
1437  |  | /*  | 
1438  |  |  * Perform the forward DCT on a 12x12 sample block.  | 
1439  |  |  */  | 
1440  |  |  | 
1441  |  | GLOBAL(void)  | 
1442  |  | jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
1443  | 0  | { | 
1444  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;  | 
1445  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;  | 
1446  | 0  |   DCTELEM workspace[8*4];  | 
1447  | 0  |   DCTELEM *dataptr;  | 
1448  | 0  |   DCTELEM *wsptr;  | 
1449  | 0  |   JSAMPROW elemptr;  | 
1450  | 0  |   int ctr;  | 
1451  | 0  |   SHIFT_TEMPS  | 
1452  |  |  | 
1453  |  |   /* Pass 1: process rows.  | 
1454  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
1455  |  |    * cK represents sqrt(2) * cos(K*pi/24).  | 
1456  |  |    */  | 
1457  |  | 
  | 
1458  | 0  |   dataptr = data;  | 
1459  | 0  |   ctr = 0;  | 
1460  | 0  |   for (;;) { | 
1461  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
1462  |  |  | 
1463  |  |     /* Even part */  | 
1464  |  | 
  | 
1465  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);  | 
1466  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);  | 
1467  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);  | 
1468  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);  | 
1469  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);  | 
1470  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);  | 
1471  |  | 
  | 
1472  | 0  |     tmp10 = tmp0 + tmp5;  | 
1473  | 0  |     tmp13 = tmp0 - tmp5;  | 
1474  | 0  |     tmp11 = tmp1 + tmp4;  | 
1475  | 0  |     tmp14 = tmp1 - tmp4;  | 
1476  | 0  |     tmp12 = tmp2 + tmp3;  | 
1477  | 0  |     tmp15 = tmp2 - tmp3;  | 
1478  |  | 
  | 
1479  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);  | 
1480  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);  | 
1481  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);  | 
1482  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);  | 
1483  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);  | 
1484  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);  | 
1485  |  |  | 
1486  |  |     /* Apply unsigned->signed conversion. */  | 
1487  | 0  |     dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);  | 
1488  | 0  |     dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);  | 
1489  | 0  |     dataptr[4] = (DCTELEM)  | 
1490  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */  | 
1491  | 0  |         CONST_BITS);  | 
1492  | 0  |     dataptr[2] = (DCTELEM)  | 
1493  | 0  |       DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */  | 
1494  | 0  |         CONST_BITS);  | 
1495  |  |  | 
1496  |  |     /* Odd part */  | 
1497  |  | 
  | 
1498  | 0  |     tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100);    /* c9 */  | 
1499  | 0  |     tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865);   /* c3-c9 */  | 
1500  | 0  |     tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065);   /* c3+c9 */  | 
1501  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054));   /* c5 */  | 
1502  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669));   /* c7 */  | 
1503  | 0  |     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */  | 
1504  | 0  |       + MULTIPLY(tmp5, FIX(0.184591911));        /* c11 */  | 
1505  | 0  |     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */  | 
1506  | 0  |     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */  | 
1507  | 0  |       + MULTIPLY(tmp5, FIX(0.860918669));        /* c7 */  | 
1508  | 0  |     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */  | 
1509  | 0  |       - MULTIPLY(tmp5, FIX(1.121971054));        /* c5 */  | 
1510  | 0  |     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */  | 
1511  | 0  |       - MULTIPLY(tmp2 + tmp5, FIX_0_541196100);  /* c9 */  | 
1512  |  | 
  | 
1513  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);  | 
1514  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);  | 
1515  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);  | 
1516  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);  | 
1517  |  | 
  | 
1518  | 0  |     ctr++;  | 
1519  |  | 
  | 
1520  | 0  |     if (ctr != DCTSIZE) { | 
1521  | 0  |       if (ctr == 12)  | 
1522  | 0  |   break;     /* Done. */  | 
1523  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
1524  | 0  |     } else  | 
1525  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
1526  | 0  |   }  | 
1527  |  |  | 
1528  |  |   /* Pass 2: process columns.  | 
1529  |  |    * We leave the results scaled up by an overall factor of 8.  | 
1530  |  |    * We must also scale the output by (8/12)**2 = 4/9, which we partially  | 
1531  |  |    * fold into the constant multipliers and final shifting:  | 
1532  |  |    * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.  | 
1533  |  |    */  | 
1534  |  | 
  | 
1535  | 0  |   dataptr = data;  | 
1536  | 0  |   wsptr = workspace;  | 
1537  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
1538  |  |     /* Even part */  | 
1539  |  | 
  | 
1540  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];  | 
1541  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];  | 
1542  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];  | 
1543  | 0  |     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];  | 
1544  | 0  |     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];  | 
1545  | 0  |     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];  | 
1546  |  | 
  | 
1547  | 0  |     tmp10 = tmp0 + tmp5;  | 
1548  | 0  |     tmp13 = tmp0 - tmp5;  | 
1549  | 0  |     tmp11 = tmp1 + tmp4;  | 
1550  | 0  |     tmp14 = tmp1 - tmp4;  | 
1551  | 0  |     tmp12 = tmp2 + tmp3;  | 
1552  | 0  |     tmp15 = tmp2 - tmp3;  | 
1553  |  | 
  | 
1554  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];  | 
1555  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];  | 
1556  | 0  |     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];  | 
1557  | 0  |     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];  | 
1558  | 0  |     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];  | 
1559  | 0  |     tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];  | 
1560  |  | 
  | 
1561  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
1562  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */  | 
1563  | 0  |         CONST_BITS+1);  | 
1564  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
1565  | 0  |       DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */  | 
1566  | 0  |         CONST_BITS+1);  | 
1567  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
1568  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)),         /* c4 */  | 
1569  | 0  |         CONST_BITS+1);  | 
1570  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
1571  | 0  |       DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) +        /* 8/9 */  | 
1572  | 0  |         MULTIPLY(tmp13 + tmp15, FIX(1.214244803)),         /* c2 */  | 
1573  | 0  |         CONST_BITS+1);  | 
1574  |  |  | 
1575  |  |     /* Odd part */  | 
1576  |  | 
  | 
1577  | 0  |     tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200));   /* c9 */  | 
1578  | 0  |     tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102));  /* c3-c9 */  | 
1579  | 0  |     tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502));  /* c3+c9 */  | 
1580  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603));   /* c5 */  | 
1581  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039));   /* c7 */  | 
1582  | 0  |     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */  | 
1583  | 0  |       + MULTIPLY(tmp5, FIX(0.164081699));        /* c11 */  | 
1584  | 0  |     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */  | 
1585  | 0  |     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */  | 
1586  | 0  |       + MULTIPLY(tmp5, FIX(0.765261039));        /* c7 */  | 
1587  | 0  |     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */  | 
1588  | 0  |       - MULTIPLY(tmp5, FIX(0.997307603));        /* c5 */  | 
1589  | 0  |     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */  | 
1590  | 0  |       - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */  | 
1591  |  | 
  | 
1592  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);  | 
1593  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);  | 
1594  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);  | 
1595  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);  | 
1596  |  | 
  | 
1597  | 0  |     dataptr++;      /* advance pointer to next column */  | 
1598  | 0  |     wsptr++;      /* advance pointer to next column */  | 
1599  | 0  |   }  | 
1600  | 0  | }  | 
1601  |  |  | 
1602  |  |  | 
1603  |  | /*  | 
1604  |  |  * Perform the forward DCT on a 13x13 sample block.  | 
1605  |  |  */  | 
1606  |  |  | 
1607  |  | GLOBAL(void)  | 
1608  |  | jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
1609  | 0  | { | 
1610  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;  | 
1611  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;  | 
1612  | 0  |   INT32 z1, z2;  | 
1613  | 0  |   DCTELEM workspace[8*5];  | 
1614  | 0  |   DCTELEM *dataptr;  | 
1615  | 0  |   DCTELEM *wsptr;  | 
1616  | 0  |   JSAMPROW elemptr;  | 
1617  | 0  |   int ctr;  | 
1618  | 0  |   SHIFT_TEMPS  | 
1619  |  |  | 
1620  |  |   /* Pass 1: process rows.  | 
1621  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
1622  |  |    * cK represents sqrt(2) * cos(K*pi/26).  | 
1623  |  |    */  | 
1624  |  | 
  | 
1625  | 0  |   dataptr = data;  | 
1626  | 0  |   ctr = 0;  | 
1627  | 0  |   for (;;) { | 
1628  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
1629  |  |  | 
1630  |  |     /* Even part */  | 
1631  |  | 
  | 
1632  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);  | 
1633  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);  | 
1634  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);  | 
1635  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);  | 
1636  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);  | 
1637  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);  | 
1638  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]);  | 
1639  |  | 
  | 
1640  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);  | 
1641  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);  | 
1642  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);  | 
1643  | 0  |     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);  | 
1644  | 0  |     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);  | 
1645  | 0  |     tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);  | 
1646  |  |  | 
1647  |  |     /* Apply unsigned->signed conversion. */  | 
1648  | 0  |     dataptr[0] = (DCTELEM)  | 
1649  | 0  |       (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);  | 
1650  | 0  |     tmp6 += tmp6;  | 
1651  | 0  |     tmp0 -= tmp6;  | 
1652  | 0  |     tmp1 -= tmp6;  | 
1653  | 0  |     tmp2 -= tmp6;  | 
1654  | 0  |     tmp3 -= tmp6;  | 
1655  | 0  |     tmp4 -= tmp6;  | 
1656  | 0  |     tmp5 -= tmp6;  | 
1657  | 0  |     dataptr[2] = (DCTELEM)  | 
1658  | 0  |       DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) +   /* c2 */  | 
1659  | 0  |         MULTIPLY(tmp1, FIX(1.058554052)) +   /* c6 */  | 
1660  | 0  |         MULTIPLY(tmp2, FIX(0.501487041)) -   /* c10 */  | 
1661  | 0  |         MULTIPLY(tmp3, FIX(0.170464608)) -   /* c12 */  | 
1662  | 0  |         MULTIPLY(tmp4, FIX(0.803364869)) -   /* c8 */  | 
1663  | 0  |         MULTIPLY(tmp5, FIX(1.252223920)),    /* c4 */  | 
1664  | 0  |         CONST_BITS);  | 
1665  | 0  |     z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */  | 
1666  | 0  |    MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */  | 
1667  | 0  |    MULTIPLY(tmp1 - tmp5, FIX(0.316450131));  /* (c8-c12)/2 */  | 
1668  | 0  |     z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */  | 
1669  | 0  |    MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */  | 
1670  | 0  |    MULTIPLY(tmp1 + tmp5, FIX(0.486914739));  /* (c8+c12)/2 */  | 
1671  |  | 
  | 
1672  | 0  |     dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);  | 
1673  | 0  |     dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);  | 
1674  |  |  | 
1675  |  |     /* Odd part */  | 
1676  |  | 
  | 
1677  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651));   /* c3 */  | 
1678  | 0  |     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945));   /* c5 */  | 
1679  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) +  /* c7 */  | 
1680  | 0  |      MULTIPLY(tmp14 + tmp15, FIX(0.338443458));   /* c11 */  | 
1681  | 0  |     tmp0 = tmp1 + tmp2 + tmp3 -  | 
1682  | 0  |      MULTIPLY(tmp10, FIX(2.020082300)) +          /* c3+c5+c7-c1 */  | 
1683  | 0  |      MULTIPLY(tmp14, FIX(0.318774355));           /* c9-c11 */  | 
1684  | 0  |     tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) -  /* c7 */  | 
1685  | 0  |      MULTIPLY(tmp11 + tmp12, FIX(0.338443458));   /* c11 */  | 
1686  | 0  |     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */  | 
1687  | 0  |     tmp1 += tmp4 + tmp5 +  | 
1688  | 0  |       MULTIPLY(tmp11, FIX(0.837223564)) -         /* c5+c9+c11-c3 */  | 
1689  | 0  |       MULTIPLY(tmp14, FIX(2.341699410));          /* c1+c7 */  | 
1690  | 0  |     tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */  | 
1691  | 0  |     tmp2 += tmp4 + tmp6 -  | 
1692  | 0  |       MULTIPLY(tmp12, FIX(1.572116027)) +         /* c1+c5-c9-c11 */  | 
1693  | 0  |       MULTIPLY(tmp15, FIX(2.260109708));          /* c3+c7 */  | 
1694  | 0  |     tmp3 += tmp5 + tmp6 +  | 
1695  | 0  |       MULTIPLY(tmp13, FIX(2.205608352)) -         /* c3+c5+c9-c7 */  | 
1696  | 0  |       MULTIPLY(tmp15, FIX(1.742345811));          /* c1+c11 */  | 
1697  |  | 
  | 
1698  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);  | 
1699  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);  | 
1700  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);  | 
1701  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);  | 
1702  |  | 
  | 
1703  | 0  |     ctr++;  | 
1704  |  | 
  | 
1705  | 0  |     if (ctr != DCTSIZE) { | 
1706  | 0  |       if (ctr == 13)  | 
1707  | 0  |   break;     /* Done. */  | 
1708  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
1709  | 0  |     } else  | 
1710  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
1711  | 0  |   }  | 
1712  |  |  | 
1713  |  |   /* Pass 2: process columns.  | 
1714  |  |    * We leave the results scaled up by an overall factor of 8.  | 
1715  |  |    * We must also scale the output by (8/13)**2 = 64/169, which we partially  | 
1716  |  |    * fold into the constant multipliers and final shifting:  | 
1717  |  |    * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.  | 
1718  |  |    */  | 
1719  |  | 
  | 
1720  | 0  |   dataptr = data;  | 
1721  | 0  |   wsptr = workspace;  | 
1722  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
1723  |  |     /* Even part */  | 
1724  |  | 
  | 
1725  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];  | 
1726  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];  | 
1727  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];  | 
1728  | 0  |     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];  | 
1729  | 0  |     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];  | 
1730  | 0  |     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];  | 
1731  | 0  |     tmp6 = dataptr[DCTSIZE*6];  | 
1732  |  | 
  | 
1733  | 0  |     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];  | 
1734  | 0  |     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];  | 
1735  | 0  |     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];  | 
1736  | 0  |     tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];  | 
1737  | 0  |     tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];  | 
1738  | 0  |     tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];  | 
1739  |  | 
  | 
1740  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
1741  | 0  |       DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,  | 
1742  | 0  |            FIX(0.757396450)),          /* 128/169 */  | 
1743  | 0  |         CONST_BITS+1);  | 
1744  | 0  |     tmp6 += tmp6;  | 
1745  | 0  |     tmp0 -= tmp6;  | 
1746  | 0  |     tmp1 -= tmp6;  | 
1747  | 0  |     tmp2 -= tmp6;  | 
1748  | 0  |     tmp3 -= tmp6;  | 
1749  | 0  |     tmp4 -= tmp6;  | 
1750  | 0  |     tmp5 -= tmp6;  | 
1751  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
1752  | 0  |       DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) +   /* c2 */  | 
1753  | 0  |         MULTIPLY(tmp1, FIX(0.801745081)) +   /* c6 */  | 
1754  | 0  |         MULTIPLY(tmp2, FIX(0.379824504)) -   /* c10 */  | 
1755  | 0  |         MULTIPLY(tmp3, FIX(0.129109289)) -   /* c12 */  | 
1756  | 0  |         MULTIPLY(tmp4, FIX(0.608465700)) -   /* c8 */  | 
1757  | 0  |         MULTIPLY(tmp5, FIX(0.948429952)),    /* c4 */  | 
1758  | 0  |         CONST_BITS+1);  | 
1759  | 0  |     z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */  | 
1760  | 0  |    MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */  | 
1761  | 0  |    MULTIPLY(tmp1 - tmp5, FIX(0.239678205));  /* (c8-c12)/2 */  | 
1762  | 0  |     z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */  | 
1763  | 0  |    MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */  | 
1764  | 0  |    MULTIPLY(tmp1 + tmp5, FIX(0.368787494));  /* (c8+c12)/2 */  | 
1765  |  | 
  | 
1766  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);  | 
1767  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);  | 
1768  |  |  | 
1769  |  |     /* Odd part */  | 
1770  |  | 
  | 
1771  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908));   /* c3 */  | 
1772  | 0  |     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751));   /* c5 */  | 
1773  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) +  /* c7 */  | 
1774  | 0  |      MULTIPLY(tmp14 + tmp15, FIX(0.256335874));   /* c11 */  | 
1775  | 0  |     tmp0 = tmp1 + tmp2 + tmp3 -  | 
1776  | 0  |      MULTIPLY(tmp10, FIX(1.530003162)) +          /* c3+c5+c7-c1 */  | 
1777  | 0  |      MULTIPLY(tmp14, FIX(0.241438564));           /* c9-c11 */  | 
1778  | 0  |     tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) -  /* c7 */  | 
1779  | 0  |      MULTIPLY(tmp11 + tmp12, FIX(0.256335874));   /* c11 */  | 
1780  | 0  |     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */  | 
1781  | 0  |     tmp1 += tmp4 + tmp5 +  | 
1782  | 0  |       MULTIPLY(tmp11, FIX(0.634110155)) -         /* c5+c9+c11-c3 */  | 
1783  | 0  |       MULTIPLY(tmp14, FIX(1.773594819));          /* c1+c7 */  | 
1784  | 0  |     tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */  | 
1785  | 0  |     tmp2 += tmp4 + tmp6 -  | 
1786  | 0  |       MULTIPLY(tmp12, FIX(1.190715098)) +         /* c1+c5-c9-c11 */  | 
1787  | 0  |       MULTIPLY(tmp15, FIX(1.711799069));          /* c3+c7 */  | 
1788  | 0  |     tmp3 += tmp5 + tmp6 +  | 
1789  | 0  |       MULTIPLY(tmp13, FIX(1.670519935)) -         /* c3+c5+c9-c7 */  | 
1790  | 0  |       MULTIPLY(tmp15, FIX(1.319646532));          /* c1+c11 */  | 
1791  |  | 
  | 
1792  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);  | 
1793  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);  | 
1794  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);  | 
1795  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);  | 
1796  |  | 
  | 
1797  | 0  |     dataptr++;      /* advance pointer to next column */  | 
1798  | 0  |     wsptr++;      /* advance pointer to next column */  | 
1799  | 0  |   }  | 
1800  | 0  | }  | 
1801  |  |  | 
1802  |  |  | 
1803  |  | /*  | 
1804  |  |  * Perform the forward DCT on a 14x14 sample block.  | 
1805  |  |  */  | 
1806  |  |  | 
1807  |  | GLOBAL(void)  | 
1808  |  | jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
1809  | 0  | { | 
1810  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;  | 
1811  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;  | 
1812  | 0  |   DCTELEM workspace[8*6];  | 
1813  | 0  |   DCTELEM *dataptr;  | 
1814  | 0  |   DCTELEM *wsptr;  | 
1815  | 0  |   JSAMPROW elemptr;  | 
1816  | 0  |   int ctr;  | 
1817  | 0  |   SHIFT_TEMPS  | 
1818  |  |  | 
1819  |  |   /* Pass 1: process rows.  | 
1820  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
1821  |  |    * cK represents sqrt(2) * cos(K*pi/28).  | 
1822  |  |    */  | 
1823  |  | 
  | 
1824  | 0  |   dataptr = data;  | 
1825  | 0  |   ctr = 0;  | 
1826  | 0  |   for (;;) { | 
1827  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
1828  |  |  | 
1829  |  |     /* Even part */  | 
1830  |  | 
  | 
1831  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);  | 
1832  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);  | 
1833  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);  | 
1834  | 0  |     tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);  | 
1835  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);  | 
1836  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);  | 
1837  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);  | 
1838  |  | 
  | 
1839  | 0  |     tmp10 = tmp0 + tmp6;  | 
1840  | 0  |     tmp14 = tmp0 - tmp6;  | 
1841  | 0  |     tmp11 = tmp1 + tmp5;  | 
1842  | 0  |     tmp15 = tmp1 - tmp5;  | 
1843  | 0  |     tmp12 = tmp2 + tmp4;  | 
1844  | 0  |     tmp16 = tmp2 - tmp4;  | 
1845  |  | 
  | 
1846  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);  | 
1847  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);  | 
1848  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);  | 
1849  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);  | 
1850  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);  | 
1851  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);  | 
1852  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);  | 
1853  |  |  | 
1854  |  |     /* Apply unsigned->signed conversion. */  | 
1855  | 0  |     dataptr[0] = (DCTELEM)  | 
1856  | 0  |       (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);  | 
1857  | 0  |     tmp13 += tmp13;  | 
1858  | 0  |     dataptr[4] = (DCTELEM)  | 
1859  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */  | 
1860  | 0  |         MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */  | 
1861  | 0  |         MULTIPLY(tmp12 - tmp13, FIX(0.881747734)),  /* c8 */  | 
1862  | 0  |         CONST_BITS);  | 
1863  |  | 
  | 
1864  | 0  |     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686));    /* c6 */  | 
1865  |  | 
  | 
1866  | 0  |     dataptr[2] = (DCTELEM)  | 
1867  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590))   /* c2-c6 */  | 
1868  | 0  |         + MULTIPLY(tmp16, FIX(0.613604268)),        /* c10 */  | 
1869  | 0  |         CONST_BITS);  | 
1870  | 0  |     dataptr[6] = (DCTELEM)  | 
1871  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954))   /* c6+c10 */  | 
1872  | 0  |         - MULTIPLY(tmp16, FIX(1.378756276)),        /* c2 */  | 
1873  | 0  |         CONST_BITS);  | 
1874  |  |  | 
1875  |  |     /* Odd part */  | 
1876  |  | 
  | 
1877  | 0  |     tmp10 = tmp1 + tmp2;  | 
1878  | 0  |     tmp11 = tmp5 - tmp4;  | 
1879  | 0  |     dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);  | 
1880  | 0  |     tmp3 <<= CONST_BITS;  | 
1881  | 0  |     tmp10 = MULTIPLY(tmp10, - FIX(0.158341681));          /* -c13 */  | 
1882  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(1.405321284));            /* c1 */  | 
1883  | 0  |     tmp10 += tmp11 - tmp3;  | 
1884  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) +     /* c5 */  | 
1885  | 0  |       MULTIPLY(tmp4 + tmp6, FIX(0.752406978));      /* c9 */  | 
1886  | 0  |     dataptr[5] = (DCTELEM)  | 
1887  | 0  |       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */  | 
1888  | 0  |         + MULTIPLY(tmp4, FIX(1.119999435)),         /* c1+c11-c9 */  | 
1889  | 0  |         CONST_BITS);  | 
1890  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) +     /* c3 */  | 
1891  | 0  |       MULTIPLY(tmp5 - tmp6, FIX(0.467085129));      /* c11 */  | 
1892  | 0  |     dataptr[3] = (DCTELEM)  | 
1893  | 0  |       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */  | 
1894  | 0  |         - MULTIPLY(tmp5, FIX(3.069855259)),         /* c1+c5+c11 */  | 
1895  | 0  |         CONST_BITS);  | 
1896  | 0  |     dataptr[1] = (DCTELEM)  | 
1897  | 0  |       DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -  | 
1898  | 0  |         MULTIPLY(tmp0 + tmp6, FIX(1.126980169)),    /* c3+c5-c1 */  | 
1899  | 0  |         CONST_BITS);  | 
1900  |  | 
  | 
1901  | 0  |     ctr++;  | 
1902  |  | 
  | 
1903  | 0  |     if (ctr != DCTSIZE) { | 
1904  | 0  |       if (ctr == 14)  | 
1905  | 0  |   break;     /* Done. */  | 
1906  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
1907  | 0  |     } else  | 
1908  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
1909  | 0  |   }  | 
1910  |  |  | 
1911  |  |   /* Pass 2: process columns.  | 
1912  |  |    * We leave the results scaled up by an overall factor of 8.  | 
1913  |  |    * We must also scale the output by (8/14)**2 = 16/49, which we partially  | 
1914  |  |    * fold into the constant multipliers and final shifting:  | 
1915  |  |    * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.  | 
1916  |  |    */  | 
1917  |  | 
  | 
1918  | 0  |   dataptr = data;  | 
1919  | 0  |   wsptr = workspace;  | 
1920  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
1921  |  |     /* Even part */  | 
1922  |  | 
  | 
1923  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];  | 
1924  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];  | 
1925  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];  | 
1926  | 0  |     tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];  | 
1927  | 0  |     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];  | 
1928  | 0  |     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];  | 
1929  | 0  |     tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];  | 
1930  |  | 
  | 
1931  | 0  |     tmp10 = tmp0 + tmp6;  | 
1932  | 0  |     tmp14 = tmp0 - tmp6;  | 
1933  | 0  |     tmp11 = tmp1 + tmp5;  | 
1934  | 0  |     tmp15 = tmp1 - tmp5;  | 
1935  | 0  |     tmp12 = tmp2 + tmp4;  | 
1936  | 0  |     tmp16 = tmp2 - tmp4;  | 
1937  |  | 
  | 
1938  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];  | 
1939  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];  | 
1940  | 0  |     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];  | 
1941  | 0  |     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];  | 
1942  | 0  |     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];  | 
1943  | 0  |     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];  | 
1944  | 0  |     tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];  | 
1945  |  | 
  | 
1946  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
1947  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,  | 
1948  | 0  |            FIX(0.653061224)),                 /* 32/49 */  | 
1949  | 0  |         CONST_BITS+1);  | 
1950  | 0  |     tmp13 += tmp13;  | 
1951  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
1952  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */  | 
1953  | 0  |         MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */  | 
1954  | 0  |         MULTIPLY(tmp12 - tmp13, FIX(0.575835255)),  /* c8 */  | 
1955  | 0  |         CONST_BITS+1);  | 
1956  |  | 
  | 
1957  | 0  |     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570));    /* c6 */  | 
1958  |  | 
  | 
1959  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
1960  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691))   /* c2-c6 */  | 
1961  | 0  |         + MULTIPLY(tmp16, FIX(0.400721155)),        /* c10 */  | 
1962  | 0  |         CONST_BITS+1);  | 
1963  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
1964  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725))   /* c6+c10 */  | 
1965  | 0  |         - MULTIPLY(tmp16, FIX(0.900412262)),        /* c2 */  | 
1966  | 0  |         CONST_BITS+1);  | 
1967  |  |  | 
1968  |  |     /* Odd part */  | 
1969  |  | 
  | 
1970  | 0  |     tmp10 = tmp1 + tmp2;  | 
1971  | 0  |     tmp11 = tmp5 - tmp4;  | 
1972  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM)  | 
1973  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,  | 
1974  | 0  |            FIX(0.653061224)),                 /* 32/49 */  | 
1975  | 0  |         CONST_BITS+1);  | 
1976  | 0  |     tmp3  = MULTIPLY(tmp3 , FIX(0.653061224));            /* 32/49 */  | 
1977  | 0  |     tmp10 = MULTIPLY(tmp10, - FIX(0.103406812));          /* -c13 */  | 
1978  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(0.917760839));            /* c1 */  | 
1979  | 0  |     tmp10 += tmp11 - tmp3;  | 
1980  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) +     /* c5 */  | 
1981  | 0  |       MULTIPLY(tmp4 + tmp6, FIX(0.491367823));      /* c9 */  | 
1982  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
1983  | 0  |       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */  | 
1984  | 0  |         + MULTIPLY(tmp4, FIX(0.731428202)),         /* c1+c11-c9 */  | 
1985  | 0  |         CONST_BITS+1);  | 
1986  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) +     /* c3 */  | 
1987  | 0  |       MULTIPLY(tmp5 - tmp6, FIX(0.305035186));      /* c11 */  | 
1988  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
1989  | 0  |       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */  | 
1990  | 0  |         - MULTIPLY(tmp5, FIX(2.004803435)),         /* c1+c5+c11 */  | 
1991  | 0  |         CONST_BITS+1);  | 
1992  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
1993  | 0  |       DESCALE(tmp11 + tmp12 + tmp3  | 
1994  | 0  |         - MULTIPLY(tmp0, FIX(0.735987049))          /* c3+c5-c1 */  | 
1995  | 0  |         - MULTIPLY(tmp6, FIX(0.082925825)),         /* c9-c11-c13 */  | 
1996  | 0  |         CONST_BITS+1);  | 
1997  |  | 
  | 
1998  | 0  |     dataptr++;      /* advance pointer to next column */  | 
1999  | 0  |     wsptr++;      /* advance pointer to next column */  | 
2000  | 0  |   }  | 
2001  | 0  | }  | 
2002  |  |  | 
2003  |  |  | 
2004  |  | /*  | 
2005  |  |  * Perform the forward DCT on a 15x15 sample block.  | 
2006  |  |  */  | 
2007  |  |  | 
2008  |  | GLOBAL(void)  | 
2009  |  | jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
2010  | 0  | { | 
2011  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
2012  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;  | 
2013  | 0  |   INT32 z1, z2, z3;  | 
2014  | 0  |   DCTELEM workspace[8*7];  | 
2015  | 0  |   DCTELEM *dataptr;  | 
2016  | 0  |   DCTELEM *wsptr;  | 
2017  | 0  |   JSAMPROW elemptr;  | 
2018  | 0  |   int ctr;  | 
2019  | 0  |   SHIFT_TEMPS  | 
2020  |  |  | 
2021  |  |   /* Pass 1: process rows.  | 
2022  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
2023  |  |    * cK represents sqrt(2) * cos(K*pi/30).  | 
2024  |  |    */  | 
2025  |  | 
  | 
2026  | 0  |   dataptr = data;  | 
2027  | 0  |   ctr = 0;  | 
2028  | 0  |   for (;;) { | 
2029  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
2030  |  |  | 
2031  |  |     /* Even part */  | 
2032  |  | 
  | 
2033  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);  | 
2034  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);  | 
2035  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);  | 
2036  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);  | 
2037  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);  | 
2038  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);  | 
2039  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);  | 
2040  | 0  |     tmp7 = GETJSAMPLE(elemptr[7]);  | 
2041  |  | 
  | 
2042  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);  | 
2043  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);  | 
2044  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);  | 
2045  | 0  |     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);  | 
2046  | 0  |     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);  | 
2047  | 0  |     tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);  | 
2048  | 0  |     tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);  | 
2049  |  | 
  | 
2050  | 0  |     z1 = tmp0 + tmp4 + tmp5;  | 
2051  | 0  |     z2 = tmp1 + tmp3 + tmp6;  | 
2052  | 0  |     z3 = tmp2 + tmp7;  | 
2053  |  |     /* Apply unsigned->signed conversion. */  | 
2054  | 0  |     dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);  | 
2055  | 0  |     z3 += z3;  | 
2056  | 0  |     dataptr[6] = (DCTELEM)  | 
2057  | 0  |       DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */  | 
2058  | 0  |         MULTIPLY(z2 - z3, FIX(0.437016024)),  /* c12 */  | 
2059  | 0  |         CONST_BITS);  | 
2060  | 0  |     tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;  | 
2061  | 0  |     z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) -  /* c2+c14 */  | 
2062  | 0  |          MULTIPLY(tmp6 - tmp2, FIX(2.238241955));   /* c4+c8 */  | 
2063  | 0  |     z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) -  /* c8-c14 */  | 
2064  | 0  |    MULTIPLY(tmp0 - tmp2, FIX(0.091361227));   /* c2-c4 */  | 
2065  | 0  |     z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) +  /* c2 */  | 
2066  | 0  |    MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) +  /* c8 */  | 
2067  | 0  |    MULTIPLY(tmp1 - tmp4, FIX(0.790569415));   /* (c6+c12)/2 */  | 
2068  |  | 
  | 
2069  | 0  |     dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);  | 
2070  | 0  |     dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);  | 
2071  |  |  | 
2072  |  |     /* Odd part */  | 
2073  |  | 
  | 
2074  | 0  |     tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,  | 
2075  | 0  |         FIX(1.224744871));                         /* c5 */  | 
2076  | 0  |     tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */  | 
2077  | 0  |      MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876));  /* c9 */  | 
2078  | 0  |     tmp12 = MULTIPLY(tmp12, FIX(1.224744871));                 /* c5 */  | 
2079  | 0  |     tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) +         /* c1 */  | 
2080  | 0  |      MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) +         /* c3 */  | 
2081  | 0  |      MULTIPLY(tmp13 + tmp15, FIX(0.575212477));          /* c11 */  | 
2082  | 0  |     tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) -                 /* c7-c11 */  | 
2083  | 0  |      MULTIPLY(tmp14, FIX(0.513743148)) +                 /* c3-c9 */  | 
2084  | 0  |      MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12;   /* c1+c13 */  | 
2085  | 0  |     tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) -               /* -(c1-c7) */  | 
2086  | 0  |      MULTIPLY(tmp11, FIX(2.176250899)) -                 /* c3+c9 */  | 
2087  | 0  |      MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12;   /* c11+c13 */  | 
2088  |  | 
  | 
2089  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);  | 
2090  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);  | 
2091  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);  | 
2092  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);  | 
2093  |  | 
  | 
2094  | 0  |     ctr++;  | 
2095  |  | 
  | 
2096  | 0  |     if (ctr != DCTSIZE) { | 
2097  | 0  |       if (ctr == 15)  | 
2098  | 0  |   break;     /* Done. */  | 
2099  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
2100  | 0  |     } else  | 
2101  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
2102  | 0  |   }  | 
2103  |  |  | 
2104  |  |   /* Pass 2: process columns.  | 
2105  |  |    * We leave the results scaled up by an overall factor of 8.  | 
2106  |  |    * We must also scale the output by (8/15)**2 = 64/225, which we partially  | 
2107  |  |    * fold into the constant multipliers and final shifting:  | 
2108  |  |    * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.  | 
2109  |  |    */  | 
2110  |  | 
  | 
2111  | 0  |   dataptr = data;  | 
2112  | 0  |   wsptr = workspace;  | 
2113  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
2114  |  |     /* Even part */  | 
2115  |  | 
  | 
2116  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];  | 
2117  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];  | 
2118  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];  | 
2119  | 0  |     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];  | 
2120  | 0  |     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];  | 
2121  | 0  |     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];  | 
2122  | 0  |     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];  | 
2123  | 0  |     tmp7 = dataptr[DCTSIZE*7];  | 
2124  |  | 
  | 
2125  | 0  |     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];  | 
2126  | 0  |     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];  | 
2127  | 0  |     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];  | 
2128  | 0  |     tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];  | 
2129  | 0  |     tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];  | 
2130  | 0  |     tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];  | 
2131  | 0  |     tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];  | 
2132  |  | 
  | 
2133  | 0  |     z1 = tmp0 + tmp4 + tmp5;  | 
2134  | 0  |     z2 = tmp1 + tmp3 + tmp6;  | 
2135  | 0  |     z3 = tmp2 + tmp7;  | 
2136  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
2137  | 0  |       DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */  | 
2138  | 0  |         CONST_BITS+2);  | 
2139  | 0  |     z3 += z3;  | 
2140  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
2141  | 0  |       DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */  | 
2142  | 0  |         MULTIPLY(z2 - z3, FIX(0.497227121)),  /* c12 */  | 
2143  | 0  |         CONST_BITS+2);  | 
2144  | 0  |     tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;  | 
2145  | 0  |     z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) -  /* c2+c14 */  | 
2146  | 0  |          MULTIPLY(tmp6 - tmp2, FIX(2.546621957));   /* c4+c8 */  | 
2147  | 0  |     z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) -  /* c8-c14 */  | 
2148  | 0  |    MULTIPLY(tmp0 - tmp2, FIX(0.103948774));   /* c2-c4 */  | 
2149  | 0  |     z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) +  /* c2 */  | 
2150  | 0  |    MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) +  /* c8 */  | 
2151  | 0  |    MULTIPLY(tmp1 - tmp4, FIX(0.899492312));   /* (c6+c12)/2 */  | 
2152  |  | 
  | 
2153  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);  | 
2154  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);  | 
2155  |  |  | 
2156  |  |     /* Odd part */  | 
2157  |  | 
  | 
2158  | 0  |     tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,  | 
2159  | 0  |         FIX(1.393487498));                         /* c5 */  | 
2160  | 0  |     tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */  | 
2161  | 0  |      MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187));  /* c9 */  | 
2162  | 0  |     tmp12 = MULTIPLY(tmp12, FIX(1.393487498));                 /* c5 */  | 
2163  | 0  |     tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) +         /* c1 */  | 
2164  | 0  |      MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) +         /* c3 */  | 
2165  | 0  |      MULTIPLY(tmp13 + tmp15, FIX(0.654463974));          /* c11 */  | 
2166  | 0  |     tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) -                 /* c7-c11 */  | 
2167  | 0  |      MULTIPLY(tmp14, FIX(0.584525538)) +                 /* c3-c9 */  | 
2168  | 0  |      MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12;   /* c1+c13 */  | 
2169  | 0  |     tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) -               /* -(c1-c7) */  | 
2170  | 0  |      MULTIPLY(tmp11, FIX(2.476089912)) -                 /* c3+c9 */  | 
2171  | 0  |      MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12;   /* c11+c13 */  | 
2172  |  | 
  | 
2173  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);  | 
2174  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);  | 
2175  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);  | 
2176  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);  | 
2177  |  | 
  | 
2178  | 0  |     dataptr++;      /* advance pointer to next column */  | 
2179  | 0  |     wsptr++;      /* advance pointer to next column */  | 
2180  | 0  |   }  | 
2181  | 0  | }  | 
2182  |  |  | 
2183  |  |  | 
2184  |  | /*  | 
2185  |  |  * Perform the forward DCT on a 16x16 sample block.  | 
2186  |  |  */  | 
2187  |  |  | 
2188  |  | GLOBAL(void)  | 
2189  |  | jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
2190  | 0  | { | 
2191  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
2192  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;  | 
2193  | 0  |   DCTELEM workspace[DCTSIZE2];  | 
2194  | 0  |   DCTELEM *dataptr;  | 
2195  | 0  |   DCTELEM *wsptr;  | 
2196  | 0  |   JSAMPROW elemptr;  | 
2197  | 0  |   int ctr;  | 
2198  | 0  |   SHIFT_TEMPS  | 
2199  |  |  | 
2200  |  |   /* Pass 1: process rows.  | 
2201  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
2202  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
2203  |  |    * cK represents sqrt(2) * cos(K*pi/32).  | 
2204  |  |    */  | 
2205  |  | 
  | 
2206  | 0  |   dataptr = data;  | 
2207  | 0  |   ctr = 0;  | 
2208  | 0  |   for (;;) { | 
2209  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
2210  |  |  | 
2211  |  |     /* Even part */  | 
2212  |  | 
  | 
2213  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);  | 
2214  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);  | 
2215  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);  | 
2216  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);  | 
2217  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);  | 
2218  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);  | 
2219  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);  | 
2220  | 0  |     tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);  | 
2221  |  | 
  | 
2222  | 0  |     tmp10 = tmp0 + tmp7;  | 
2223  | 0  |     tmp14 = tmp0 - tmp7;  | 
2224  | 0  |     tmp11 = tmp1 + tmp6;  | 
2225  | 0  |     tmp15 = tmp1 - tmp6;  | 
2226  | 0  |     tmp12 = tmp2 + tmp5;  | 
2227  | 0  |     tmp16 = tmp2 - tmp5;  | 
2228  | 0  |     tmp13 = tmp3 + tmp4;  | 
2229  | 0  |     tmp17 = tmp3 - tmp4;  | 
2230  |  | 
  | 
2231  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);  | 
2232  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);  | 
2233  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);  | 
2234  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);  | 
2235  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);  | 
2236  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);  | 
2237  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);  | 
2238  | 0  |     tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);  | 
2239  |  |  | 
2240  |  |     /* Apply unsigned->signed conversion. */  | 
2241  | 0  |     dataptr[0] = (DCTELEM)  | 
2242  | 0  |       ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);  | 
2243  | 0  |     dataptr[4] = (DCTELEM)  | 
2244  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */  | 
2245  | 0  |         MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */  | 
2246  | 0  |         CONST_BITS-PASS1_BITS);  | 
2247  |  | 
  | 
2248  | 0  |     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */  | 
2249  | 0  |       MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */  | 
2250  |  | 
  | 
2251  | 0  |     dataptr[2] = (DCTELEM)  | 
2252  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */  | 
2253  | 0  |         + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */  | 
2254  | 0  |         CONST_BITS-PASS1_BITS);  | 
2255  | 0  |     dataptr[6] = (DCTELEM)  | 
2256  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */  | 
2257  | 0  |         - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */  | 
2258  | 0  |         CONST_BITS-PASS1_BITS);  | 
2259  |  |  | 
2260  |  |     /* Odd part */  | 
2261  |  | 
  | 
2262  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */  | 
2263  | 0  |       MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */  | 
2264  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */  | 
2265  | 0  |       MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */  | 
2266  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */  | 
2267  | 0  |       MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */  | 
2268  | 0  |     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */  | 
2269  | 0  |       MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */  | 
2270  | 0  |     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */  | 
2271  | 0  |       MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */  | 
2272  | 0  |     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */  | 
2273  | 0  |       MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */  | 
2274  | 0  |     tmp10 = tmp11 + tmp12 + tmp13 -  | 
2275  | 0  |       MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */  | 
2276  | 0  |       MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */  | 
2277  | 0  |     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */  | 
2278  | 0  |        - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */  | 
2279  | 0  |     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */  | 
2280  | 0  |        + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */  | 
2281  | 0  |     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */  | 
2282  | 0  |        + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */  | 
2283  |  | 
  | 
2284  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);  | 
2285  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);  | 
2286  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);  | 
2287  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);  | 
2288  |  | 
  | 
2289  | 0  |     ctr++;  | 
2290  |  | 
  | 
2291  | 0  |     if (ctr != DCTSIZE) { | 
2292  | 0  |       if (ctr == DCTSIZE * 2)  | 
2293  | 0  |   break;     /* Done. */  | 
2294  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
2295  | 0  |     } else  | 
2296  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
2297  | 0  |   }  | 
2298  |  |  | 
2299  |  |   /* Pass 2: process columns.  | 
2300  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
2301  |  |    * by an overall factor of 8.  | 
2302  |  |    * We must also scale the output by (8/16)**2 = 1/2**2.  | 
2303  |  |    * cK represents sqrt(2) * cos(K*pi/32).  | 
2304  |  |    */  | 
2305  |  | 
  | 
2306  | 0  |   dataptr = data;  | 
2307  | 0  |   wsptr = workspace;  | 
2308  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
2309  |  |     /* Even part */  | 
2310  |  | 
  | 
2311  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];  | 
2312  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];  | 
2313  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];  | 
2314  | 0  |     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];  | 
2315  | 0  |     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];  | 
2316  | 0  |     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];  | 
2317  | 0  |     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];  | 
2318  | 0  |     tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];  | 
2319  |  | 
  | 
2320  | 0  |     tmp10 = tmp0 + tmp7;  | 
2321  | 0  |     tmp14 = tmp0 - tmp7;  | 
2322  | 0  |     tmp11 = tmp1 + tmp6;  | 
2323  | 0  |     tmp15 = tmp1 - tmp6;  | 
2324  | 0  |     tmp12 = tmp2 + tmp5;  | 
2325  | 0  |     tmp16 = tmp2 - tmp5;  | 
2326  | 0  |     tmp13 = tmp3 + tmp4;  | 
2327  | 0  |     tmp17 = tmp3 - tmp4;  | 
2328  |  | 
  | 
2329  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];  | 
2330  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];  | 
2331  | 0  |     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];  | 
2332  | 0  |     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];  | 
2333  | 0  |     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];  | 
2334  | 0  |     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];  | 
2335  | 0  |     tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];  | 
2336  | 0  |     tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];  | 
2337  |  | 
  | 
2338  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
2339  | 0  |       DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);  | 
2340  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
2341  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */  | 
2342  | 0  |         MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */  | 
2343  | 0  |         CONST_BITS+PASS1_BITS+2);  | 
2344  |  | 
  | 
2345  | 0  |     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */  | 
2346  | 0  |       MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */  | 
2347  |  | 
  | 
2348  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
2349  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */  | 
2350  | 0  |         + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+10 */  | 
2351  | 0  |         CONST_BITS+PASS1_BITS+2);  | 
2352  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
2353  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */  | 
2354  | 0  |         - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */  | 
2355  | 0  |         CONST_BITS+PASS1_BITS+2);  | 
2356  |  |  | 
2357  |  |     /* Odd part */  | 
2358  |  | 
  | 
2359  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */  | 
2360  | 0  |       MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */  | 
2361  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */  | 
2362  | 0  |       MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */  | 
2363  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */  | 
2364  | 0  |       MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */  | 
2365  | 0  |     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */  | 
2366  | 0  |       MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */  | 
2367  | 0  |     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */  | 
2368  | 0  |       MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */  | 
2369  | 0  |     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */  | 
2370  | 0  |       MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */  | 
2371  | 0  |     tmp10 = tmp11 + tmp12 + tmp13 -  | 
2372  | 0  |       MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */  | 
2373  | 0  |       MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */  | 
2374  | 0  |     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */  | 
2375  | 0  |        - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */  | 
2376  | 0  |     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */  | 
2377  | 0  |        + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */  | 
2378  | 0  |     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */  | 
2379  | 0  |        + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */  | 
2380  |  | 
  | 
2381  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);  | 
2382  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);  | 
2383  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);  | 
2384  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);  | 
2385  |  | 
  | 
2386  | 0  |     dataptr++;      /* advance pointer to next column */  | 
2387  | 0  |     wsptr++;      /* advance pointer to next column */  | 
2388  | 0  |   }  | 
2389  | 0  | }  | 
2390  |  |  | 
2391  |  |  | 
2392  |  | /*  | 
2393  |  |  * Perform the forward DCT on a 16x8 sample block.  | 
2394  |  |  *  | 
2395  |  |  * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).  | 
2396  |  |  */  | 
2397  |  |  | 
2398  |  | GLOBAL(void)  | 
2399  |  | jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
2400  | 0  | { | 
2401  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
2402  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;  | 
2403  | 0  |   INT32 z1;  | 
2404  | 0  |   DCTELEM *dataptr;  | 
2405  | 0  |   JSAMPROW elemptr;  | 
2406  | 0  |   int ctr;  | 
2407  | 0  |   SHIFT_TEMPS  | 
2408  |  |  | 
2409  |  |   /* Pass 1: process rows.  | 
2410  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
2411  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
2412  |  |    * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).  | 
2413  |  |    */  | 
2414  |  | 
  | 
2415  | 0  |   dataptr = data;  | 
2416  | 0  |   ctr = 0;  | 
2417  | 0  |   for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
2418  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
2419  |  |  | 
2420  |  |     /* Even part */  | 
2421  |  | 
  | 
2422  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);  | 
2423  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);  | 
2424  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);  | 
2425  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);  | 
2426  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);  | 
2427  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);  | 
2428  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);  | 
2429  | 0  |     tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);  | 
2430  |  | 
  | 
2431  | 0  |     tmp10 = tmp0 + tmp7;  | 
2432  | 0  |     tmp14 = tmp0 - tmp7;  | 
2433  | 0  |     tmp11 = tmp1 + tmp6;  | 
2434  | 0  |     tmp15 = tmp1 - tmp6;  | 
2435  | 0  |     tmp12 = tmp2 + tmp5;  | 
2436  | 0  |     tmp16 = tmp2 - tmp5;  | 
2437  | 0  |     tmp13 = tmp3 + tmp4;  | 
2438  | 0  |     tmp17 = tmp3 - tmp4;  | 
2439  |  | 
  | 
2440  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);  | 
2441  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);  | 
2442  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);  | 
2443  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);  | 
2444  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);  | 
2445  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);  | 
2446  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);  | 
2447  | 0  |     tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);  | 
2448  |  |  | 
2449  |  |     /* Apply unsigned->signed conversion. */  | 
2450  | 0  |     dataptr[0] = (DCTELEM)  | 
2451  | 0  |       ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);  | 
2452  | 0  |     dataptr[4] = (DCTELEM)  | 
2453  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */  | 
2454  | 0  |         MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */  | 
2455  | 0  |         CONST_BITS-PASS1_BITS);  | 
2456  |  | 
  | 
2457  | 0  |     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */  | 
2458  | 0  |       MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */  | 
2459  |  | 
  | 
2460  | 0  |     dataptr[2] = (DCTELEM)  | 
2461  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */  | 
2462  | 0  |         + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */  | 
2463  | 0  |         CONST_BITS-PASS1_BITS);  | 
2464  | 0  |     dataptr[6] = (DCTELEM)  | 
2465  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */  | 
2466  | 0  |         - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */  | 
2467  | 0  |         CONST_BITS-PASS1_BITS);  | 
2468  |  |  | 
2469  |  |     /* Odd part */  | 
2470  |  | 
  | 
2471  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */  | 
2472  | 0  |       MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */  | 
2473  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */  | 
2474  | 0  |       MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */  | 
2475  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */  | 
2476  | 0  |       MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */  | 
2477  | 0  |     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */  | 
2478  | 0  |       MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */  | 
2479  | 0  |     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */  | 
2480  | 0  |       MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */  | 
2481  | 0  |     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */  | 
2482  | 0  |       MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */  | 
2483  | 0  |     tmp10 = tmp11 + tmp12 + tmp13 -  | 
2484  | 0  |       MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */  | 
2485  | 0  |       MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */  | 
2486  | 0  |     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */  | 
2487  | 0  |        - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */  | 
2488  | 0  |     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */  | 
2489  | 0  |        + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */  | 
2490  | 0  |     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */  | 
2491  | 0  |        + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */  | 
2492  |  | 
  | 
2493  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);  | 
2494  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);  | 
2495  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);  | 
2496  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);  | 
2497  |  | 
  | 
2498  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
2499  | 0  |   }  | 
2500  |  |  | 
2501  |  |   /* Pass 2: process columns.  | 
2502  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
2503  |  |    * by an overall factor of 8.  | 
2504  |  |    * We must also scale the output by 8/16 = 1/2.  | 
2505  |  |    * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).  | 
2506  |  |    */  | 
2507  |  | 
  | 
2508  | 0  |   dataptr = data;  | 
2509  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
2510  |  |     /* Even part per LL&M figure 1 --- note that published figure is faulty;  | 
2511  |  |      * rotator "c1" should be "c6".  | 
2512  |  |      */  | 
2513  |  | 
  | 
2514  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];  | 
2515  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];  | 
2516  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];  | 
2517  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];  | 
2518  |  | 
  | 
2519  | 0  |     tmp10 = tmp0 + tmp3;  | 
2520  | 0  |     tmp12 = tmp0 - tmp3;  | 
2521  | 0  |     tmp11 = tmp1 + tmp2;  | 
2522  | 0  |     tmp13 = tmp1 - tmp2;  | 
2523  |  | 
  | 
2524  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];  | 
2525  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];  | 
2526  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];  | 
2527  | 0  |     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];  | 
2528  |  | 
  | 
2529  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);  | 
2530  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);  | 
2531  |  | 
  | 
2532  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);   /* c6 */  | 
2533  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
2534  | 0  |       DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */  | 
2535  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2536  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
2537  | 0  |       DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */  | 
2538  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2539  |  |  | 
2540  |  |     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).  | 
2541  |  |      * i0..i3 in the paper are tmp0..tmp3 here.  | 
2542  |  |      */  | 
2543  |  | 
  | 
2544  | 0  |     tmp12 = tmp0 + tmp2;  | 
2545  | 0  |     tmp13 = tmp1 + tmp3;  | 
2546  |  | 
  | 
2547  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602);   /*  c3 */  | 
2548  | 0  |     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);      /* -c3+c5 */  | 
2549  | 0  |     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);      /* -c3-c5 */  | 
2550  | 0  |     tmp12 += z1;  | 
2551  | 0  |     tmp13 += z1;  | 
2552  |  | 
  | 
2553  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223);   /* -c3+c7 */  | 
2554  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_1_501321110);          /*  c1+c3-c5-c7 */  | 
2555  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_0_298631336);          /* -c1+c3+c5-c7 */  | 
2556  | 0  |     tmp0 += z1 + tmp12;  | 
2557  | 0  |     tmp3 += z1 + tmp13;  | 
2558  |  | 
  | 
2559  | 0  |     z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447);   /* -c1-c3 */  | 
2560  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_3_072711026);          /*  c1+c3+c5-c7 */  | 
2561  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_2_053119869);          /*  c1+c3-c5+c7 */  | 
2562  | 0  |     tmp1 += z1 + tmp13;  | 
2563  | 0  |     tmp2 += z1 + tmp12;  | 
2564  |  | 
  | 
2565  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);  | 
2566  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);  | 
2567  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);  | 
2568  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+PASS1_BITS+1);  | 
2569  |  | 
  | 
2570  | 0  |     dataptr++;      /* advance pointer to next column */  | 
2571  | 0  |   }  | 
2572  | 0  | }  | 
2573  |  |  | 
2574  |  |  | 
2575  |  | /*  | 
2576  |  |  * Perform the forward DCT on a 14x7 sample block.  | 
2577  |  |  *  | 
2578  |  |  * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).  | 
2579  |  |  */  | 
2580  |  |  | 
2581  |  | GLOBAL(void)  | 
2582  |  | jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
2583  | 0  | { | 
2584  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;  | 
2585  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;  | 
2586  | 0  |   INT32 z1, z2, z3;  | 
2587  | 0  |   DCTELEM *dataptr;  | 
2588  | 0  |   JSAMPROW elemptr;  | 
2589  | 0  |   int ctr;  | 
2590  | 0  |   SHIFT_TEMPS  | 
2591  |  |  | 
2592  |  |   /* Zero bottom row of output coefficient block. */  | 
2593  | 0  |   MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);  | 
2594  |  |  | 
2595  |  |   /* Pass 1: process rows.  | 
2596  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
2597  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
2598  |  |    * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28).  | 
2599  |  |    */  | 
2600  |  | 
  | 
2601  | 0  |   dataptr = data;  | 
2602  | 0  |   for (ctr = 0; ctr < 7; ctr++) { | 
2603  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
2604  |  |  | 
2605  |  |     /* Even part */  | 
2606  |  | 
  | 
2607  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);  | 
2608  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);  | 
2609  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);  | 
2610  | 0  |     tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);  | 
2611  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);  | 
2612  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);  | 
2613  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);  | 
2614  |  | 
  | 
2615  | 0  |     tmp10 = tmp0 + tmp6;  | 
2616  | 0  |     tmp14 = tmp0 - tmp6;  | 
2617  | 0  |     tmp11 = tmp1 + tmp5;  | 
2618  | 0  |     tmp15 = tmp1 - tmp5;  | 
2619  | 0  |     tmp12 = tmp2 + tmp4;  | 
2620  | 0  |     tmp16 = tmp2 - tmp4;  | 
2621  |  | 
  | 
2622  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);  | 
2623  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);  | 
2624  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);  | 
2625  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);  | 
2626  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);  | 
2627  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);  | 
2628  | 0  |     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);  | 
2629  |  |  | 
2630  |  |     /* Apply unsigned->signed conversion. */  | 
2631  | 0  |     dataptr[0] = (DCTELEM)  | 
2632  | 0  |       ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);  | 
2633  | 0  |     tmp13 += tmp13;  | 
2634  | 0  |     dataptr[4] = (DCTELEM)  | 
2635  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */  | 
2636  | 0  |         MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */  | 
2637  | 0  |         MULTIPLY(tmp12 - tmp13, FIX(0.881747734)),  /* c8 */  | 
2638  | 0  |         CONST_BITS-PASS1_BITS);  | 
2639  |  | 
  | 
2640  | 0  |     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686));    /* c6 */  | 
2641  |  | 
  | 
2642  | 0  |     dataptr[2] = (DCTELEM)  | 
2643  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590))   /* c2-c6 */  | 
2644  | 0  |         + MULTIPLY(tmp16, FIX(0.613604268)),        /* c10 */  | 
2645  | 0  |         CONST_BITS-PASS1_BITS);  | 
2646  | 0  |     dataptr[6] = (DCTELEM)  | 
2647  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954))   /* c6+c10 */  | 
2648  | 0  |         - MULTIPLY(tmp16, FIX(1.378756276)),        /* c2 */  | 
2649  | 0  |         CONST_BITS-PASS1_BITS);  | 
2650  |  |  | 
2651  |  |     /* Odd part */  | 
2652  |  | 
  | 
2653  | 0  |     tmp10 = tmp1 + tmp2;  | 
2654  | 0  |     tmp11 = tmp5 - tmp4;  | 
2655  | 0  |     dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);  | 
2656  | 0  |     tmp3 <<= CONST_BITS;  | 
2657  | 0  |     tmp10 = MULTIPLY(tmp10, - FIX(0.158341681));          /* -c13 */  | 
2658  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(1.405321284));            /* c1 */  | 
2659  | 0  |     tmp10 += tmp11 - tmp3;  | 
2660  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) +     /* c5 */  | 
2661  | 0  |       MULTIPLY(tmp4 + tmp6, FIX(0.752406978));      /* c9 */  | 
2662  | 0  |     dataptr[5] = (DCTELEM)  | 
2663  | 0  |       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */  | 
2664  | 0  |         + MULTIPLY(tmp4, FIX(1.119999435)),         /* c1+c11-c9 */  | 
2665  | 0  |         CONST_BITS-PASS1_BITS);  | 
2666  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) +     /* c3 */  | 
2667  | 0  |       MULTIPLY(tmp5 - tmp6, FIX(0.467085129));      /* c11 */  | 
2668  | 0  |     dataptr[3] = (DCTELEM)  | 
2669  | 0  |       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */  | 
2670  | 0  |         - MULTIPLY(tmp5, FIX(3.069855259)),         /* c1+c5+c11 */  | 
2671  | 0  |         CONST_BITS-PASS1_BITS);  | 
2672  | 0  |     dataptr[1] = (DCTELEM)  | 
2673  | 0  |       DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -  | 
2674  | 0  |         MULTIPLY(tmp0 + tmp6, FIX(1.126980169)),    /* c3+c5-c1 */  | 
2675  | 0  |         CONST_BITS-PASS1_BITS);  | 
2676  |  | 
  | 
2677  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
2678  | 0  |   }  | 
2679  |  |  | 
2680  |  |   /* Pass 2: process columns.  | 
2681  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
2682  |  |    * by an overall factor of 8.  | 
2683  |  |    * We must also scale the output by (8/14)*(8/7) = 32/49, which we  | 
2684  |  |    * partially fold into the constant multipliers and final shifting:  | 
2685  |  |    * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.  | 
2686  |  |    */  | 
2687  |  | 
  | 
2688  | 0  |   dataptr = data;  | 
2689  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
2690  |  |     /* Even part */  | 
2691  |  | 
  | 
2692  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];  | 
2693  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];  | 
2694  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];  | 
2695  | 0  |     tmp3 = dataptr[DCTSIZE*3];  | 
2696  |  | 
  | 
2697  | 0  |     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];  | 
2698  | 0  |     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];  | 
2699  | 0  |     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];  | 
2700  |  | 
  | 
2701  | 0  |     z1 = tmp0 + tmp2;  | 
2702  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
2703  | 0  |       DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */  | 
2704  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2705  | 0  |     tmp3 += tmp3;  | 
2706  | 0  |     z1 -= tmp3;  | 
2707  | 0  |     z1 -= tmp3;  | 
2708  | 0  |     z1 = MULTIPLY(z1, FIX(0.461784020));                /* (c2+c6-c4)/2 */  | 
2709  | 0  |     z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084));       /* (c2+c4-c6)/2 */  | 
2710  | 0  |     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446));       /* c6 */  | 
2711  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);  | 
2712  | 0  |     z1 -= z2;  | 
2713  | 0  |     z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509));       /* c4 */  | 
2714  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
2715  | 0  |       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */  | 
2716  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2717  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);  | 
2718  |  |  | 
2719  |  |     /* Odd part */  | 
2720  |  | 
  | 
2721  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677));   /* (c3+c1-c5)/2 */  | 
2722  | 0  |     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464));   /* (c3+c5-c1)/2 */  | 
2723  | 0  |     tmp0 = tmp1 - tmp2;  | 
2724  | 0  |     tmp1 += tmp2;  | 
2725  | 0  |     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */  | 
2726  | 0  |     tmp1 += tmp2;  | 
2727  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310));   /* c5 */  | 
2728  | 0  |     tmp0 += tmp3;  | 
2729  | 0  |     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355));   /* c3+c1-c5 */  | 
2730  |  | 
  | 
2731  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);  | 
2732  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);  | 
2733  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);  | 
2734  |  | 
  | 
2735  | 0  |     dataptr++;      /* advance pointer to next column */  | 
2736  | 0  |   }  | 
2737  | 0  | }  | 
2738  |  |  | 
2739  |  |  | 
2740  |  | /*  | 
2741  |  |  * Perform the forward DCT on a 12x6 sample block.  | 
2742  |  |  *  | 
2743  |  |  * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).  | 
2744  |  |  */  | 
2745  |  |  | 
2746  |  | GLOBAL(void)  | 
2747  |  | jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
2748  | 0  | { | 
2749  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;  | 
2750  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;  | 
2751  | 0  |   DCTELEM *dataptr;  | 
2752  | 0  |   JSAMPROW elemptr;  | 
2753  | 0  |   int ctr;  | 
2754  | 0  |   SHIFT_TEMPS  | 
2755  |  |  | 
2756  |  |   /* Zero 2 bottom rows of output coefficient block. */  | 
2757  | 0  |   MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);  | 
2758  |  |  | 
2759  |  |   /* Pass 1: process rows.  | 
2760  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
2761  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
2762  |  |    * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24).  | 
2763  |  |    */  | 
2764  |  | 
  | 
2765  | 0  |   dataptr = data;  | 
2766  | 0  |   for (ctr = 0; ctr < 6; ctr++) { | 
2767  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
2768  |  |  | 
2769  |  |     /* Even part */  | 
2770  |  | 
  | 
2771  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);  | 
2772  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);  | 
2773  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);  | 
2774  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);  | 
2775  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);  | 
2776  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);  | 
2777  |  | 
  | 
2778  | 0  |     tmp10 = tmp0 + tmp5;  | 
2779  | 0  |     tmp13 = tmp0 - tmp5;  | 
2780  | 0  |     tmp11 = tmp1 + tmp4;  | 
2781  | 0  |     tmp14 = tmp1 - tmp4;  | 
2782  | 0  |     tmp12 = tmp2 + tmp3;  | 
2783  | 0  |     tmp15 = tmp2 - tmp3;  | 
2784  |  | 
  | 
2785  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);  | 
2786  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);  | 
2787  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);  | 
2788  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);  | 
2789  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);  | 
2790  | 0  |     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);  | 
2791  |  |  | 
2792  |  |     /* Apply unsigned->signed conversion. */  | 
2793  | 0  |     dataptr[0] = (DCTELEM)  | 
2794  | 0  |       ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);  | 
2795  | 0  |     dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);  | 
2796  | 0  |     dataptr[4] = (DCTELEM)  | 
2797  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */  | 
2798  | 0  |         CONST_BITS-PASS1_BITS);  | 
2799  | 0  |     dataptr[2] = (DCTELEM)  | 
2800  | 0  |       DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */  | 
2801  | 0  |         CONST_BITS-PASS1_BITS);  | 
2802  |  |  | 
2803  |  |     /* Odd part */  | 
2804  |  | 
  | 
2805  | 0  |     tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100);    /* c9 */  | 
2806  | 0  |     tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865);   /* c3-c9 */  | 
2807  | 0  |     tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065);   /* c3+c9 */  | 
2808  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054));   /* c5 */  | 
2809  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669));   /* c7 */  | 
2810  | 0  |     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */  | 
2811  | 0  |       + MULTIPLY(tmp5, FIX(0.184591911));        /* c11 */  | 
2812  | 0  |     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */  | 
2813  | 0  |     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */  | 
2814  | 0  |       + MULTIPLY(tmp5, FIX(0.860918669));        /* c7 */  | 
2815  | 0  |     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */  | 
2816  | 0  |       - MULTIPLY(tmp5, FIX(1.121971054));        /* c5 */  | 
2817  | 0  |     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */  | 
2818  | 0  |       - MULTIPLY(tmp2 + tmp5, FIX_0_541196100);  /* c9 */  | 
2819  |  | 
  | 
2820  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);  | 
2821  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);  | 
2822  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);  | 
2823  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);  | 
2824  |  | 
  | 
2825  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
2826  | 0  |   }  | 
2827  |  |  | 
2828  |  |   /* Pass 2: process columns.  | 
2829  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
2830  |  |    * by an overall factor of 8.  | 
2831  |  |    * We must also scale the output by (8/12)*(8/6) = 8/9, which we  | 
2832  |  |    * partially fold into the constant multipliers and final shifting:  | 
2833  |  |    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.  | 
2834  |  |    */  | 
2835  |  | 
  | 
2836  | 0  |   dataptr = data;  | 
2837  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
2838  |  |     /* Even part */  | 
2839  |  | 
  | 
2840  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];  | 
2841  | 0  |     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];  | 
2842  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];  | 
2843  |  | 
  | 
2844  | 0  |     tmp10 = tmp0 + tmp2;  | 
2845  | 0  |     tmp12 = tmp0 - tmp2;  | 
2846  |  | 
  | 
2847  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];  | 
2848  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];  | 
2849  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];  | 
2850  |  | 
  | 
2851  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
2852  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */  | 
2853  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2854  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
2855  | 0  |       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */  | 
2856  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2857  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
2858  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */  | 
2859  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2860  |  |  | 
2861  |  |     /* Odd part */  | 
2862  |  | 
  | 
2863  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */  | 
2864  |  | 
  | 
2865  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
2866  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */  | 
2867  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2868  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
2869  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */  | 
2870  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2871  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
2872  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */  | 
2873  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
2874  |  | 
  | 
2875  | 0  |     dataptr++;      /* advance pointer to next column */  | 
2876  | 0  |   }  | 
2877  | 0  | }  | 
2878  |  |  | 
2879  |  |  | 
2880  |  | /*  | 
2881  |  |  * Perform the forward DCT on a 10x5 sample block.  | 
2882  |  |  *  | 
2883  |  |  * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).  | 
2884  |  |  */  | 
2885  |  |  | 
2886  |  | GLOBAL(void)  | 
2887  |  | jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
2888  | 0  | { | 
2889  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;  | 
2890  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;  | 
2891  | 0  |   DCTELEM *dataptr;  | 
2892  | 0  |   JSAMPROW elemptr;  | 
2893  | 0  |   int ctr;  | 
2894  | 0  |   SHIFT_TEMPS  | 
2895  |  |  | 
2896  |  |   /* Zero 3 bottom rows of output coefficient block. */  | 
2897  | 0  |   MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);  | 
2898  |  |  | 
2899  |  |   /* Pass 1: process rows.  | 
2900  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
2901  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
2902  |  |    * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20).  | 
2903  |  |    */  | 
2904  |  | 
  | 
2905  | 0  |   dataptr = data;  | 
2906  | 0  |   for (ctr = 0; ctr < 5; ctr++) { | 
2907  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
2908  |  |  | 
2909  |  |     /* Even part */  | 
2910  |  | 
  | 
2911  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);  | 
2912  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);  | 
2913  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);  | 
2914  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);  | 
2915  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);  | 
2916  |  | 
  | 
2917  | 0  |     tmp10 = tmp0 + tmp4;  | 
2918  | 0  |     tmp13 = tmp0 - tmp4;  | 
2919  | 0  |     tmp11 = tmp1 + tmp3;  | 
2920  | 0  |     tmp14 = tmp1 - tmp3;  | 
2921  |  | 
  | 
2922  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);  | 
2923  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);  | 
2924  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);  | 
2925  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);  | 
2926  | 0  |     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);  | 
2927  |  |  | 
2928  |  |     /* Apply unsigned->signed conversion. */  | 
2929  | 0  |     dataptr[0] = (DCTELEM)  | 
2930  | 0  |       ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);  | 
2931  | 0  |     tmp12 += tmp12;  | 
2932  | 0  |     dataptr[4] = (DCTELEM)  | 
2933  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */  | 
2934  | 0  |         MULTIPLY(tmp11 - tmp12, FIX(0.437016024)),  /* c8 */  | 
2935  | 0  |         CONST_BITS-PASS1_BITS);  | 
2936  | 0  |     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876));    /* c6 */  | 
2937  | 0  |     dataptr[2] = (DCTELEM)  | 
2938  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)),  /* c2-c6 */  | 
2939  | 0  |         CONST_BITS-PASS1_BITS);  | 
2940  | 0  |     dataptr[6] = (DCTELEM)  | 
2941  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)),  /* c2+c6 */  | 
2942  | 0  |         CONST_BITS-PASS1_BITS);  | 
2943  |  |  | 
2944  |  |     /* Odd part */  | 
2945  |  | 
  | 
2946  | 0  |     tmp10 = tmp0 + tmp4;  | 
2947  | 0  |     tmp11 = tmp1 - tmp3;  | 
2948  | 0  |     dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);  | 
2949  | 0  |     tmp2 <<= CONST_BITS;  | 
2950  | 0  |     dataptr[1] = (DCTELEM)  | 
2951  | 0  |       DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) +          /* c1 */  | 
2952  | 0  |         MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 +   /* c3 */  | 
2953  | 0  |         MULTIPLY(tmp3, FIX(0.642039522)) +          /* c7 */  | 
2954  | 0  |         MULTIPLY(tmp4, FIX(0.221231742)),           /* c9 */  | 
2955  | 0  |         CONST_BITS-PASS1_BITS);  | 
2956  | 0  |     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) -     /* (c3+c7)/2 */  | 
2957  | 0  |       MULTIPLY(tmp1 + tmp3, FIX(0.587785252));      /* (c1-c9)/2 */  | 
2958  | 0  |     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) +   /* (c3-c7)/2 */  | 
2959  | 0  |       (tmp11 << (CONST_BITS - 1)) - tmp2;  | 
2960  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);  | 
2961  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);  | 
2962  |  | 
  | 
2963  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
2964  | 0  |   }  | 
2965  |  |  | 
2966  |  |   /* Pass 2: process columns.  | 
2967  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
2968  |  |    * by an overall factor of 8.  | 
2969  |  |    * We must also scale the output by (8/10)*(8/5) = 32/25, which we  | 
2970  |  |    * fold into the constant multipliers:  | 
2971  |  |    * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.  | 
2972  |  |    */  | 
2973  |  | 
  | 
2974  | 0  |   dataptr = data;  | 
2975  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
2976  |  |     /* Even part */  | 
2977  |  | 
  | 
2978  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];  | 
2979  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];  | 
2980  | 0  |     tmp2 = dataptr[DCTSIZE*2];  | 
2981  |  | 
  | 
2982  | 0  |     tmp10 = tmp0 + tmp1;  | 
2983  | 0  |     tmp11 = tmp0 - tmp1;  | 
2984  |  | 
  | 
2985  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];  | 
2986  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];  | 
2987  |  | 
  | 
2988  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
2989  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)),        /* 32/25 */  | 
2990  | 0  |         CONST_BITS+PASS1_BITS);  | 
2991  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(1.011928851));          /* (c2+c4)/2 */  | 
2992  | 0  |     tmp10 -= tmp2 << 2;  | 
2993  | 0  |     tmp10 = MULTIPLY(tmp10, FIX(0.452548340));          /* (c2-c4)/2 */  | 
2994  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);  | 
2995  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);  | 
2996  |  |  | 
2997  |  |     /* Odd part */  | 
2998  |  | 
  | 
2999  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961));    /* c3 */  | 
3000  |  | 
  | 
3001  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
3002  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */  | 
3003  | 0  |         CONST_BITS+PASS1_BITS);  | 
3004  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
3005  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */  | 
3006  | 0  |         CONST_BITS+PASS1_BITS);  | 
3007  |  | 
  | 
3008  | 0  |     dataptr++;      /* advance pointer to next column */  | 
3009  | 0  |   }  | 
3010  | 0  | }  | 
3011  |  |  | 
3012  |  |  | 
3013  |  | /*  | 
3014  |  |  * Perform the forward DCT on an 8x4 sample block.  | 
3015  |  |  *  | 
3016  |  |  * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).  | 
3017  |  |  */  | 
3018  |  |  | 
3019  |  | GLOBAL(void)  | 
3020  |  | jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3021  | 0  | { | 
3022  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3;  | 
3023  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13;  | 
3024  | 0  |   INT32 z1;  | 
3025  | 0  |   DCTELEM *dataptr;  | 
3026  | 0  |   JSAMPROW elemptr;  | 
3027  | 0  |   int ctr;  | 
3028  | 0  |   SHIFT_TEMPS  | 
3029  |  |  | 
3030  |  |   /* Zero 4 bottom rows of output coefficient block. */  | 
3031  | 0  |   MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);  | 
3032  |  |  | 
3033  |  |   /* Pass 1: process rows.  | 
3034  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
3035  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
3036  |  |    * We must also scale the output by 8/4 = 2, which we add here.  | 
3037  |  |    * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).  | 
3038  |  |    */  | 
3039  |  | 
  | 
3040  | 0  |   dataptr = data;  | 
3041  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
3042  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
3043  |  |  | 
3044  |  |     /* Even part per LL&M figure 1 --- note that published figure is faulty;  | 
3045  |  |      * rotator "c1" should be "c6".  | 
3046  |  |      */  | 
3047  |  | 
  | 
3048  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);  | 
3049  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);  | 
3050  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);  | 
3051  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);  | 
3052  |  | 
  | 
3053  | 0  |     tmp10 = tmp0 + tmp3;  | 
3054  | 0  |     tmp12 = tmp0 - tmp3;  | 
3055  | 0  |     tmp11 = tmp1 + tmp2;  | 
3056  | 0  |     tmp13 = tmp1 - tmp2;  | 
3057  |  | 
  | 
3058  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);  | 
3059  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);  | 
3060  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);  | 
3061  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);  | 
3062  |  |  | 
3063  |  |     /* Apply unsigned->signed conversion. */  | 
3064  | 0  |     dataptr[0] = (DCTELEM)  | 
3065  | 0  |       ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));  | 
3066  | 0  |     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));  | 
3067  |  | 
  | 
3068  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);       /* c6 */  | 
3069  |  |     /* Add fudge factor here for final descale. */  | 
3070  | 0  |     z1 += ONE << (CONST_BITS-PASS1_BITS-2);  | 
3071  |  | 
  | 
3072  | 0  |     dataptr[2] = (DCTELEM)  | 
3073  | 0  |       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */  | 
3074  | 0  |       CONST_BITS-PASS1_BITS-1);  | 
3075  | 0  |     dataptr[6] = (DCTELEM)  | 
3076  | 0  |       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */  | 
3077  | 0  |       CONST_BITS-PASS1_BITS-1);  | 
3078  |  |  | 
3079  |  |     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).  | 
3080  |  |      * i0..i3 in the paper are tmp0..tmp3 here.  | 
3081  |  |      */  | 
3082  |  | 
  | 
3083  | 0  |     tmp12 = tmp0 + tmp2;  | 
3084  | 0  |     tmp13 = tmp1 + tmp3;  | 
3085  |  | 
  | 
3086  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602);       /*  c3 */  | 
3087  |  |     /* Add fudge factor here for final descale. */  | 
3088  | 0  |     z1 += ONE << (CONST_BITS-PASS1_BITS-2);  | 
3089  |  | 
  | 
3090  | 0  |     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);          /* -c3+c5 */  | 
3091  | 0  |     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);          /* -c3-c5 */  | 
3092  | 0  |     tmp12 += z1;  | 
3093  | 0  |     tmp13 += z1;  | 
3094  |  | 
  | 
3095  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223);       /* -c3+c7 */  | 
3096  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_1_501321110);              /*  c1+c3-c5-c7 */  | 
3097  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_0_298631336);              /* -c1+c3+c5-c7 */  | 
3098  | 0  |     tmp0 += z1 + tmp12;  | 
3099  | 0  |     tmp3 += z1 + tmp13;  | 
3100  |  | 
  | 
3101  | 0  |     z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447);       /* -c1-c3 */  | 
3102  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_3_072711026);              /*  c1+c3+c5-c7 */  | 
3103  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_2_053119869);              /*  c1+c3-c5+c7 */  | 
3104  | 0  |     tmp1 += z1 + tmp13;  | 
3105  | 0  |     tmp2 += z1 + tmp12;  | 
3106  |  | 
  | 
3107  | 0  |     dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS-1);  | 
3108  | 0  |     dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS-1);  | 
3109  | 0  |     dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS-1);  | 
3110  | 0  |     dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS-1);  | 
3111  |  | 
  | 
3112  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
3113  | 0  |   }  | 
3114  |  |  | 
3115  |  |   /* Pass 2: process columns.  | 
3116  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
3117  |  |    * by an overall factor of 8.  | 
3118  |  |    * 4-point FDCT kernel,  | 
3119  |  |    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].  | 
3120  |  |    */  | 
3121  |  | 
  | 
3122  | 0  |   dataptr = data;  | 
3123  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
3124  |  |     /* Even part */  | 
3125  |  |  | 
3126  |  |     /* Add fudge factor here for final descale. */  | 
3127  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));  | 
3128  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];  | 
3129  |  | 
  | 
3130  | 0  |     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];  | 
3131  | 0  |     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];  | 
3132  |  | 
  | 
3133  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);  | 
3134  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);  | 
3135  |  |  | 
3136  |  |     /* Odd part */  | 
3137  |  | 
  | 
3138  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */  | 
3139  |  |     /* Add fudge factor here for final descale. */  | 
3140  | 0  |     tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);  | 
3141  |  | 
  | 
3142  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
3143  | 0  |       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */  | 
3144  | 0  |       CONST_BITS+PASS1_BITS);  | 
3145  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
3146  | 0  |       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */  | 
3147  | 0  |       CONST_BITS+PASS1_BITS);  | 
3148  |  | 
  | 
3149  | 0  |     dataptr++;      /* advance pointer to next column */  | 
3150  | 0  |   }  | 
3151  | 0  | }  | 
3152  |  |  | 
3153  |  |  | 
3154  |  | /*  | 
3155  |  |  * Perform the forward DCT on a 6x3 sample block.  | 
3156  |  |  *  | 
3157  |  |  * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).  | 
3158  |  |  */  | 
3159  |  |  | 
3160  |  | GLOBAL(void)  | 
3161  |  | jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3162  | 0  | { | 
3163  | 0  |   INT32 tmp0, tmp1, tmp2;  | 
3164  | 0  |   INT32 tmp10, tmp11, tmp12;  | 
3165  | 0  |   DCTELEM *dataptr;  | 
3166  | 0  |   JSAMPROW elemptr;  | 
3167  | 0  |   int ctr;  | 
3168  | 0  |   SHIFT_TEMPS  | 
3169  |  |  | 
3170  |  |   /* Pre-zero output coefficient block. */  | 
3171  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
3172  |  |  | 
3173  |  |   /* Pass 1: process rows.  | 
3174  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
3175  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
3176  |  |    * We scale the results further by 2 as part of output adaption  | 
3177  |  |    * scaling for different DCT size.  | 
3178  |  |    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12).  | 
3179  |  |    */  | 
3180  |  | 
  | 
3181  | 0  |   dataptr = data;  | 
3182  | 0  |   for (ctr = 0; ctr < 3; ctr++) { | 
3183  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
3184  |  |  | 
3185  |  |     /* Even part */  | 
3186  |  | 
  | 
3187  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);  | 
3188  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);  | 
3189  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);  | 
3190  |  | 
  | 
3191  | 0  |     tmp10 = tmp0 + tmp2;  | 
3192  | 0  |     tmp12 = tmp0 - tmp2;  | 
3193  |  | 
  | 
3194  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);  | 
3195  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);  | 
3196  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);  | 
3197  |  |  | 
3198  |  |     /* Apply unsigned->signed conversion. */  | 
3199  | 0  |     dataptr[0] = (DCTELEM)  | 
3200  | 0  |       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));  | 
3201  | 0  |     dataptr[2] = (DCTELEM)  | 
3202  | 0  |       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */  | 
3203  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
3204  | 0  |     dataptr[4] = (DCTELEM)  | 
3205  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */  | 
3206  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
3207  |  |  | 
3208  |  |     /* Odd part */  | 
3209  |  | 
  | 
3210  | 0  |     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */  | 
3211  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
3212  |  | 
  | 
3213  | 0  |     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));  | 
3214  | 0  |     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));  | 
3215  | 0  |     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));  | 
3216  |  | 
  | 
3217  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
3218  | 0  |   }  | 
3219  |  |  | 
3220  |  |   /* Pass 2: process columns.  | 
3221  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
3222  |  |    * by an overall factor of 8.  | 
3223  |  |    * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially  | 
3224  |  |    * fold into the constant multipliers (other part was done in pass 1):  | 
3225  |  |    * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.  | 
3226  |  |    */  | 
3227  |  | 
  | 
3228  | 0  |   dataptr = data;  | 
3229  | 0  |   for (ctr = 0; ctr < 6; ctr++) { | 
3230  |  |     /* Even part */  | 
3231  |  | 
  | 
3232  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];  | 
3233  | 0  |     tmp1 = dataptr[DCTSIZE*1];  | 
3234  |  | 
  | 
3235  | 0  |     tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];  | 
3236  |  | 
  | 
3237  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
3238  | 0  |       DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),        /* 16/9 */  | 
3239  | 0  |         CONST_BITS+PASS1_BITS);  | 
3240  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
3241  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */  | 
3242  | 0  |         CONST_BITS+PASS1_BITS);  | 
3243  |  |  | 
3244  |  |     /* Odd part */  | 
3245  |  | 
  | 
3246  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
3247  | 0  |       DESCALE(MULTIPLY(tmp2, FIX(2.177324216)),               /* c1 */  | 
3248  | 0  |         CONST_BITS+PASS1_BITS);  | 
3249  |  | 
  | 
3250  | 0  |     dataptr++;      /* advance pointer to next column */  | 
3251  | 0  |   }  | 
3252  | 0  | }  | 
3253  |  |  | 
3254  |  |  | 
3255  |  | /*  | 
3256  |  |  * Perform the forward DCT on a 4x2 sample block.  | 
3257  |  |  *  | 
3258  |  |  * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).  | 
3259  |  |  */  | 
3260  |  |  | 
3261  |  | GLOBAL(void)  | 
3262  |  | jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3263  | 0  | { | 
3264  | 0  |   DCTELEM tmp0, tmp2, tmp10, tmp12, tmp4, tmp5;  | 
3265  | 0  |   INT32 tmp1, tmp3, tmp11, tmp13;  | 
3266  | 0  |   INT32 z1, z2, z3;  | 
3267  | 0  |   JSAMPROW elemptr;  | 
3268  | 0  |   SHIFT_TEMPS  | 
3269  |  |  | 
3270  |  |   /* Pre-zero output coefficient block. */  | 
3271  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
3272  |  |  | 
3273  |  |   /* Pass 1: process rows.  | 
3274  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
3275  |  |    * 4-point FDCT kernel,  | 
3276  |  |    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].  | 
3277  |  |    */  | 
3278  |  |  | 
3279  |  |   /* Row 0 */  | 
3280  | 0  |   elemptr = sample_data[0] + start_col;  | 
3281  |  |  | 
3282  |  |   /* Even part */  | 
3283  |  | 
  | 
3284  | 0  |   tmp4 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);  | 
3285  | 0  |   tmp5 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);  | 
3286  |  | 
  | 
3287  | 0  |   tmp0 = tmp4 + tmp5;  | 
3288  | 0  |   tmp2 = tmp4 - tmp5;  | 
3289  |  |  | 
3290  |  |   /* Odd part */  | 
3291  |  | 
  | 
3292  | 0  |   z2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);  | 
3293  | 0  |   z3 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);  | 
3294  |  | 
  | 
3295  | 0  |   z1 = MULTIPLY(z2 + z3, FIX_0_541196100);    /* c6 */  | 
3296  |  |   /* Add fudge factor here for final descale. */  | 
3297  | 0  |   z1 += ONE << (CONST_BITS-3-1);  | 
3298  | 0  |   tmp1 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */  | 
3299  | 0  |   tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */  | 
3300  |  |  | 
3301  |  |   /* Row 1 */  | 
3302  | 0  |   elemptr = sample_data[1] + start_col;  | 
3303  |  |  | 
3304  |  |   /* Even part */  | 
3305  |  | 
  | 
3306  | 0  |   tmp4 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);  | 
3307  | 0  |   tmp5 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);  | 
3308  |  | 
  | 
3309  | 0  |   tmp10 = tmp4 + tmp5;  | 
3310  | 0  |   tmp12 = tmp4 - tmp5;  | 
3311  |  |  | 
3312  |  |   /* Odd part */  | 
3313  |  | 
  | 
3314  | 0  |   z2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);  | 
3315  | 0  |   z3 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);  | 
3316  |  | 
  | 
3317  | 0  |   z1 = MULTIPLY(z2 + z3, FIX_0_541196100);    /* c6 */  | 
3318  | 0  |   tmp11 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */  | 
3319  | 0  |   tmp13 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */  | 
3320  |  |  | 
3321  |  |   /* Pass 2: process columns.  | 
3322  |  |    * We leave the results scaled up by an overall factor of 8.  | 
3323  |  |    * We must also scale the output by (8/4)*(8/2) = 2**3.  | 
3324  |  |    */  | 
3325  |  |  | 
3326  |  |   /* Column 0 */  | 
3327  |  |   /* Apply unsigned->signed conversion. */  | 
3328  | 0  |   data[DCTSIZE*0] = (tmp0 + tmp10 - 8 * CENTERJSAMPLE) << 3;  | 
3329  | 0  |   data[DCTSIZE*1] = (tmp0 - tmp10) << 3;  | 
3330  |  |  | 
3331  |  |   /* Column 1 */  | 
3332  | 0  |   data[DCTSIZE*0+1] = (DCTELEM) RIGHT_SHIFT(tmp1 + tmp11, CONST_BITS-3);  | 
3333  | 0  |   data[DCTSIZE*1+1] = (DCTELEM) RIGHT_SHIFT(tmp1 - tmp11, CONST_BITS-3);  | 
3334  |  |  | 
3335  |  |   /* Column 2 */  | 
3336  | 0  |   data[DCTSIZE*0+2] = (tmp2 + tmp12) << 3;  | 
3337  | 0  |   data[DCTSIZE*1+2] = (tmp2 - tmp12) << 3;  | 
3338  |  |  | 
3339  |  |   /* Column 3 */  | 
3340  | 0  |   data[DCTSIZE*0+3] = (DCTELEM) RIGHT_SHIFT(tmp3 + tmp13, CONST_BITS-3);  | 
3341  | 0  |   data[DCTSIZE*1+3] = (DCTELEM) RIGHT_SHIFT(tmp3 - tmp13, CONST_BITS-3);  | 
3342  | 0  | }  | 
3343  |  |  | 
3344  |  |  | 
3345  |  | /*  | 
3346  |  |  * Perform the forward DCT on a 2x1 sample block.  | 
3347  |  |  *  | 
3348  |  |  * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).  | 
3349  |  |  */  | 
3350  |  |  | 
3351  |  | GLOBAL(void)  | 
3352  |  | jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3353  | 0  | { | 
3354  | 0  |   DCTELEM tmp0, tmp1;  | 
3355  | 0  |   JSAMPROW elemptr;  | 
3356  |  |  | 
3357  |  |   /* Pre-zero output coefficient block. */  | 
3358  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
3359  |  | 
  | 
3360  | 0  |   elemptr = sample_data[0] + start_col;  | 
3361  |  | 
  | 
3362  | 0  |   tmp0 = GETJSAMPLE(elemptr[0]);  | 
3363  | 0  |   tmp1 = GETJSAMPLE(elemptr[1]);  | 
3364  |  |  | 
3365  |  |   /* We leave the results scaled up by an overall factor of 8.  | 
3366  |  |    * We must also scale the output by (8/2)*(8/1) = 2**5.  | 
3367  |  |    */  | 
3368  |  |  | 
3369  |  |   /* Even part */  | 
3370  |  |  | 
3371  |  |   /* Apply unsigned->signed conversion. */  | 
3372  | 0  |   data[0] = (tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5;  | 
3373  |  |  | 
3374  |  |   /* Odd part */  | 
3375  |  | 
  | 
3376  | 0  |   data[1] = (tmp0 - tmp1) << 5;  | 
3377  | 0  | }  | 
3378  |  |  | 
3379  |  |  | 
3380  |  | /*  | 
3381  |  |  * Perform the forward DCT on an 8x16 sample block.  | 
3382  |  |  *  | 
3383  |  |  * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).  | 
3384  |  |  */  | 
3385  |  |  | 
3386  |  | GLOBAL(void)  | 
3387  |  | jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3388  | 0  | { | 
3389  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
3390  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;  | 
3391  | 0  |   INT32 z1;  | 
3392  | 0  |   DCTELEM workspace[DCTSIZE2];  | 
3393  | 0  |   DCTELEM *dataptr;  | 
3394  | 0  |   DCTELEM *wsptr;  | 
3395  | 0  |   JSAMPROW elemptr;  | 
3396  | 0  |   int ctr;  | 
3397  | 0  |   SHIFT_TEMPS  | 
3398  |  |  | 
3399  |  |   /* Pass 1: process rows.  | 
3400  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
3401  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
3402  |  |    * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).  | 
3403  |  |    */  | 
3404  |  | 
  | 
3405  | 0  |   dataptr = data;  | 
3406  | 0  |   ctr = 0;  | 
3407  | 0  |   for (;;) { | 
3408  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
3409  |  |  | 
3410  |  |     /* Even part per LL&M figure 1 --- note that published figure is faulty;  | 
3411  |  |      * rotator "c1" should be "c6".  | 
3412  |  |      */  | 
3413  |  | 
  | 
3414  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);  | 
3415  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);  | 
3416  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);  | 
3417  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);  | 
3418  |  | 
  | 
3419  | 0  |     tmp10 = tmp0 + tmp3;  | 
3420  | 0  |     tmp12 = tmp0 - tmp3;  | 
3421  | 0  |     tmp11 = tmp1 + tmp2;  | 
3422  | 0  |     tmp13 = tmp1 - tmp2;  | 
3423  |  | 
  | 
3424  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);  | 
3425  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);  | 
3426  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);  | 
3427  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);  | 
3428  |  |  | 
3429  |  |     /* Apply unsigned->signed conversion. */  | 
3430  | 0  |     dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);  | 
3431  | 0  |     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);  | 
3432  |  | 
  | 
3433  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);   /* c6 */  | 
3434  | 0  |     dataptr[2] = (DCTELEM)  | 
3435  | 0  |       DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */  | 
3436  | 0  |         CONST_BITS-PASS1_BITS);  | 
3437  | 0  |     dataptr[6] = (DCTELEM)  | 
3438  | 0  |       DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */  | 
3439  | 0  |         CONST_BITS-PASS1_BITS);  | 
3440  |  |  | 
3441  |  |     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).  | 
3442  |  |      * i0..i3 in the paper are tmp0..tmp3 here.  | 
3443  |  |      */  | 
3444  |  | 
  | 
3445  | 0  |     tmp12 = tmp0 + tmp2;  | 
3446  | 0  |     tmp13 = tmp1 + tmp3;  | 
3447  |  | 
  | 
3448  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602);   /*  c3 */  | 
3449  | 0  |     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);      /* -c3+c5 */  | 
3450  | 0  |     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);      /* -c3-c5 */  | 
3451  | 0  |     tmp12 += z1;  | 
3452  | 0  |     tmp13 += z1;  | 
3453  |  | 
  | 
3454  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223);   /* -c3+c7 */  | 
3455  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_1_501321110);          /*  c1+c3-c5-c7 */  | 
3456  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_0_298631336);          /* -c1+c3+c5-c7 */  | 
3457  | 0  |     tmp0 += z1 + tmp12;  | 
3458  | 0  |     tmp3 += z1 + tmp13;  | 
3459  |  | 
  | 
3460  | 0  |     z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447);   /* -c1-c3 */  | 
3461  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_3_072711026);          /*  c1+c3+c5-c7 */  | 
3462  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_2_053119869);          /*  c1+c3-c5+c7 */  | 
3463  | 0  |     tmp1 += z1 + tmp13;  | 
3464  | 0  |     tmp2 += z1 + tmp12;  | 
3465  |  | 
  | 
3466  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);  | 
3467  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);  | 
3468  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);  | 
3469  | 0  |     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-PASS1_BITS);  | 
3470  |  | 
  | 
3471  | 0  |     ctr++;  | 
3472  |  | 
  | 
3473  | 0  |     if (ctr != DCTSIZE) { | 
3474  | 0  |       if (ctr == DCTSIZE * 2)  | 
3475  | 0  |   break;     /* Done. */  | 
3476  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
3477  | 0  |     } else  | 
3478  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
3479  | 0  |   }  | 
3480  |  |  | 
3481  |  |   /* Pass 2: process columns.  | 
3482  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
3483  |  |    * by an overall factor of 8.  | 
3484  |  |    * We must also scale the output by 8/16 = 1/2.  | 
3485  |  |    * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).  | 
3486  |  |    */  | 
3487  |  | 
  | 
3488  | 0  |   dataptr = data;  | 
3489  | 0  |   wsptr = workspace;  | 
3490  | 0  |   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | 
3491  |  |     /* Even part */  | 
3492  |  | 
  | 
3493  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];  | 
3494  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];  | 
3495  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];  | 
3496  | 0  |     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];  | 
3497  | 0  |     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];  | 
3498  | 0  |     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];  | 
3499  | 0  |     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];  | 
3500  | 0  |     tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];  | 
3501  |  | 
  | 
3502  | 0  |     tmp10 = tmp0 + tmp7;  | 
3503  | 0  |     tmp14 = tmp0 - tmp7;  | 
3504  | 0  |     tmp11 = tmp1 + tmp6;  | 
3505  | 0  |     tmp15 = tmp1 - tmp6;  | 
3506  | 0  |     tmp12 = tmp2 + tmp5;  | 
3507  | 0  |     tmp16 = tmp2 - tmp5;  | 
3508  | 0  |     tmp13 = tmp3 + tmp4;  | 
3509  | 0  |     tmp17 = tmp3 - tmp4;  | 
3510  |  | 
  | 
3511  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];  | 
3512  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];  | 
3513  | 0  |     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];  | 
3514  | 0  |     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];  | 
3515  | 0  |     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];  | 
3516  | 0  |     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];  | 
3517  | 0  |     tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];  | 
3518  | 0  |     tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];  | 
3519  |  | 
  | 
3520  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
3521  | 0  |       DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);  | 
3522  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
3523  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */  | 
3524  | 0  |         MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */  | 
3525  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
3526  |  | 
  | 
3527  | 0  |     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */  | 
3528  | 0  |       MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */  | 
3529  |  | 
  | 
3530  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
3531  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */  | 
3532  | 0  |         + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */  | 
3533  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
3534  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
3535  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */  | 
3536  | 0  |         - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */  | 
3537  | 0  |         CONST_BITS+PASS1_BITS+1);  | 
3538  |  |  | 
3539  |  |     /* Odd part */  | 
3540  |  | 
  | 
3541  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */  | 
3542  | 0  |       MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */  | 
3543  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */  | 
3544  | 0  |       MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */  | 
3545  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */  | 
3546  | 0  |       MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */  | 
3547  | 0  |     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */  | 
3548  | 0  |       MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */  | 
3549  | 0  |     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */  | 
3550  | 0  |       MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */  | 
3551  | 0  |     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */  | 
3552  | 0  |       MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */  | 
3553  | 0  |     tmp10 = tmp11 + tmp12 + tmp13 -  | 
3554  | 0  |       MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */  | 
3555  | 0  |       MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */  | 
3556  | 0  |     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */  | 
3557  | 0  |        - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */  | 
3558  | 0  |     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */  | 
3559  | 0  |        + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */  | 
3560  | 0  |     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */  | 
3561  | 0  |        + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */  | 
3562  |  | 
  | 
3563  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);  | 
3564  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);  | 
3565  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);  | 
3566  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);  | 
3567  |  | 
  | 
3568  | 0  |     dataptr++;      /* advance pointer to next column */  | 
3569  | 0  |     wsptr++;      /* advance pointer to next column */  | 
3570  | 0  |   }  | 
3571  | 0  | }  | 
3572  |  |  | 
3573  |  |  | 
3574  |  | /*  | 
3575  |  |  * Perform the forward DCT on a 7x14 sample block.  | 
3576  |  |  *  | 
3577  |  |  * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).  | 
3578  |  |  */  | 
3579  |  |  | 
3580  |  | GLOBAL(void)  | 
3581  |  | jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3582  | 0  | { | 
3583  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;  | 
3584  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;  | 
3585  | 0  |   INT32 z1, z2, z3;  | 
3586  | 0  |   DCTELEM workspace[8*6];  | 
3587  | 0  |   DCTELEM *dataptr;  | 
3588  | 0  |   DCTELEM *wsptr;  | 
3589  | 0  |   JSAMPROW elemptr;  | 
3590  | 0  |   int ctr;  | 
3591  | 0  |   SHIFT_TEMPS  | 
3592  |  |  | 
3593  |  |   /* Pre-zero output coefficient block. */  | 
3594  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
3595  |  |  | 
3596  |  |   /* Pass 1: process rows.  | 
3597  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
3598  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
3599  |  |    * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14).  | 
3600  |  |    */  | 
3601  |  | 
  | 
3602  | 0  |   dataptr = data;  | 
3603  | 0  |   ctr = 0;  | 
3604  | 0  |   for (;;) { | 
3605  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
3606  |  |  | 
3607  |  |     /* Even part */  | 
3608  |  | 
  | 
3609  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);  | 
3610  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);  | 
3611  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);  | 
3612  | 0  |     tmp3 = GETJSAMPLE(elemptr[3]);  | 
3613  |  | 
  | 
3614  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);  | 
3615  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);  | 
3616  | 0  |     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);  | 
3617  |  | 
  | 
3618  | 0  |     z1 = tmp0 + tmp2;  | 
3619  |  |     /* Apply unsigned->signed conversion. */  | 
3620  | 0  |     dataptr[0] = (DCTELEM)  | 
3621  | 0  |       ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);  | 
3622  | 0  |     tmp3 += tmp3;  | 
3623  | 0  |     z1 -= tmp3;  | 
3624  | 0  |     z1 -= tmp3;  | 
3625  | 0  |     z1 = MULTIPLY(z1, FIX(0.353553391));                /* (c2+c6-c4)/2 */  | 
3626  | 0  |     z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002));       /* (c2+c4-c6)/2 */  | 
3627  | 0  |     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123));       /* c6 */  | 
3628  | 0  |     dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);  | 
3629  | 0  |     z1 -= z2;  | 
3630  | 0  |     z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734));       /* c4 */  | 
3631  | 0  |     dataptr[4] = (DCTELEM)  | 
3632  | 0  |       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */  | 
3633  | 0  |         CONST_BITS-PASS1_BITS);  | 
3634  | 0  |     dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);  | 
3635  |  |  | 
3636  |  |     /* Odd part */  | 
3637  |  | 
  | 
3638  | 0  |     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347));   /* (c3+c1-c5)/2 */  | 
3639  | 0  |     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339));   /* (c3+c5-c1)/2 */  | 
3640  | 0  |     tmp0 = tmp1 - tmp2;  | 
3641  | 0  |     tmp1 += tmp2;  | 
3642  | 0  |     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */  | 
3643  | 0  |     tmp1 += tmp2;  | 
3644  | 0  |     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268));   /* c5 */  | 
3645  | 0  |     tmp0 += tmp3;  | 
3646  | 0  |     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693));   /* c3+c1-c5 */  | 
3647  |  | 
  | 
3648  | 0  |     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);  | 
3649  | 0  |     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);  | 
3650  | 0  |     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);  | 
3651  |  | 
  | 
3652  | 0  |     ctr++;  | 
3653  |  | 
  | 
3654  | 0  |     if (ctr != DCTSIZE) { | 
3655  | 0  |       if (ctr == 14)  | 
3656  | 0  |   break;     /* Done. */  | 
3657  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
3658  | 0  |     } else  | 
3659  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
3660  | 0  |   }  | 
3661  |  |  | 
3662  |  |   /* Pass 2: process columns.  | 
3663  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
3664  |  |    * by an overall factor of 8.  | 
3665  |  |    * We must also scale the output by (8/7)*(8/14) = 32/49, which we  | 
3666  |  |    * fold into the constant multipliers:  | 
3667  |  |    * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.  | 
3668  |  |    */  | 
3669  |  | 
  | 
3670  | 0  |   dataptr = data;  | 
3671  | 0  |   wsptr = workspace;  | 
3672  | 0  |   for (ctr = 0; ctr < 7; ctr++) { | 
3673  |  |     /* Even part */  | 
3674  |  | 
  | 
3675  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];  | 
3676  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];  | 
3677  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];  | 
3678  | 0  |     tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];  | 
3679  | 0  |     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];  | 
3680  | 0  |     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];  | 
3681  | 0  |     tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];  | 
3682  |  | 
  | 
3683  | 0  |     tmp10 = tmp0 + tmp6;  | 
3684  | 0  |     tmp14 = tmp0 - tmp6;  | 
3685  | 0  |     tmp11 = tmp1 + tmp5;  | 
3686  | 0  |     tmp15 = tmp1 - tmp5;  | 
3687  | 0  |     tmp12 = tmp2 + tmp4;  | 
3688  | 0  |     tmp16 = tmp2 - tmp4;  | 
3689  |  | 
  | 
3690  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];  | 
3691  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];  | 
3692  | 0  |     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];  | 
3693  | 0  |     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];  | 
3694  | 0  |     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];  | 
3695  | 0  |     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];  | 
3696  | 0  |     tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];  | 
3697  |  | 
  | 
3698  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
3699  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,  | 
3700  | 0  |            FIX(0.653061224)),                 /* 32/49 */  | 
3701  | 0  |         CONST_BITS+PASS1_BITS);  | 
3702  | 0  |     tmp13 += tmp13;  | 
3703  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
3704  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */  | 
3705  | 0  |         MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */  | 
3706  | 0  |         MULTIPLY(tmp12 - tmp13, FIX(0.575835255)),  /* c8 */  | 
3707  | 0  |         CONST_BITS+PASS1_BITS);  | 
3708  |  | 
  | 
3709  | 0  |     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570));    /* c6 */  | 
3710  |  | 
  | 
3711  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
3712  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691))   /* c2-c6 */  | 
3713  | 0  |         + MULTIPLY(tmp16, FIX(0.400721155)),        /* c10 */  | 
3714  | 0  |         CONST_BITS+PASS1_BITS);  | 
3715  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
3716  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725))   /* c6+c10 */  | 
3717  | 0  |         - MULTIPLY(tmp16, FIX(0.900412262)),        /* c2 */  | 
3718  | 0  |         CONST_BITS+PASS1_BITS);  | 
3719  |  |  | 
3720  |  |     /* Odd part */  | 
3721  |  | 
  | 
3722  | 0  |     tmp10 = tmp1 + tmp2;  | 
3723  | 0  |     tmp11 = tmp5 - tmp4;  | 
3724  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM)  | 
3725  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,  | 
3726  | 0  |            FIX(0.653061224)),                 /* 32/49 */  | 
3727  | 0  |         CONST_BITS+PASS1_BITS);  | 
3728  | 0  |     tmp3  = MULTIPLY(tmp3 , FIX(0.653061224));            /* 32/49 */  | 
3729  | 0  |     tmp10 = MULTIPLY(tmp10, - FIX(0.103406812));          /* -c13 */  | 
3730  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(0.917760839));            /* c1 */  | 
3731  | 0  |     tmp10 += tmp11 - tmp3;  | 
3732  | 0  |     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) +     /* c5 */  | 
3733  | 0  |       MULTIPLY(tmp4 + tmp6, FIX(0.491367823));      /* c9 */  | 
3734  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
3735  | 0  |       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */  | 
3736  | 0  |         + MULTIPLY(tmp4, FIX(0.731428202)),         /* c1+c11-c9 */  | 
3737  | 0  |         CONST_BITS+PASS1_BITS);  | 
3738  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) +     /* c3 */  | 
3739  | 0  |       MULTIPLY(tmp5 - tmp6, FIX(0.305035186));      /* c11 */  | 
3740  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
3741  | 0  |       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */  | 
3742  | 0  |         - MULTIPLY(tmp5, FIX(2.004803435)),         /* c1+c5+c11 */  | 
3743  | 0  |         CONST_BITS+PASS1_BITS);  | 
3744  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
3745  | 0  |       DESCALE(tmp11 + tmp12 + tmp3  | 
3746  | 0  |         - MULTIPLY(tmp0, FIX(0.735987049))          /* c3+c5-c1 */  | 
3747  | 0  |         - MULTIPLY(tmp6, FIX(0.082925825)),         /* c9-c11-c13 */  | 
3748  | 0  |         CONST_BITS+PASS1_BITS);  | 
3749  |  | 
  | 
3750  | 0  |     dataptr++;      /* advance pointer to next column */  | 
3751  | 0  |     wsptr++;      /* advance pointer to next column */  | 
3752  | 0  |   }  | 
3753  | 0  | }  | 
3754  |  |  | 
3755  |  |  | 
3756  |  | /*  | 
3757  |  |  * Perform the forward DCT on a 6x12 sample block.  | 
3758  |  |  *  | 
3759  |  |  * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).  | 
3760  |  |  */  | 
3761  |  |  | 
3762  |  | GLOBAL(void)  | 
3763  |  | jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3764  | 0  | { | 
3765  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;  | 
3766  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;  | 
3767  | 0  |   DCTELEM workspace[8*4];  | 
3768  | 0  |   DCTELEM *dataptr;  | 
3769  | 0  |   DCTELEM *wsptr;  | 
3770  | 0  |   JSAMPROW elemptr;  | 
3771  | 0  |   int ctr;  | 
3772  | 0  |   SHIFT_TEMPS  | 
3773  |  |  | 
3774  |  |   /* Pre-zero output coefficient block. */  | 
3775  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
3776  |  |  | 
3777  |  |   /* Pass 1: process rows.  | 
3778  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
3779  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
3780  |  |    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12).  | 
3781  |  |    */  | 
3782  |  | 
  | 
3783  | 0  |   dataptr = data;  | 
3784  | 0  |   ctr = 0;  | 
3785  | 0  |   for (;;) { | 
3786  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
3787  |  |  | 
3788  |  |     /* Even part */  | 
3789  |  | 
  | 
3790  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);  | 
3791  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);  | 
3792  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);  | 
3793  |  | 
  | 
3794  | 0  |     tmp10 = tmp0 + tmp2;  | 
3795  | 0  |     tmp12 = tmp0 - tmp2;  | 
3796  |  | 
  | 
3797  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);  | 
3798  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);  | 
3799  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);  | 
3800  |  |  | 
3801  |  |     /* Apply unsigned->signed conversion. */  | 
3802  | 0  |     dataptr[0] = (DCTELEM)  | 
3803  | 0  |       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);  | 
3804  | 0  |     dataptr[2] = (DCTELEM)  | 
3805  | 0  |       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */  | 
3806  | 0  |         CONST_BITS-PASS1_BITS);  | 
3807  | 0  |     dataptr[4] = (DCTELEM)  | 
3808  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */  | 
3809  | 0  |         CONST_BITS-PASS1_BITS);  | 
3810  |  |  | 
3811  |  |     /* Odd part */  | 
3812  |  | 
  | 
3813  | 0  |     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */  | 
3814  | 0  |         CONST_BITS-PASS1_BITS);  | 
3815  |  | 
  | 
3816  | 0  |     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));  | 
3817  | 0  |     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);  | 
3818  | 0  |     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));  | 
3819  |  | 
  | 
3820  | 0  |     ctr++;  | 
3821  |  | 
  | 
3822  | 0  |     if (ctr != DCTSIZE) { | 
3823  | 0  |       if (ctr == 12)  | 
3824  | 0  |   break;     /* Done. */  | 
3825  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
3826  | 0  |     } else  | 
3827  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
3828  | 0  |   }  | 
3829  |  |  | 
3830  |  |   /* Pass 2: process columns.  | 
3831  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
3832  |  |    * by an overall factor of 8.  | 
3833  |  |    * We must also scale the output by (8/6)*(8/12) = 8/9, which we  | 
3834  |  |    * fold into the constant multipliers:  | 
3835  |  |    * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.  | 
3836  |  |    */  | 
3837  |  | 
  | 
3838  | 0  |   dataptr = data;  | 
3839  | 0  |   wsptr = workspace;  | 
3840  | 0  |   for (ctr = 0; ctr < 6; ctr++) { | 
3841  |  |     /* Even part */  | 
3842  |  | 
  | 
3843  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];  | 
3844  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];  | 
3845  | 0  |     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];  | 
3846  | 0  |     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];  | 
3847  | 0  |     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];  | 
3848  | 0  |     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];  | 
3849  |  | 
  | 
3850  | 0  |     tmp10 = tmp0 + tmp5;  | 
3851  | 0  |     tmp13 = tmp0 - tmp5;  | 
3852  | 0  |     tmp11 = tmp1 + tmp4;  | 
3853  | 0  |     tmp14 = tmp1 - tmp4;  | 
3854  | 0  |     tmp12 = tmp2 + tmp3;  | 
3855  | 0  |     tmp15 = tmp2 - tmp3;  | 
3856  |  | 
  | 
3857  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];  | 
3858  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];  | 
3859  | 0  |     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];  | 
3860  | 0  |     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];  | 
3861  | 0  |     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];  | 
3862  | 0  |     tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];  | 
3863  |  | 
  | 
3864  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
3865  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */  | 
3866  | 0  |         CONST_BITS+PASS1_BITS);  | 
3867  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
3868  | 0  |       DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */  | 
3869  | 0  |         CONST_BITS+PASS1_BITS);  | 
3870  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
3871  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)),         /* c4 */  | 
3872  | 0  |         CONST_BITS+PASS1_BITS);  | 
3873  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
3874  | 0  |       DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) +        /* 8/9 */  | 
3875  | 0  |         MULTIPLY(tmp13 + tmp15, FIX(1.214244803)),         /* c2 */  | 
3876  | 0  |         CONST_BITS+PASS1_BITS);  | 
3877  |  |  | 
3878  |  |     /* Odd part */  | 
3879  |  | 
  | 
3880  | 0  |     tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200));   /* c9 */  | 
3881  | 0  |     tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102));  /* c3-c9 */  | 
3882  | 0  |     tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502));  /* c3+c9 */  | 
3883  | 0  |     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603));   /* c5 */  | 
3884  | 0  |     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039));   /* c7 */  | 
3885  | 0  |     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */  | 
3886  | 0  |       + MULTIPLY(tmp5, FIX(0.164081699));        /* c11 */  | 
3887  | 0  |     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */  | 
3888  | 0  |     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */  | 
3889  | 0  |       + MULTIPLY(tmp5, FIX(0.765261039));        /* c7 */  | 
3890  | 0  |     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */  | 
3891  | 0  |       - MULTIPLY(tmp5, FIX(0.997307603));        /* c5 */  | 
3892  | 0  |     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */  | 
3893  | 0  |       - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */  | 
3894  |  | 
  | 
3895  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);  | 
3896  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);  | 
3897  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);  | 
3898  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);  | 
3899  |  | 
  | 
3900  | 0  |     dataptr++;      /* advance pointer to next column */  | 
3901  | 0  |     wsptr++;      /* advance pointer to next column */  | 
3902  | 0  |   }  | 
3903  | 0  | }  | 
3904  |  |  | 
3905  |  |  | 
3906  |  | /*  | 
3907  |  |  * Perform the forward DCT on a 5x10 sample block.  | 
3908  |  |  *  | 
3909  |  |  * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).  | 
3910  |  |  */  | 
3911  |  |  | 
3912  |  | GLOBAL(void)  | 
3913  |  | jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
3914  | 0  | { | 
3915  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;  | 
3916  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;  | 
3917  | 0  |   DCTELEM workspace[8*2];  | 
3918  | 0  |   DCTELEM *dataptr;  | 
3919  | 0  |   DCTELEM *wsptr;  | 
3920  | 0  |   JSAMPROW elemptr;  | 
3921  | 0  |   int ctr;  | 
3922  | 0  |   SHIFT_TEMPS  | 
3923  |  |  | 
3924  |  |   /* Pre-zero output coefficient block. */  | 
3925  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
3926  |  |  | 
3927  |  |   /* Pass 1: process rows.  | 
3928  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
3929  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
3930  |  |    * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10).  | 
3931  |  |    */  | 
3932  |  | 
  | 
3933  | 0  |   dataptr = data;  | 
3934  | 0  |   ctr = 0;  | 
3935  | 0  |   for (;;) { | 
3936  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
3937  |  |  | 
3938  |  |     /* Even part */  | 
3939  |  | 
  | 
3940  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);  | 
3941  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);  | 
3942  | 0  |     tmp2 = GETJSAMPLE(elemptr[2]);  | 
3943  |  | 
  | 
3944  | 0  |     tmp10 = tmp0 + tmp1;  | 
3945  | 0  |     tmp11 = tmp0 - tmp1;  | 
3946  |  | 
  | 
3947  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);  | 
3948  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);  | 
3949  |  |  | 
3950  |  |     /* Apply unsigned->signed conversion. */  | 
3951  | 0  |     dataptr[0] = (DCTELEM)  | 
3952  | 0  |       ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);  | 
3953  | 0  |     tmp11 = MULTIPLY(tmp11, FIX(0.790569415));          /* (c2+c4)/2 */  | 
3954  | 0  |     tmp10 -= tmp2 << 2;  | 
3955  | 0  |     tmp10 = MULTIPLY(tmp10, FIX(0.353553391));          /* (c2-c4)/2 */  | 
3956  | 0  |     dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);  | 
3957  | 0  |     dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);  | 
3958  |  |  | 
3959  |  |     /* Odd part */  | 
3960  |  | 
  | 
3961  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876));    /* c3 */  | 
3962  |  | 
  | 
3963  | 0  |     dataptr[1] = (DCTELEM)  | 
3964  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */  | 
3965  | 0  |         CONST_BITS-PASS1_BITS);  | 
3966  | 0  |     dataptr[3] = (DCTELEM)  | 
3967  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */  | 
3968  | 0  |         CONST_BITS-PASS1_BITS);  | 
3969  |  | 
  | 
3970  | 0  |     ctr++;  | 
3971  |  | 
  | 
3972  | 0  |     if (ctr != DCTSIZE) { | 
3973  | 0  |       if (ctr == 10)  | 
3974  | 0  |   break;     /* Done. */  | 
3975  | 0  |       dataptr += DCTSIZE; /* advance pointer to next row */  | 
3976  | 0  |     } else  | 
3977  | 0  |       dataptr = workspace; /* switch pointer to extended workspace */  | 
3978  | 0  |   }  | 
3979  |  |  | 
3980  |  |   /* Pass 2: process columns.  | 
3981  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
3982  |  |    * by an overall factor of 8.  | 
3983  |  |    * We must also scale the output by (8/5)*(8/10) = 32/25, which we  | 
3984  |  |    * fold into the constant multipliers:  | 
3985  |  |    * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.  | 
3986  |  |    */  | 
3987  |  | 
  | 
3988  | 0  |   dataptr = data;  | 
3989  | 0  |   wsptr = workspace;  | 
3990  | 0  |   for (ctr = 0; ctr < 5; ctr++) { | 
3991  |  |     /* Even part */  | 
3992  |  | 
  | 
3993  | 0  |     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];  | 
3994  | 0  |     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];  | 
3995  | 0  |     tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];  | 
3996  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];  | 
3997  | 0  |     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];  | 
3998  |  | 
  | 
3999  | 0  |     tmp10 = tmp0 + tmp4;  | 
4000  | 0  |     tmp13 = tmp0 - tmp4;  | 
4001  | 0  |     tmp11 = tmp1 + tmp3;  | 
4002  | 0  |     tmp14 = tmp1 - tmp3;  | 
4003  |  | 
  | 
4004  | 0  |     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];  | 
4005  | 0  |     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];  | 
4006  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];  | 
4007  | 0  |     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];  | 
4008  | 0  |     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];  | 
4009  |  | 
  | 
4010  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
4011  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */  | 
4012  | 0  |         CONST_BITS+PASS1_BITS);  | 
4013  | 0  |     tmp12 += tmp12;  | 
4014  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
4015  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */  | 
4016  | 0  |         MULTIPLY(tmp11 - tmp12, FIX(0.559380511)),  /* c8 */  | 
4017  | 0  |         CONST_BITS+PASS1_BITS);  | 
4018  | 0  |     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961));    /* c6 */  | 
4019  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
4020  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)),  /* c2-c6 */  | 
4021  | 0  |         CONST_BITS+PASS1_BITS);  | 
4022  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
4023  | 0  |       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)),  /* c2+c6 */  | 
4024  | 0  |         CONST_BITS+PASS1_BITS);  | 
4025  |  |  | 
4026  |  |     /* Odd part */  | 
4027  |  | 
  | 
4028  | 0  |     tmp10 = tmp0 + tmp4;  | 
4029  | 0  |     tmp11 = tmp1 - tmp3;  | 
4030  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
4031  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)),  /* 32/25 */  | 
4032  | 0  |         CONST_BITS+PASS1_BITS);  | 
4033  | 0  |     tmp2 = MULTIPLY(tmp2, FIX(1.28));                     /* 32/25 */  | 
4034  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
4035  | 0  |       DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) +          /* c1 */  | 
4036  | 0  |         MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 +   /* c3 */  | 
4037  | 0  |         MULTIPLY(tmp3, FIX(0.821810588)) +          /* c7 */  | 
4038  | 0  |         MULTIPLY(tmp4, FIX(0.283176630)),           /* c9 */  | 
4039  | 0  |         CONST_BITS+PASS1_BITS);  | 
4040  | 0  |     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) -     /* (c3+c7)/2 */  | 
4041  | 0  |       MULTIPLY(tmp1 + tmp3, FIX(0.752365123));      /* (c1-c9)/2 */  | 
4042  | 0  |     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) +   /* (c3-c7)/2 */  | 
4043  | 0  |       MULTIPLY(tmp11, FIX(0.64)) - tmp2;            /* 16/25 */  | 
4044  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);  | 
4045  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);  | 
4046  |  | 
  | 
4047  | 0  |     dataptr++;      /* advance pointer to next column */  | 
4048  | 0  |     wsptr++;      /* advance pointer to next column */  | 
4049  | 0  |   }  | 
4050  | 0  | }  | 
4051  |  |  | 
4052  |  |  | 
4053  |  | /*  | 
4054  |  |  * Perform the forward DCT on a 4x8 sample block.  | 
4055  |  |  *  | 
4056  |  |  * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).  | 
4057  |  |  */  | 
4058  |  |  | 
4059  |  | GLOBAL(void)  | 
4060  |  | jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
4061  | 0  | { | 
4062  | 0  |   INT32 tmp0, tmp1, tmp2, tmp3;  | 
4063  | 0  |   INT32 tmp10, tmp11, tmp12, tmp13;  | 
4064  | 0  |   INT32 z1;  | 
4065  | 0  |   DCTELEM *dataptr;  | 
4066  | 0  |   JSAMPROW elemptr;  | 
4067  | 0  |   int ctr;  | 
4068  | 0  |   SHIFT_TEMPS  | 
4069  |  |  | 
4070  |  |   /* Pre-zero output coefficient block. */  | 
4071  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
4072  |  |  | 
4073  |  |   /* Pass 1: process rows.  | 
4074  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
4075  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
4076  |  |    * We must also scale the output by 8/4 = 2, which we add here.  | 
4077  |  |    * 4-point FDCT kernel,  | 
4078  |  |    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].  | 
4079  |  |    */  | 
4080  |  | 
  | 
4081  | 0  |   dataptr = data;  | 
4082  | 0  |   for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
4083  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
4084  |  |  | 
4085  |  |     /* Even part */  | 
4086  |  | 
  | 
4087  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);  | 
4088  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);  | 
4089  |  | 
  | 
4090  | 0  |     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);  | 
4091  | 0  |     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);  | 
4092  |  |  | 
4093  |  |     /* Apply unsigned->signed conversion. */  | 
4094  | 0  |     dataptr[0] = (DCTELEM)  | 
4095  | 0  |       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));  | 
4096  | 0  |     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));  | 
4097  |  |  | 
4098  |  |     /* Odd part */  | 
4099  |  | 
  | 
4100  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */  | 
4101  |  |     /* Add fudge factor here for final descale. */  | 
4102  | 0  |     tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);  | 
4103  |  | 
  | 
4104  | 0  |     dataptr[1] = (DCTELEM)  | 
4105  | 0  |       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */  | 
4106  | 0  |       CONST_BITS-PASS1_BITS-1);  | 
4107  | 0  |     dataptr[3] = (DCTELEM)  | 
4108  | 0  |       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */  | 
4109  | 0  |       CONST_BITS-PASS1_BITS-1);  | 
4110  |  | 
  | 
4111  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
4112  | 0  |   }  | 
4113  |  |  | 
4114  |  |   /* Pass 2: process columns.  | 
4115  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
4116  |  |    * by an overall factor of 8.  | 
4117  |  |    * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).  | 
4118  |  |    */  | 
4119  |  | 
  | 
4120  | 0  |   dataptr = data;  | 
4121  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
4122  |  |     /* Even part per LL&M figure 1 --- note that published figure is faulty;  | 
4123  |  |      * rotator "c1" should be "c6".  | 
4124  |  |      */  | 
4125  |  | 
  | 
4126  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];  | 
4127  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];  | 
4128  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];  | 
4129  | 0  |     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];  | 
4130  |  |  | 
4131  |  |     /* Add fudge factor here for final descale. */  | 
4132  | 0  |     tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));  | 
4133  | 0  |     tmp12 = tmp0 - tmp3;  | 
4134  | 0  |     tmp11 = tmp1 + tmp2;  | 
4135  | 0  |     tmp13 = tmp1 - tmp2;  | 
4136  |  | 
  | 
4137  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];  | 
4138  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];  | 
4139  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];  | 
4140  | 0  |     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];  | 
4141  |  | 
  | 
4142  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);  | 
4143  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);  | 
4144  |  | 
  | 
4145  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);       /* c6 */  | 
4146  |  |     /* Add fudge factor here for final descale. */  | 
4147  | 0  |     z1 += ONE << (CONST_BITS+PASS1_BITS-1);  | 
4148  |  | 
  | 
4149  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
4150  | 0  |       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */  | 
4151  | 0  |       CONST_BITS+PASS1_BITS);  | 
4152  | 0  |     dataptr[DCTSIZE*6] = (DCTELEM)  | 
4153  | 0  |       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */  | 
4154  | 0  |       CONST_BITS+PASS1_BITS);  | 
4155  |  |  | 
4156  |  |     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).  | 
4157  |  |      * i0..i3 in the paper are tmp0..tmp3 here.  | 
4158  |  |      */  | 
4159  |  | 
  | 
4160  | 0  |     tmp12 = tmp0 + tmp2;  | 
4161  | 0  |     tmp13 = tmp1 + tmp3;  | 
4162  |  | 
  | 
4163  | 0  |     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602);       /*  c3 */  | 
4164  |  |     /* Add fudge factor here for final descale. */  | 
4165  | 0  |     z1 += ONE << (CONST_BITS+PASS1_BITS-1);  | 
4166  |  | 
  | 
4167  | 0  |     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);          /* -c3+c5 */  | 
4168  | 0  |     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);          /* -c3-c5 */  | 
4169  | 0  |     tmp12 += z1;  | 
4170  | 0  |     tmp13 += z1;  | 
4171  |  | 
  | 
4172  | 0  |     z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223);       /* -c3+c7 */  | 
4173  | 0  |     tmp0 = MULTIPLY(tmp0, FIX_1_501321110);              /*  c1+c3-c5-c7 */  | 
4174  | 0  |     tmp3 = MULTIPLY(tmp3, FIX_0_298631336);              /* -c1+c3+c5-c7 */  | 
4175  | 0  |     tmp0 += z1 + tmp12;  | 
4176  | 0  |     tmp3 += z1 + tmp13;  | 
4177  |  | 
  | 
4178  | 0  |     z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447);       /* -c1-c3 */  | 
4179  | 0  |     tmp1 = MULTIPLY(tmp1, FIX_3_072711026);              /*  c1+c3+c5-c7 */  | 
4180  | 0  |     tmp2 = MULTIPLY(tmp2, FIX_2_053119869);              /*  c1+c3-c5+c7 */  | 
4181  | 0  |     tmp1 += z1 + tmp13;  | 
4182  | 0  |     tmp2 += z1 + tmp12;  | 
4183  |  | 
  | 
4184  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS);  | 
4185  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS);  | 
4186  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS);  | 
4187  | 0  |     dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS);  | 
4188  |  | 
  | 
4189  | 0  |     dataptr++;      /* advance pointer to next column */  | 
4190  | 0  |   }  | 
4191  | 0  | }  | 
4192  |  |  | 
4193  |  |  | 
4194  |  | /*  | 
4195  |  |  * Perform the forward DCT on a 3x6 sample block.  | 
4196  |  |  *  | 
4197  |  |  * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).  | 
4198  |  |  */  | 
4199  |  |  | 
4200  |  | GLOBAL(void)  | 
4201  |  | jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
4202  | 0  | { | 
4203  | 0  |   INT32 tmp0, tmp1, tmp2;  | 
4204  | 0  |   INT32 tmp10, tmp11, tmp12;  | 
4205  | 0  |   DCTELEM *dataptr;  | 
4206  | 0  |   JSAMPROW elemptr;  | 
4207  | 0  |   int ctr;  | 
4208  | 0  |   SHIFT_TEMPS  | 
4209  |  |  | 
4210  |  |   /* Pre-zero output coefficient block. */  | 
4211  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
4212  |  |  | 
4213  |  |   /* Pass 1: process rows.  | 
4214  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT;  | 
4215  |  |    * furthermore, we scale the results by 2**PASS1_BITS.  | 
4216  |  |    * We scale the results further by 2 as part of output adaption  | 
4217  |  |    * scaling for different DCT size.  | 
4218  |  |    * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6).  | 
4219  |  |    */  | 
4220  |  | 
  | 
4221  | 0  |   dataptr = data;  | 
4222  | 0  |   for (ctr = 0; ctr < 6; ctr++) { | 
4223  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
4224  |  |  | 
4225  |  |     /* Even part */  | 
4226  |  | 
  | 
4227  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);  | 
4228  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]);  | 
4229  |  | 
  | 
4230  | 0  |     tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);  | 
4231  |  |  | 
4232  |  |     /* Apply unsigned->signed conversion. */  | 
4233  | 0  |     dataptr[0] = (DCTELEM)  | 
4234  | 0  |       ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));  | 
4235  | 0  |     dataptr[2] = (DCTELEM)  | 
4236  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */  | 
4237  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
4238  |  |  | 
4239  |  |     /* Odd part */  | 
4240  |  | 
  | 
4241  | 0  |     dataptr[1] = (DCTELEM)  | 
4242  | 0  |       DESCALE(MULTIPLY(tmp2, FIX(1.224744871)),               /* c1 */  | 
4243  | 0  |         CONST_BITS-PASS1_BITS-1);  | 
4244  |  | 
  | 
4245  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
4246  | 0  |   }  | 
4247  |  |  | 
4248  |  |   /* Pass 2: process columns.  | 
4249  |  |    * We remove the PASS1_BITS scaling, but leave the results scaled up  | 
4250  |  |    * by an overall factor of 8.  | 
4251  |  |    * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially  | 
4252  |  |    * fold into the constant multipliers (other part was done in pass 1):  | 
4253  |  |    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.  | 
4254  |  |    */  | 
4255  |  | 
  | 
4256  | 0  |   dataptr = data;  | 
4257  | 0  |   for (ctr = 0; ctr < 3; ctr++) { | 
4258  |  |     /* Even part */  | 
4259  |  | 
  | 
4260  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];  | 
4261  | 0  |     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];  | 
4262  | 0  |     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];  | 
4263  |  | 
  | 
4264  | 0  |     tmp10 = tmp0 + tmp2;  | 
4265  | 0  |     tmp12 = tmp0 - tmp2;  | 
4266  |  | 
  | 
4267  | 0  |     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];  | 
4268  | 0  |     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];  | 
4269  | 0  |     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];  | 
4270  |  | 
  | 
4271  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM)  | 
4272  | 0  |       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */  | 
4273  | 0  |         CONST_BITS+PASS1_BITS);  | 
4274  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM)  | 
4275  | 0  |       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */  | 
4276  | 0  |         CONST_BITS+PASS1_BITS);  | 
4277  | 0  |     dataptr[DCTSIZE*4] = (DCTELEM)  | 
4278  | 0  |       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */  | 
4279  | 0  |         CONST_BITS+PASS1_BITS);  | 
4280  |  |  | 
4281  |  |     /* Odd part */  | 
4282  |  | 
  | 
4283  | 0  |     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */  | 
4284  |  | 
  | 
4285  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
4286  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */  | 
4287  | 0  |         CONST_BITS+PASS1_BITS);  | 
4288  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
4289  | 0  |       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */  | 
4290  | 0  |         CONST_BITS+PASS1_BITS);  | 
4291  | 0  |     dataptr[DCTSIZE*5] = (DCTELEM)  | 
4292  | 0  |       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */  | 
4293  | 0  |         CONST_BITS+PASS1_BITS);  | 
4294  |  | 
  | 
4295  | 0  |     dataptr++;      /* advance pointer to next column */  | 
4296  | 0  |   }  | 
4297  | 0  | }  | 
4298  |  |  | 
4299  |  |  | 
4300  |  | /*  | 
4301  |  |  * Perform the forward DCT on a 2x4 sample block.  | 
4302  |  |  *  | 
4303  |  |  * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).  | 
4304  |  |  */  | 
4305  |  |  | 
4306  |  | GLOBAL(void)  | 
4307  |  | jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
4308  | 0  | { | 
4309  | 0  |   INT32 tmp0, tmp1;  | 
4310  | 0  |   INT32 tmp10, tmp11;  | 
4311  | 0  |   DCTELEM *dataptr;  | 
4312  | 0  |   JSAMPROW elemptr;  | 
4313  | 0  |   int ctr;  | 
4314  | 0  |   SHIFT_TEMPS  | 
4315  |  |  | 
4316  |  |   /* Pre-zero output coefficient block. */  | 
4317  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
4318  |  |  | 
4319  |  |   /* Pass 1: process rows.  | 
4320  |  |    * Note results are scaled up by sqrt(8) compared to a true DCT.  | 
4321  |  |    */  | 
4322  |  | 
  | 
4323  | 0  |   dataptr = data;  | 
4324  | 0  |   for (ctr = 0; ctr < 4; ctr++) { | 
4325  | 0  |     elemptr = sample_data[ctr] + start_col;  | 
4326  |  |  | 
4327  |  |     /* Even part */  | 
4328  |  | 
  | 
4329  | 0  |     tmp0 = GETJSAMPLE(elemptr[0]);  | 
4330  | 0  |     tmp1 = GETJSAMPLE(elemptr[1]);  | 
4331  |  |  | 
4332  |  |     /* Apply unsigned->signed conversion. */  | 
4333  | 0  |     dataptr[0] = (DCTELEM) (tmp0 + tmp1 - 2 * CENTERJSAMPLE);  | 
4334  |  |  | 
4335  |  |     /* Odd part */  | 
4336  |  | 
  | 
4337  | 0  |     dataptr[1] = (DCTELEM) (tmp0 - tmp1);  | 
4338  |  | 
  | 
4339  | 0  |     dataptr += DCTSIZE;   /* advance pointer to next row */  | 
4340  | 0  |   }  | 
4341  |  |  | 
4342  |  |   /* Pass 2: process columns.  | 
4343  |  |    * We leave the results scaled up by an overall factor of 8.  | 
4344  |  |    * We must also scale the output by (8/2)*(8/4) = 2**3.  | 
4345  |  |    * 4-point FDCT kernel,  | 
4346  |  |    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].  | 
4347  |  |    */  | 
4348  |  | 
  | 
4349  | 0  |   dataptr = data;  | 
4350  | 0  |   for (ctr = 0; ctr < 2; ctr++) { | 
4351  |  |     /* Even part */  | 
4352  |  | 
  | 
4353  | 0  |     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];  | 
4354  | 0  |     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];  | 
4355  |  | 
  | 
4356  | 0  |     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];  | 
4357  | 0  |     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];  | 
4358  |  | 
  | 
4359  | 0  |     dataptr[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1) << 3);  | 
4360  | 0  |     dataptr[DCTSIZE*2] = (DCTELEM) ((tmp0 - tmp1) << 3);  | 
4361  |  |  | 
4362  |  |     /* Odd part */  | 
4363  |  | 
  | 
4364  | 0  |     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */  | 
4365  |  |     /* Add fudge factor here for final descale. */  | 
4366  | 0  |     tmp0 += ONE << (CONST_BITS-3-1);  | 
4367  |  | 
  | 
4368  | 0  |     dataptr[DCTSIZE*1] = (DCTELEM)  | 
4369  | 0  |       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */  | 
4370  | 0  |       CONST_BITS-3);  | 
4371  | 0  |     dataptr[DCTSIZE*3] = (DCTELEM)  | 
4372  | 0  |       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */  | 
4373  | 0  |       CONST_BITS-3);  | 
4374  |  | 
  | 
4375  | 0  |     dataptr++;      /* advance pointer to next column */  | 
4376  | 0  |   }  | 
4377  | 0  | }  | 
4378  |  |  | 
4379  |  |  | 
4380  |  | /*  | 
4381  |  |  * Perform the forward DCT on a 1x2 sample block.  | 
4382  |  |  *  | 
4383  |  |  * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).  | 
4384  |  |  */  | 
4385  |  |  | 
4386  |  | GLOBAL(void)  | 
4387  |  | jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)  | 
4388  | 0  | { | 
4389  | 0  |   DCTELEM tmp0, tmp1;  | 
4390  |  |  | 
4391  |  |   /* Pre-zero output coefficient block. */  | 
4392  | 0  |   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);  | 
4393  |  |  | 
4394  |  |   /* Pass 1: empty. */  | 
4395  |  |  | 
4396  |  |   /* Pass 2: process columns.  | 
4397  |  |    * We leave the results scaled up by an overall factor of 8.  | 
4398  |  |    * We must also scale the output by (8/1)*(8/2) = 2**5.  | 
4399  |  |    */  | 
4400  |  |  | 
4401  |  |   /* Even part */  | 
4402  |  | 
  | 
4403  | 0  |   tmp0 = GETJSAMPLE(sample_data[0][start_col]);  | 
4404  | 0  |   tmp1 = GETJSAMPLE(sample_data[1][start_col]);  | 
4405  |  |  | 
4406  |  |   /* Apply unsigned->signed conversion. */  | 
4407  | 0  |   data[DCTSIZE*0] = (tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5;  | 
4408  |  |  | 
4409  |  |   /* Odd part */  | 
4410  |  | 
  | 
4411  | 0  |   data[DCTSIZE*1] = (tmp0 - tmp1) << 5;  | 
4412  | 0  | }  | 
4413  |  |  | 
4414  |  | #endif /* DCT_SCALING_SUPPORTED */  | 
4415  |  | #endif /* DCT_ISLOW_SUPPORTED */  |