/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jidctflt.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jidctflt.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1994-1998, Thomas G. Lane.  | 
5  |  |  * Modified 2010-2017 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains a floating-point implementation of the  | 
10  |  |  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine  | 
11  |  |  * must also perform dequantization of the input coefficients.  | 
12  |  |  *  | 
13  |  |  * This implementation should be more accurate than either of the integer  | 
14  |  |  * IDCT implementations.  However, it may not give the same results on all  | 
15  |  |  * machines because of differences in roundoff behavior.  Speed will depend  | 
16  |  |  * on the hardware's floating point capacity.  | 
17  |  |  *  | 
18  |  |  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT  | 
19  |  |  * on each row (or vice versa, but it's more convenient to emit a row at  | 
20  |  |  * a time).  Direct algorithms are also available, but they are much more  | 
21  |  |  * complex and seem not to be any faster when reduced to code.  | 
22  |  |  *  | 
23  |  |  * This implementation is based on Arai, Agui, and Nakajima's algorithm for  | 
24  |  |  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in  | 
25  |  |  * Japanese, but the algorithm is described in the Pennebaker & Mitchell  | 
26  |  |  * JPEG textbook (see REFERENCES section in file README).  The following code  | 
27  |  |  * is based directly on figure 4-8 in P&M.  | 
28  |  |  * While an 8-point DCT cannot be done in less than 11 multiplies, it is  | 
29  |  |  * possible to arrange the computation so that many of the multiplies are  | 
30  |  |  * simple scalings of the final outputs.  These multiplies can then be  | 
31  |  |  * folded into the multiplications or divisions by the JPEG quantization  | 
32  |  |  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds  | 
33  |  |  * to be done in the DCT itself.  | 
34  |  |  * The primary disadvantage of this method is that with a fixed-point  | 
35  |  |  * implementation, accuracy is lost due to imprecise representation of the  | 
36  |  |  * scaled quantization values.  However, that problem does not arise if  | 
37  |  |  * we use floating point arithmetic.  | 
38  |  |  */  | 
39  |  |  | 
40  |  | #define JPEG_INTERNALS  | 
41  |  | #include "jinclude.h"  | 
42  |  | #include "jpeglib.h"  | 
43  |  | #include "jdct.h"   /* Private declarations for DCT subsystem */  | 
44  |  |  | 
45  |  | #ifdef DCT_FLOAT_SUPPORTED  | 
46  |  |  | 
47  |  |  | 
48  |  | /*  | 
49  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
50  |  |  */  | 
51  |  |  | 
52  |  | #if DCTSIZE != 8  | 
53  |  |   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */  | 
54  |  | #endif  | 
55  |  |  | 
56  |  |  | 
57  |  | /* Dequantize a coefficient by multiplying it by the multiplier-table  | 
58  |  |  * entry; produce a float result.  | 
59  |  |  */  | 
60  |  |  | 
61  | 0  | #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))  | 
62  |  |  | 
63  |  |  | 
64  |  | /*  | 
65  |  |  * Perform dequantization and inverse DCT on one block of coefficients.  | 
66  |  |  *  | 
67  |  |  * cK represents cos(K*pi/16).  | 
68  |  |  */  | 
69  |  |  | 
70  |  | GLOBAL(void)  | 
71  |  | jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,  | 
72  |  |      JCOEFPTR coef_block,  | 
73  |  |      JSAMPARRAY output_buf, JDIMENSION output_col)  | 
74  | 0  | { | 
75  | 0  |   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
76  | 0  |   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;  | 
77  | 0  |   FAST_FLOAT z5, z10, z11, z12, z13;  | 
78  | 0  |   JCOEFPTR inptr;  | 
79  | 0  |   FLOAT_MULT_TYPE * quantptr;  | 
80  | 0  |   FAST_FLOAT * wsptr;  | 
81  | 0  |   JSAMPROW outptr;  | 
82  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
83  | 0  |   int ctr;  | 
84  | 0  |   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */  | 
85  |  |  | 
86  |  |   /* Pass 1: process columns from input, store into work array. */  | 
87  |  | 
  | 
88  | 0  |   inptr = coef_block;  | 
89  | 0  |   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;  | 
90  | 0  |   wsptr = workspace;  | 
91  | 0  |   for (ctr = DCTSIZE; ctr > 0; ctr--) { | 
92  |  |     /* Due to quantization, we will usually find that many of the input  | 
93  |  |      * coefficients are zero, especially the AC terms.  We can exploit this  | 
94  |  |      * by short-circuiting the IDCT calculation for any column in which all  | 
95  |  |      * the AC terms are zero.  In that case each output is equal to the  | 
96  |  |      * DC coefficient (with scale factor as needed).  | 
97  |  |      * With typical images and quantization tables, half or more of the  | 
98  |  |      * column DCT calculations can be simplified this way.  | 
99  |  |      */  | 
100  |  | 
  | 
101  | 0  |     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&  | 
102  | 0  |   inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&  | 
103  | 0  |   inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&  | 
104  | 0  |   inptr[DCTSIZE*7] == 0) { | 
105  |  |       /* AC terms all zero */  | 
106  | 0  |       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
107  |  | 
  | 
108  | 0  |       wsptr[DCTSIZE*0] = dcval;  | 
109  | 0  |       wsptr[DCTSIZE*1] = dcval;  | 
110  | 0  |       wsptr[DCTSIZE*2] = dcval;  | 
111  | 0  |       wsptr[DCTSIZE*3] = dcval;  | 
112  | 0  |       wsptr[DCTSIZE*4] = dcval;  | 
113  | 0  |       wsptr[DCTSIZE*5] = dcval;  | 
114  | 0  |       wsptr[DCTSIZE*6] = dcval;  | 
115  | 0  |       wsptr[DCTSIZE*7] = dcval;  | 
116  |  | 
  | 
117  | 0  |       inptr++;      /* advance pointers to next column */  | 
118  | 0  |       quantptr++;  | 
119  | 0  |       wsptr++;  | 
120  | 0  |       continue;  | 
121  | 0  |     }  | 
122  |  |  | 
123  |  |     /* Even part */  | 
124  |  |  | 
125  | 0  |     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
126  | 0  |     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);  | 
127  | 0  |     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);  | 
128  | 0  |     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);  | 
129  |  | 
  | 
130  | 0  |     tmp10 = tmp0 + tmp2;  /* phase 3 */  | 
131  | 0  |     tmp11 = tmp0 - tmp2;  | 
132  |  | 
  | 
133  | 0  |     tmp13 = tmp1 + tmp3;  /* phases 5-3 */  | 
134  | 0  |     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */  | 
135  |  | 
  | 
136  | 0  |     tmp0 = tmp10 + tmp13; /* phase 2 */  | 
137  | 0  |     tmp3 = tmp10 - tmp13;  | 
138  | 0  |     tmp1 = tmp11 + tmp12;  | 
139  | 0  |     tmp2 = tmp11 - tmp12;  | 
140  |  |  | 
141  |  |     /* Odd part */  | 
142  |  | 
  | 
143  | 0  |     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);  | 
144  | 0  |     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);  | 
145  | 0  |     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);  | 
146  | 0  |     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);  | 
147  |  | 
  | 
148  | 0  |     z13 = tmp6 + tmp5;    /* phase 6 */  | 
149  | 0  |     z10 = tmp6 - tmp5;  | 
150  | 0  |     z11 = tmp4 + tmp7;  | 
151  | 0  |     z12 = tmp4 - tmp7;  | 
152  |  | 
  | 
153  | 0  |     tmp7 = z11 + z13;   /* phase 5 */  | 
154  | 0  |     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */  | 
155  |  | 
  | 
156  | 0  |     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */  | 
157  | 0  |     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */  | 
158  | 0  |     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */  | 
159  |  | 
  | 
160  | 0  |     tmp6 = tmp12 - tmp7;  /* phase 2 */  | 
161  | 0  |     tmp5 = tmp11 - tmp6;  | 
162  | 0  |     tmp4 = tmp10 - tmp5;  | 
163  |  | 
  | 
164  | 0  |     wsptr[DCTSIZE*0] = tmp0 + tmp7;  | 
165  | 0  |     wsptr[DCTSIZE*7] = tmp0 - tmp7;  | 
166  | 0  |     wsptr[DCTSIZE*1] = tmp1 + tmp6;  | 
167  | 0  |     wsptr[DCTSIZE*6] = tmp1 - tmp6;  | 
168  | 0  |     wsptr[DCTSIZE*2] = tmp2 + tmp5;  | 
169  | 0  |     wsptr[DCTSIZE*5] = tmp2 - tmp5;  | 
170  | 0  |     wsptr[DCTSIZE*3] = tmp3 + tmp4;  | 
171  | 0  |     wsptr[DCTSIZE*4] = tmp3 - tmp4;  | 
172  |  | 
  | 
173  | 0  |     inptr++;      /* advance pointers to next column */  | 
174  | 0  |     quantptr++;  | 
175  | 0  |     wsptr++;  | 
176  | 0  |   }  | 
177  |  |  | 
178  |  |   /* Pass 2: process rows from work array, store into output array. */  | 
179  |  | 
  | 
180  | 0  |   wsptr = workspace;  | 
181  | 0  |   for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
182  | 0  |     outptr = output_buf[ctr] + output_col;  | 
183  |  |     /* Rows of zeroes can be exploited in the same way as we did with columns.  | 
184  |  |      * However, the column calculation has created many nonzero AC terms, so  | 
185  |  |      * the simplification applies less often (typically 5% to 10% of the time).  | 
186  |  |      * And testing floats for zero is relatively expensive, so we don't bother.  | 
187  |  |      */  | 
188  |  |  | 
189  |  |     /* Even part */  | 
190  |  |  | 
191  |  |     /* Prepare range-limit and float->int conversion */  | 
192  | 0  |     z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5));  | 
193  | 0  |     tmp10 = z5 + wsptr[4];  | 
194  | 0  |     tmp11 = z5 - wsptr[4];  | 
195  |  | 
  | 
196  | 0  |     tmp13 = wsptr[2] + wsptr[6];  | 
197  | 0  |     tmp12 = (wsptr[2] - wsptr[6]) *  | 
198  | 0  |         ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */  | 
199  |  | 
  | 
200  | 0  |     tmp0 = tmp10 + tmp13;  | 
201  | 0  |     tmp3 = tmp10 - tmp13;  | 
202  | 0  |     tmp1 = tmp11 + tmp12;  | 
203  | 0  |     tmp2 = tmp11 - tmp12;  | 
204  |  |  | 
205  |  |     /* Odd part */  | 
206  |  | 
  | 
207  | 0  |     z13 = wsptr[5] + wsptr[3];  | 
208  | 0  |     z10 = wsptr[5] - wsptr[3];  | 
209  | 0  |     z11 = wsptr[1] + wsptr[7];  | 
210  | 0  |     z12 = wsptr[1] - wsptr[7];  | 
211  |  | 
  | 
212  | 0  |     tmp7 = z11 + z13;   /* phase 5 */  | 
213  | 0  |     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */  | 
214  |  | 
  | 
215  | 0  |     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */  | 
216  | 0  |     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */  | 
217  | 0  |     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */  | 
218  |  | 
  | 
219  | 0  |     tmp6 = tmp12 - tmp7;  /* phase 2 */  | 
220  | 0  |     tmp5 = tmp11 - tmp6;  | 
221  | 0  |     tmp4 = tmp10 - tmp5;  | 
222  |  |  | 
223  |  |     /* Final output stage: float->int conversion and range-limit */  | 
224  |  | 
  | 
225  | 0  |     outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK];  | 
226  | 0  |     outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK];  | 
227  | 0  |     outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK];  | 
228  | 0  |     outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK];  | 
229  | 0  |     outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK];  | 
230  | 0  |     outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK];  | 
231  | 0  |     outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK];  | 
232  | 0  |     outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK];  | 
233  |  | 
  | 
234  | 0  |     wsptr += DCTSIZE;   /* advance pointer to next row */  | 
235  | 0  |   }  | 
236  | 0  | }  | 
237  |  |  | 
238  |  | #endif /* DCT_FLOAT_SUPPORTED */  |