/src/freeimage-svn/FreeImage/trunk/Source/LibJPEG/jidctfst.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |  * jidctfst.c  | 
3  |  |  *  | 
4  |  |  * Copyright (C) 1994-1998, Thomas G. Lane.  | 
5  |  |  * Modified 2015-2017 by Guido Vollbeding.  | 
6  |  |  * This file is part of the Independent JPEG Group's software.  | 
7  |  |  * For conditions of distribution and use, see the accompanying README file.  | 
8  |  |  *  | 
9  |  |  * This file contains a fast, not so accurate integer implementation of the  | 
10  |  |  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine  | 
11  |  |  * must also perform dequantization of the input coefficients.  | 
12  |  |  *  | 
13  |  |  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT  | 
14  |  |  * on each row (or vice versa, but it's more convenient to emit a row at  | 
15  |  |  * a time).  Direct algorithms are also available, but they are much more  | 
16  |  |  * complex and seem not to be any faster when reduced to code.  | 
17  |  |  *  | 
18  |  |  * This implementation is based on Arai, Agui, and Nakajima's algorithm for  | 
19  |  |  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in  | 
20  |  |  * Japanese, but the algorithm is described in the Pennebaker & Mitchell  | 
21  |  |  * JPEG textbook (see REFERENCES section in file README).  The following code  | 
22  |  |  * is based directly on figure 4-8 in P&M.  | 
23  |  |  * While an 8-point DCT cannot be done in less than 11 multiplies, it is  | 
24  |  |  * possible to arrange the computation so that many of the multiplies are  | 
25  |  |  * simple scalings of the final outputs.  These multiplies can then be  | 
26  |  |  * folded into the multiplications or divisions by the JPEG quantization  | 
27  |  |  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds  | 
28  |  |  * to be done in the DCT itself.  | 
29  |  |  * The primary disadvantage of this method is that with fixed-point math,  | 
30  |  |  * accuracy is lost due to imprecise representation of the scaled  | 
31  |  |  * quantization values.  The smaller the quantization table entry, the less  | 
32  |  |  * precise the scaled value, so this implementation does worse with high-  | 
33  |  |  * quality-setting files than with low-quality ones.  | 
34  |  |  */  | 
35  |  |  | 
36  |  | #define JPEG_INTERNALS  | 
37  |  | #include "jinclude.h"  | 
38  |  | #include "jpeglib.h"  | 
39  |  | #include "jdct.h"   /* Private declarations for DCT subsystem */  | 
40  |  |  | 
41  |  | #ifdef DCT_IFAST_SUPPORTED  | 
42  |  |  | 
43  |  |  | 
44  |  | /*  | 
45  |  |  * This module is specialized to the case DCTSIZE = 8.  | 
46  |  |  */  | 
47  |  |  | 
48  |  | #if DCTSIZE != 8  | 
49  |  |   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */  | 
50  |  | #endif  | 
51  |  |  | 
52  |  |  | 
53  |  | /* Scaling decisions are generally the same as in the LL&M algorithm;  | 
54  |  |  * see jidctint.c for more details.  However, we choose to descale  | 
55  |  |  * (right shift) multiplication products as soon as they are formed,  | 
56  |  |  * rather than carrying additional fractional bits into subsequent additions.  | 
57  |  |  * This compromises accuracy slightly, but it lets us save a few shifts.  | 
58  |  |  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)  | 
59  |  |  * everywhere except in the multiplications proper; this saves a good deal  | 
60  |  |  * of work on 16-bit-int machines.  | 
61  |  |  *  | 
62  |  |  * The dequantized coefficients are not integers because the AA&N scaling  | 
63  |  |  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,  | 
64  |  |  * so that the first and second IDCT rounds have the same input scaling.  | 
65  |  |  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to  | 
66  |  |  * avoid a descaling shift; this compromises accuracy rather drastically  | 
67  |  |  * for small quantization table entries, but it saves a lot of shifts.  | 
68  |  |  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,  | 
69  |  |  * so we use a much larger scaling factor to preserve accuracy.  | 
70  |  |  *  | 
71  |  |  * A final compromise is to represent the multiplicative constants to only  | 
72  |  |  * 8 fractional bits, rather than 13.  This saves some shifting work on some  | 
73  |  |  * machines, and may also reduce the cost of multiplication (since there  | 
74  |  |  * are fewer one-bits in the constants).  | 
75  |  |  */  | 
76  |  |  | 
77  |  | #if BITS_IN_JSAMPLE == 8  | 
78  |  | #define CONST_BITS  8  | 
79  | 0  | #define PASS1_BITS  2  | 
80  |  | #else  | 
81  |  | #define CONST_BITS  8  | 
82  |  | #define PASS1_BITS  1   /* lose a little precision to avoid overflow */  | 
83  |  | #endif  | 
84  |  |  | 
85  |  | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus  | 
86  |  |  * causing a lot of useless floating-point operations at run time.  | 
87  |  |  * To get around this we use the following pre-calculated constants.  | 
88  |  |  * If you change CONST_BITS you may want to add appropriate values.  | 
89  |  |  * (With a reasonable C compiler, you can just rely on the FIX() macro...)  | 
90  |  |  */  | 
91  |  |  | 
92  |  | #if CONST_BITS == 8  | 
93  |  | #define FIX_1_082392200  ((INT32)  277)   /* FIX(1.082392200) */  | 
94  |  | #define FIX_1_414213562  ((INT32)  362)   /* FIX(1.414213562) */  | 
95  |  | #define FIX_1_847759065  ((INT32)  473)   /* FIX(1.847759065) */  | 
96  |  | #define FIX_2_613125930  ((INT32)  669)   /* FIX(2.613125930) */  | 
97  |  | #else  | 
98  |  | #define FIX_1_082392200  FIX(1.082392200)  | 
99  |  | #define FIX_1_414213562  FIX(1.414213562)  | 
100  |  | #define FIX_1_847759065  FIX(1.847759065)  | 
101  |  | #define FIX_2_613125930  FIX(2.613125930)  | 
102  |  | #endif  | 
103  |  |  | 
104  |  |  | 
105  |  | /* We can gain a little more speed, with a further compromise in accuracy,  | 
106  |  |  * by omitting the addition in a descaling shift.  This yields an incorrectly  | 
107  |  |  * rounded result half the time...  | 
108  |  |  */  | 
109  |  |  | 
110  |  | #ifndef USE_ACCURATE_ROUNDING  | 
111  |  | #undef DESCALE  | 
112  | 0  | #define DESCALE(x,n)  RIGHT_SHIFT(x, n)  | 
113  |  | #endif  | 
114  |  |  | 
115  |  |  | 
116  |  | /* Multiply a DCTELEM variable by an INT32 constant, and immediately  | 
117  |  |  * descale to yield a DCTELEM result.  | 
118  |  |  */  | 
119  |  |  | 
120  | 0  | #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))  | 
121  |  |  | 
122  |  |  | 
123  |  | /* Dequantize a coefficient by multiplying it by the multiplier-table  | 
124  |  |  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16  | 
125  |  |  * multiplication will do.  For 12-bit data, the multiplier table is  | 
126  |  |  * declared INT32, so a 32-bit multiply will be used.  | 
127  |  |  */  | 
128  |  |  | 
129  |  | #if BITS_IN_JSAMPLE == 8  | 
130  | 0  | #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))  | 
131  |  | #else  | 
132  |  | #define DEQUANTIZE(coef,quantval)  \  | 
133  |  |   DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)  | 
134  |  | #endif  | 
135  |  |  | 
136  |  |  | 
137  |  | /*  | 
138  |  |  * Perform dequantization and inverse DCT on one block of coefficients.  | 
139  |  |  *  | 
140  |  |  * cK represents cos(K*pi/16).  | 
141  |  |  */  | 
142  |  |  | 
143  |  | GLOBAL(void)  | 
144  |  | jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,  | 
145  |  |      JCOEFPTR coef_block,  | 
146  |  |      JSAMPARRAY output_buf, JDIMENSION output_col)  | 
147  | 0  | { | 
148  | 0  |   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;  | 
149  | 0  |   DCTELEM tmp10, tmp11, tmp12, tmp13;  | 
150  | 0  |   DCTELEM z5, z10, z11, z12, z13;  | 
151  | 0  |   JCOEFPTR inptr;  | 
152  | 0  |   IFAST_MULT_TYPE * quantptr;  | 
153  | 0  |   int * wsptr;  | 
154  | 0  |   JSAMPROW outptr;  | 
155  | 0  |   JSAMPLE *range_limit = IDCT_range_limit(cinfo);  | 
156  | 0  |   int ctr;  | 
157  | 0  |   int workspace[DCTSIZE2];  /* buffers data between passes */  | 
158  |  |   SHIFT_TEMPS     /* for DESCALE */  | 
159  |  |   ISHIFT_TEMPS      /* for IRIGHT_SHIFT */  | 
160  |  |  | 
161  |  |   /* Pass 1: process columns from input, store into work array. */  | 
162  |  | 
  | 
163  | 0  |   inptr = coef_block;  | 
164  | 0  |   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;  | 
165  | 0  |   wsptr = workspace;  | 
166  | 0  |   for (ctr = DCTSIZE; ctr > 0; ctr--) { | 
167  |  |     /* Due to quantization, we will usually find that many of the input  | 
168  |  |      * coefficients are zero, especially the AC terms.  We can exploit this  | 
169  |  |      * by short-circuiting the IDCT calculation for any column in which all  | 
170  |  |      * the AC terms are zero.  In that case each output is equal to the  | 
171  |  |      * DC coefficient (with scale factor as needed).  | 
172  |  |      * With typical images and quantization tables, half or more of the  | 
173  |  |      * column DCT calculations can be simplified this way.  | 
174  |  |      */  | 
175  |  |       | 
176  | 0  |     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&  | 
177  | 0  |   inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&  | 
178  | 0  |   inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&  | 
179  | 0  |   inptr[DCTSIZE*7] == 0) { | 
180  |  |       /* AC terms all zero */  | 
181  | 0  |       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
182  |  | 
  | 
183  | 0  |       wsptr[DCTSIZE*0] = dcval;  | 
184  | 0  |       wsptr[DCTSIZE*1] = dcval;  | 
185  | 0  |       wsptr[DCTSIZE*2] = dcval;  | 
186  | 0  |       wsptr[DCTSIZE*3] = dcval;  | 
187  | 0  |       wsptr[DCTSIZE*4] = dcval;  | 
188  | 0  |       wsptr[DCTSIZE*5] = dcval;  | 
189  | 0  |       wsptr[DCTSIZE*6] = dcval;  | 
190  | 0  |       wsptr[DCTSIZE*7] = dcval;  | 
191  |  |         | 
192  | 0  |       inptr++;      /* advance pointers to next column */  | 
193  | 0  |       quantptr++;  | 
194  | 0  |       wsptr++;  | 
195  | 0  |       continue;  | 
196  | 0  |     }  | 
197  |  |       | 
198  |  |     /* Even part */  | 
199  |  |  | 
200  | 0  |     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);  | 
201  | 0  |     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);  | 
202  | 0  |     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);  | 
203  | 0  |     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);  | 
204  |  | 
  | 
205  | 0  |     tmp10 = tmp0 + tmp2;  /* phase 3 */  | 
206  | 0  |     tmp11 = tmp0 - tmp2;  | 
207  |  | 
  | 
208  | 0  |     tmp13 = tmp1 + tmp3;  /* phases 5-3 */  | 
209  | 0  |     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */  | 
210  |  | 
  | 
211  | 0  |     tmp0 = tmp10 + tmp13; /* phase 2 */  | 
212  | 0  |     tmp3 = tmp10 - tmp13;  | 
213  | 0  |     tmp1 = tmp11 + tmp12;  | 
214  | 0  |     tmp2 = tmp11 - tmp12;  | 
215  |  |       | 
216  |  |     /* Odd part */  | 
217  |  | 
  | 
218  | 0  |     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);  | 
219  | 0  |     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);  | 
220  | 0  |     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);  | 
221  | 0  |     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);  | 
222  |  | 
  | 
223  | 0  |     z13 = tmp6 + tmp5;    /* phase 6 */  | 
224  | 0  |     z10 = tmp6 - tmp5;  | 
225  | 0  |     z11 = tmp4 + tmp7;  | 
226  | 0  |     z12 = tmp4 - tmp7;  | 
227  |  | 
  | 
228  | 0  |     tmp7 = z11 + z13;   /* phase 5 */  | 
229  | 0  |     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */  | 
230  |  | 
  | 
231  | 0  |     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */  | 
232  | 0  |     tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */  | 
233  | 0  |     tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */  | 
234  |  | 
  | 
235  | 0  |     tmp6 = tmp12 - tmp7;  /* phase 2 */  | 
236  | 0  |     tmp5 = tmp11 - tmp6;  | 
237  | 0  |     tmp4 = tmp10 - tmp5;  | 
238  |  | 
  | 
239  | 0  |     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);  | 
240  | 0  |     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);  | 
241  | 0  |     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);  | 
242  | 0  |     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);  | 
243  | 0  |     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);  | 
244  | 0  |     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);  | 
245  | 0  |     wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);  | 
246  | 0  |     wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);  | 
247  |  | 
  | 
248  | 0  |     inptr++;      /* advance pointers to next column */  | 
249  | 0  |     quantptr++;  | 
250  | 0  |     wsptr++;  | 
251  | 0  |   }  | 
252  |  |     | 
253  |  |   /* Pass 2: process rows from work array, store into output array.  | 
254  |  |    * Note that we must descale the results by a factor of 8 == 2**3,  | 
255  |  |    * and also undo the PASS1_BITS scaling.  | 
256  |  |    */  | 
257  |  | 
  | 
258  | 0  |   wsptr = workspace;  | 
259  | 0  |   for (ctr = 0; ctr < DCTSIZE; ctr++) { | 
260  | 0  |     outptr = output_buf[ctr] + output_col;  | 
261  |  |  | 
262  |  |     /* Add range center and fudge factor for final descale and range-limit. */  | 
263  | 0  |     z5 = (DCTELEM) wsptr[0] +  | 
264  | 0  |      ((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) +  | 
265  | 0  |       (1 << (PASS1_BITS+2)));  | 
266  |  |  | 
267  |  |     /* Rows of zeroes can be exploited in the same way as we did with columns.  | 
268  |  |      * However, the column calculation has created many nonzero AC terms, so  | 
269  |  |      * the simplification applies less often (typically 5% to 10% of the time).  | 
270  |  |      * On machines with very fast multiplication, it's possible that the  | 
271  |  |      * test takes more time than it's worth.  In that case this section  | 
272  |  |      * may be commented out.  | 
273  |  |      */  | 
274  |  |       | 
275  | 0  | #ifndef NO_ZERO_ROW_TEST  | 
276  | 0  |     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&  | 
277  | 0  |   wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | 
278  |  |       /* AC terms all zero */  | 
279  | 0  |       JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3)  | 
280  | 0  |           & RANGE_MASK];  | 
281  |  |         | 
282  | 0  |       outptr[0] = dcval;  | 
283  | 0  |       outptr[1] = dcval;  | 
284  | 0  |       outptr[2] = dcval;  | 
285  | 0  |       outptr[3] = dcval;  | 
286  | 0  |       outptr[4] = dcval;  | 
287  | 0  |       outptr[5] = dcval;  | 
288  | 0  |       outptr[6] = dcval;  | 
289  | 0  |       outptr[7] = dcval;  | 
290  |  | 
  | 
291  | 0  |       wsptr += DCTSIZE;   /* advance pointer to next row */  | 
292  | 0  |       continue;  | 
293  | 0  |     }  | 
294  | 0  | #endif  | 
295  |  |       | 
296  |  |     /* Even part */  | 
297  |  |  | 
298  | 0  |     tmp10 = z5 + (DCTELEM) wsptr[4];  | 
299  | 0  |     tmp11 = z5 - (DCTELEM) wsptr[4];  | 
300  |  | 
  | 
301  | 0  |     tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];  | 
302  | 0  |     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],  | 
303  | 0  |          FIX_1_414213562) - tmp13; /* 2*c4 */  | 
304  |  | 
  | 
305  | 0  |     tmp0 = tmp10 + tmp13;  | 
306  | 0  |     tmp3 = tmp10 - tmp13;  | 
307  | 0  |     tmp1 = tmp11 + tmp12;  | 
308  | 0  |     tmp2 = tmp11 - tmp12;  | 
309  |  |  | 
310  |  |     /* Odd part */  | 
311  |  | 
  | 
312  | 0  |     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];  | 
313  | 0  |     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];  | 
314  | 0  |     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];  | 
315  | 0  |     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];  | 
316  |  | 
  | 
317  | 0  |     tmp7 = z11 + z13;   /* phase 5 */  | 
318  | 0  |     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */  | 
319  |  | 
  | 
320  | 0  |     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */  | 
321  | 0  |     tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */  | 
322  | 0  |     tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */  | 
323  |  | 
  | 
324  | 0  |     tmp6 = tmp12 - tmp7;  /* phase 2 */  | 
325  | 0  |     tmp5 = tmp11 - tmp6;  | 
326  | 0  |     tmp4 = tmp10 - tmp5;  | 
327  |  |  | 
328  |  |     /* Final output stage: scale down by a factor of 8 and range-limit */  | 
329  |  | 
  | 
330  | 0  |     outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3)  | 
331  | 0  |           & RANGE_MASK];  | 
332  | 0  |     outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3)  | 
333  | 0  |           & RANGE_MASK];  | 
334  | 0  |     outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3)  | 
335  | 0  |           & RANGE_MASK];  | 
336  | 0  |     outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3)  | 
337  | 0  |           & RANGE_MASK];  | 
338  | 0  |     outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3)  | 
339  | 0  |           & RANGE_MASK];  | 
340  | 0  |     outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3)  | 
341  | 0  |           & RANGE_MASK];  | 
342  | 0  |     outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3)  | 
343  | 0  |           & RANGE_MASK];  | 
344  | 0  |     outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3)  | 
345  | 0  |           & RANGE_MASK];  | 
346  |  | 
  | 
347  | 0  |     wsptr += DCTSIZE;   /* advance pointer to next row */  | 
348  | 0  |   }  | 
349  | 0  | }  | 
350  |  |  | 
351  |  | #endif /* DCT_IFAST_SUPPORTED */  |